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1. IX'l'IDXJCTION 
Aperture synthesis technique is the most powerful indirect 

imaging technique used in radio astronomy for obtainIng high resolution 
images. The technique, instead of measuring the image directly, 
measures its Fourier components which form the required image after 
Fourier inversion. The radio images obtained using this technique are 
degraded mainly due to two practical reasons: 

(a) Inadequate sampling of the Fourier plane (also called 
uv~plane in radio astronomy): In principle, to obtain the true image 
with inflnte resolution, all the Fourier coefficients up to infinite 
spatial frequency must be sampled. However, due to finite size and non 
uniform sampling of the synthesized aperture, the syntheSized image, in 
general, deviates from the true brightness distributIon. The reason 
being that while Fourier inverting, the unmeasured FourIer coefficIents 
are naturally assumed to be zero. The image thus obtained suffers from 
loss of resolution and introduction of artIfacts. Recovery of an Image 
from these artifacts is a deConvolution problem. 

(b) Errors in the measurement of the Fourier coeffiCients: 
Apart from the fact that the aperture syntheSis technique does not 
sample all the Fourier coefficients, the measurements are affected by 
systematiC as well as random errors. In the presence of these errors a 
simple deconvolution, for obvious reasons, does not provide a good image 
reconstruction. Elimination of these errors is essentially a data 
calibration problem. 

2. PRlK:IPLE OF ~ 
Maximum Entropy Method, after its introduction by aJrg in 1967 

for obtaining high resolution spectra, was adopted in image processing 
by Frieden in 1972. The main difficulty in the image processing is that 
for a given set of measurements one invariably does not find a unique 
image. The basiC philosophy of Mm is to use the entropy of the image 
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as ~ quality criterion and to obtain a physically acceptable image which 
is consistent with the measurements. There has been considerable 
discussi·on over the justification ror HEM and the use of the word 
entropy in image processing (Frieden 1972, Gull and Daniell 1978; 
N i tyananda and Narayan 1982, Cornwell and Evans 1985, Shevgaonkar 
1986b). Due to the disagreement between different groups, the method, 
although coming into existence about two decades ago, did not receive 
active application. However, the recent work (Nityananda and Narayan 
1982. Cornwell and Evans 1985, Shevgaonkar 1986b) suggests that the 
image entropy has nothing to do with the classical entropy of a system 
(which has a completely different meaning). The present, widely 
accepted understanding is that the entropy is some kind of a measure of 
"goodness" of the image. Since the goodness is a rather subjective 
criterion, the entropy can be thought as a means of providing an a 
priori knowledge about the image. The minimum a priori knowledge one 
has is that the image (considering total intensity now, rather than 
polarization) is positive definite. Therefore the MEM must reconstruct 
an image which is at least positive derinite. Also ror a given 
measurement the method must give a unique image irrespective of the user 
and the starting guess of the image. These constraints pe~tY2usage of 
only rew runctions like tnB, RB tn Bt B tn(B/Bo ), (B/B o ) etc. to 
derine the entropy of an image (see Nityananda and Narayan 1982, 
Shevgaonkar 1986b); where B is the image brightness and Bo is a prior 
model of the image. It is noteworthy that all the runctions used ror 
derining entropy share the following common properties: 

(a) The entropy runctlon f(B) provides a non-linear 
restoration filter (i.e. aflaS ~ constant). 

(b) The function is explicitly definable for positive values 
of B only (positivity constraint). 

(c) The function possesses a single maximum over the 
acceptable range of the brightness (i.e. a2 f/aB 2 ) < 0; the uniqueness 
condi tion) • 

Assuming the brightness is uncorrelated from one pixel of the image to 
the other the entropy of an image is equal to the sum of the entropies 
of individual pixels. Mathematically we can write the entropy of a two 
dimensional image as 

E • J J f[B(x,y)] dx dy (1) 

where (x,y) are the two orthogonal image coordinates. 

The basic principle of the method is to reconstruct an image which is 
consistent with all the measurements and the a priori knowledge, and has 
a maximum entropy E. Assuming that the measurements are carried out in 
the Fourier plane (as is the case with indirect imaging), consistency 
with the measured data requires 
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p ... P 
t {_~~~w~.~}2 ~ N (2) 
N (J 

Where p is the measured Fourier "coefficient (which we will call 
visibility coefficient hereafter), p is the true visibility coefficient, 
and a is the rms of the statistical random noise of the measurement. N 
denotes the total number of measured dqta points. Equation (1) and (2) 
can be combined (Ables 1974, Wernecke and D'AddarIo 1976) to' define an 
objective function F, which when maximized produce an Image which is 
most consistent with the data and has maximum entropy. 

,.. 

Where A is a Lagrange multiplier and essentially defines the relative 
weights given to the two terms in eqn.(3). To obtain the best 
reconstruction, a proper value A is found by trial and error. However. 
a value of' A which gives equal weight to the two terms in eqn. (3) 
appears to be reasonable, unbiased choice. 

3. DECOtIYOLUTI(Jf 
As mentioned earlier, deconvolution is a process of recovering 

those visibility coeffIcients which were not merely modifIed by the 
instrument response but were actually never measured. Conventionally, 
this latter information is assumed to be hopelessly lost and therefore, 
in a strict mathematical sense, the deconvolution is an impossible task. 
However, some kind of model fitting along with a prior knowledge about 
the image (like positivity) makes the deconvolution possible in 
practice. 

There are two commonly used deconvolution methods in radio astronomy: 

(i) CLEAN which was introduced by Hogbom (1974) and was later 
mathematically justified by Schwarz (1918). This is the most routinely 
used deconvolution method in radio ,astronomy, although for extended 
images its performance dete~iorates. This method has already been 
discussed in detail by A.P. Rao in this workshop. For detailed 
understanding of the method and its practical implication readers are 
referred to the above two papers and the papers by Clark (1980) and 
Cornwell (1983). 

(ii) MEM, which was first l.ntroduced to radio astronomy by 
Ables (197~), has been developed to a satisfactory level over the last 
decade (Wernecke and D'Addarl0 1976, Gull and Daniell 1978, Cornwell and 
Evans 1985). The method can be described as follows: 

Let us assume that the visibility coefficients were measured at discrete 
spatial locations (m,n) E K; K is an arbitra~y spatial region (e.g. a 

121 



~adio inte~fe~omete~) whe~e total N measu~ements we~e ca~~ied but. From 
the Fou~ie~ t~ansform relationship" the measu~ed visibility coefficients 
can be w~itten as 

,.. 
Pmn - J J B(x,y) exp [i 2~(mx+ny») dx dy + noise (4) 

(m,n)e:K 
Or, inverting the Fou~ier integ~al, 
,.. 
B(x,y) • r t p exp [~i 2~(mx+ny») 

mn mn 
(5) 

... 
B(x,y) is the true brightness distribution and B(x,y) is the observed 
image obtained assuming the unmeasured visibility coefficients to be 
zero. B(x,y) is also calLed the principal solution, referred to in 
radio astronomy as the "dirty map". 

To maximize the objective function F with respect to the visibility 
coefficients p , we require aF/ap - O. Substituting for the observed 
brightness dist~bution B(x,y) in eq~(1) and (3) and differentiating 
with respect to Pmn we get the gradient of the objective function as 

aF 

Smn '" -.., ..... _- .... . J J aflaB exp [ ~i 2~(mx+ny») dx dy 
aPmn ,., 

2). P - P 
+ 1IIiIiI;""" ....... ..... ma ..... M. ... mu .. ) (6) 

N 0 2 
mn 

The MEM image is an image for which the gradient ~~ should be equal to 
zero. Therefo~e MEM reconstruction, in othe~ords reduces to a 
multidimensional optimization problem. Generally in any optimization 
problem computation of the gradient is the most tedious and time 
consuming part. However, in this case the gradient can be computed just 
through a Fourier transform as shown in eqn (6) and therefore any of the 
standard optimization methods can be employed for the maxima search. 

Figure 1 shows a flow diagram of the MEM algorithm for deconvolving the 
images using the conjugate gradient search method. Note that the second 
box 'Add a floating constant C' is a new feature in the method discussed 
so far. This operation is needed to circumvent some of the practical 
difficulties in the implementation of the method as it is described 
above. Its usage requires some explanation. 

It shoulct be realized that at the beginning of the iteration the 
observed image generally has some negative artifacte. Since the entropy 
is not defined for the negative intensities, initially the entropy 
becomes imaginary and the algorithm can not proceed. There are two ways 
of taking care of this problem: (1) clip all negative intensities to a 
very small positive value (Cornwell and Evans 1985), (ii) Add 
temporarily a constant bias to the entire image such that the intensity 
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Figure 1. Flow diagram of the MEM algorithm for deconvolution. 
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TABLE 1 
CCMPARISON OF ClEAH AND fEH 

Subject 

1 • Philosophy 

2.Nature of Image 

3.Qual1 ty of 
Reconstruction 

4. Speed 

5.P~ior knowledge 
about the image 

6. Resolution 

7. Polarization 
Image 

8.Noise treatment 

9.Calibration 

10. Popularity 

CLEAR 

Mathematically it is a 
least-squares data fitting 
technique 
Good for isolated point 
sources. but introduces 
coherent errors in extended 
sources 

Relatively rough image 

It has a firmer 
mathematical basis 

Good for point 
sources. Relatively 
better for extended 
emission compared to 

CLEAN 
Smooth reconstruction 

Faster for compact sources Relatively efficient 
and small fields of view but for la~ge fields 
extremely slow for extended 
fields. 
Always assumes point source Prior information can 
nature of the sour"ce. Does be supplied. Recons~ 
not guarantee positivity on tructs a positive 
the image definite image. 
Has essentially the same Extrapolated visibilities 
angular resolution as the give enhanced resolution 
principal solution termed "super resolution" 
Deconvolves different Treats all the polari~ 
component images indepen., zation component images 
dently and therefore does simultaneously and 
not assume the images to guarantees essential 
satisfy essential conditions conditions on the images 
Treats equally the high and It has a provision to 
the low signal to noise treat data differently 
ratio pixels in the image having different signal 

Convolution with the clean 
beam of the image restores 
the calibration 

Due to its simplicity it is 
very popular but only in 
radio astronomy 
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to noise ratio 
Due to supe~~resolution 
and non~linear recorist~ 
ruction it is difficult 
to get proper intensity 
calibration on the 
reconstructed image. 
Application in variety 
of fields like medical 
SCiences, crystal lou 
graphy, X"'Iray astronomy 
etc. It is rapidly 
picking up in radio 
astronomy. 



is positive definite in every pixel of the image. We have employed the 
latter choice 1n our algorithm and caillt a floating operation. One 
obvious question that comes to our mind immediately is by what amount an 
image should be made positive definite and what is the effect on the 
deconvolution? An answer to this question is not ve~y simple. We see 
that the choice of the floating constant 'C' is relatec to the slope of 
the extrapolated visibility function (Bhandari 1978). If 'C' is large 
the extrapolated visibility function drops to zero ve~y sharply and we 
obtain a reconstruction which is not much superior to the principal 
solution. On the contrary for a very small value of C ~he extrapolation 
is much flatter and we may get an excess superresolution. The ratio of 
the maximum to minimum intensity in the floated image can be taken as an 
indirect measure of resolution enhancement and can be fixed, depending 
upon the requirement, to a predetermined value. Indeed the floating 
constant is one of the important controlling parameters of the MEM 
reconstruction (see Shevgaonkar 1986a, 1987; Narayan and Nityananda 
1986), and its choice is left to the users. It 1s easy to see that at 
the convergence the restored image still floats by an amount equal to 
the last value of C. Therefore at the end this bias has to be 
subtracted from the image. 

Other steps in the algorithm are straight forward. USing eqn (6) 
gradient and the conjugate gradient of the objective function are 
computed. Visibility coefficients are changed by a fraction 'y' of the 
computed conjugate gradient. Changed coefficients are Fourier inverted 
to obtain a new restored image. The iteration continues till a 
convergence is reached. The modulus of the gradient has been used as a 
convergence parameter. The metnod generally converges in about 20 
iterations and ther.efore requires a computation time of about 40 fast 
Fourier transforms (FFTs). 

The two methods CLEAN and HEM have been compared for their merits and 
demerits in Table 1. 

4. CLOSURE RELATION 
Assuming that the random noise is regligible, phase errors 

could be introduced by changes in the path lengths due 'to a variable 
atmosphere, temperature sensitive electronics etc., and the amplitude 
errors introduced by a front-end amplifier gain variation or an antenna 
pointing error. The concept of closure phase was first introduced by 
Jennison In 1958. He realized that the sum of the visibility phases 
around a closed loop of interferometers is free from all the antenna 
based phase errors. This can be seen very easily as follows: 

Let us take three antenna elements A, B, C forming three interferometer 
pairs AB, BC and CA. Let $AB' $ and $ A be the true visibility phases 
for the three interfe~ometers re~ctivety for any arbitrary brightness 
distribution. If 0A' 0B and or. are the total phase errors introduced at 
the three antenna elements, the observed visibility phases can be 
written as 
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... 
q,AB - t;AB + Os - 0A 

... 
~ • t;BC + 0c .., Os (7) 

,. 

t;CA .. <PCA + 0A - 0c 

It is appar'ent that the sum of the three observed phases 

<l>ABC • <PAS + ~BC + <PCA (8) 

is equal to the sum of the true visibility phases i.e. (<I> + <I> + 
<l>eA)' The quantity <l>ABC Is free from all the antenna baS~ syste~tic 
e~rors and i~ known as tlle 'closure' phase. It is clear that the 
closure phase is an er'r'or free quantity irrespective of the separ'ation 
and orientation of the interfer'ometer' basel,ines. The closure r'elation 
(8) can also be written in a differ'ential form, i.e. 

(9) 

wher'e ~'s are the algebraic dlffer'ences between the measured and the 
true visibility phases. ' 

Similar' to the closure Phase a quantity called closure amplitude can 
also be defined, however, for' at least four element arrays. If AAB' 
Ao ,~ and A A are the visibility amplitudes of the four out of sIx 
iKEerf~~ometer'R formed by four' antenna elements A,S,C and D, the closure 
amplitude can be written as 

'rABCD - -~~ .. !~~-. 
~C ADA 

(10) 

The observed and true closur'e amplitudes ar'e also going to be identical. 
If we express 'the obser'ved visibility amplitude 

(11) 

and assume that A's are small compared to unity (as is generally the 
case) the closure equa t'ion (10) can be simplified to 

AAB" ~C + AcD - AnA = 0 (12) 

Please note the differences in the definitions of 41's and A's. 

An N element array measures N(N-1)/2 (=q) complex visibility 
coefficients whereas there are only (NM 1) phase errors and N amplitude 
errors related to the N antenna elements. Therefore one obtains 
N(N-3)/2 (-I') independent closure amplitudes and (N-1)(N-2)/2 (=p) 
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independent closure phases which are free of all the antenna based 
errors. For an N element system, the closure equations (9) and (12) can 
be written in a matrix form as 

H4> • A ~ - 0 - (13) 

and 

HA • A A .. 0 ( 14) 
... 

• 
Where, ti4> is the closure phase matrix of :izeq (rP <x qq)(.p <Botqh) maantrdicHe.A.~:eS 
closure amplitude matrix of size r A S ~ 
composed of elements 0 or ±l. 

It can be seen easily that the large number of closure quantities, 
although free from the antenna errors, can not reconstruct the image 
uniquely. The most obvious thing to note is the loss of absolute 
position and strength of the source. A position change introquces a 
phase change in the visibility which depends upon the difference in the 
position of the interferometer elements. This phase change can· be 
factorized into two antenna related errors and threfore cancels out in 
the closure phase. The loss of absolute source strength calibration is 
evident as the closure amplitude is only a ratio of the visibility 
coefficients. In any case the fact is, inspite of having large number 
of error~free quantities, the remaining degrees of freedom corresponding 
to the antenna element complex gains should still have to be balanced 
out by using an a priori knowledge about the distribution. 

5. SELF<ALIBRATI<Ji 
USing closure quantities, the calibration of the data in a 

self consistent manner was first proposed by Readhead and Wilkinson in 
1978. The approach was visibility oriented. However, Cornwell and 
Wilkinson (1981) later adopted the antenna based approach and this is 
the currently followed approach. Self-calibration is essentially a 
combination of CLEAN and the closure phases. The basic philosophy is to 
obtain a plausible model image B of the intensity distribution, the 
Fourier transform p of which, when corrected by some complex gain 
factors, reproduces the observed visibility coefficients within noise. 
By plausible model we mean a positive, confined image. The model 
fitting can be done (SChwab 1980) by minimizing the error term 

2, *.... 2 
X I Wmn I Pmn - Gm Gn Pmn I ( 15) 

m,n 
m"'n 

where w are the weights decided from signal-.to~nolse ratio. G and G 
are thWO complex antenna gains for element m and n respectivel~, and i 
denotes the complex conjugate. P are the observed . visibility 
coefficients and ~ are the visibiliti~ corresponding to the model B. 
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Equation (15) can be re"'lWl'itten as, 
2 ... 2 *2 6 

X - I wmn I Pmn I I xmn .. Gm Gn I ( 1 ) 
m,n 
m"n 

where, 
p 

X • .."mo .. 
tun 

(17) 

Pmn 

This step turns the object into a pseudo point source. The method can 
be applied In an iterative manner to refine the model as follows: 

1. Using all the prior knowledge we have about the object 
make a model image 

ii. Convert the source into a point source using model 
ili. Solve for the complex antenna gains 
iv. Correct the visibllities as 

p 
Pmn corr • .... ""'i ..... 

GmGn 

(18) 

v. Obtain a new model by Fourier inverting the corrected 
visibil1ties. 

vi. Go to (Ii) unless the image is satisfactory. 

Deconvolution method CLEAN or HEM (sanroma and Estallela 1984) is used 
to obtain a new model at every iteration. For detailed understanding of 
this technique a review article by Pearson and Readhead (1984) could be 
referred. 

Since its invention, the SelfMcalibration has been quite routinely used 
in radio astronomy to obtain high dynamic range images. However, the 
method has certain drawbacks. 

i) It is sensitive to the choice of the model to some 
extent. 

11) Since the key module of the method is CLEAN, the method 
faces difficulties for extended images. 

iii) For large fields of view closure quantities can be 
considered as an alternative to the conventional 
self·calibration. 

6. MEM FCIl DATA CJLIBRATI~. 
Since the brightness distribution B is real, the visibility 

function Pmn [.~ exp(i ~mn)] must be Hermitian giving 

Amn - A ... m- n and </Imn • - '-m-n ( 19) 
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Just to avoid complications, for the time being let us assume that the 
noise is negligible compared to the visibility amplitudes over all 
baselines. Using Hermitian property (19) in eqn.(5), the brightness 
distribution can be rewritten as 

B(x,y) .. p + 2 
00 m,n>o 

{2Amn cos[$mn - 2w(mx+ny)]} (20) 

Substituting eqn.(20) in (3) and differentiating the entropy with 
respect to amplitude and Phase we get the gradient for the entropy with 
respect to Amn and ~mn respectively as 

aE 
• 2 (lmn cos(~ - $mn) (21) 

aE 
g .. -- .. --....... .. 2Amn 0mn sin('1nn" 4>mn> (22) 

$mn Cl4>mn 

where we have defined 
1'1Jm 

(Iron e .. FI' 
af 

[--_ .. ] 
aB 

(23) 

where FT denotes Fourier transform. 

Equating eqns (21) and (22) to zero we can gat the maximum entropy 
solution. However the difficulty is that since these equations have 
harmonic functions in them, one may obtaIn multiple solutions. By 
making use of the closure quantities the choice of solutions may be 
restricted and in most of the cases a unique solution is obtained. It 
should be noted that the maximization of the entropy is only a desirable 
condition whereas the closure relations must be strictly satisfied at 
every stage of iteration. The visibility Phase and amplitude can be 
changed in the direction of the entropy gradient only as much as the 
closure constraints allow. 

Since we are interested only in the relative changes in the visibility 
phase and amplitude, a differential form of closure relations (13) and 
(14) is adequate for this purpose. It is important to note that the 
differential closure equations (13) and (14) do not require any 
observational quantity and can be thought as characteristic closure 
equations of an N element array. Since there are more unknowns than the 
equations, the equations (13) and (14) define a surface in a q 
dimensional space. Any vector (Mm, a) lying on these surfaces 
satisfies the closure constraints. For the maximization of the entropy 
we choose, however, that vector which is closest to the entropy gradient 
vector. 
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The scala~ distance between the gradient vector S~ and SA and i and ... ~ 
can be written as 

S~ ,. I&<p - A~I .. { L (g¢l - A~rnn)2 } 1/2 (24) 
m.n mn 

SA • ISA -AA.I - { L (gA .. A~) 2 } 1/2 (25) 
m,n m 

Since q complex measurements are coupled through p Ea(N~1)(N~2)/2) 
closure phases and r (.N(N~3)/2) closure amplitudes, any (q .. p) phases 
and (q~r) amplitudes can be chosen independently. For Sm and SA to be 
minimum with respect to these independent variables we require 

as 
AoI .... _i.. • 0 j • 1 to (q-llp) (26) 

and 
dA~j 

as 
~.~~a~ _ 0 ; k • 1 to (q-r) (26) 
ob.\ 

Equations (26) and (27) along with the closure equations (13) and (14) 
form a set of equations which can be solved uniquely to get ~ and A. 
Knowing the shift direction ( ~, a) an algorithm similar to the one 
described in section 3 can be developed. For the details of the 
algorithm, its application ·to simulated data and the treatment of noise 
the readers are referred to the original reference (Shevgaonkar 1986a). 
The method does show good promise when tested on simulated images; 
however, its application to real data is still awaited. The method is 
expected to be faster than the self~calibration especially for large 
fields of view and extended stl:'Uctures. 'l'h~ . method as such does not 
require any starting model. HOwever, a use of default image, if 
available, makes the convergence faster. 

1. CCliCLUSICIf 
Maximmum Entropy Method has been proved to be a promising 

image reconstruction technique in radio astronomy and in variety of 
other fields. Starting from the simple deconvolution of scalar 
intensity images it has progressed. to where it may now also be 
applicable to data calibration. 

In recent years It has been extended to reconstruct polarization images 
(Nityananda and Narayan 1983, Shevgaonkar 1987) but this application to 
realsyntne$is data has yet to be made. Similar to what is mentioned 
above, the MEM has also been applied for phase recovery in 
crystallography problems (Narayan and Nityananda 1982). With the 
upccming low frequency telescopes like GMRT (Giant Meter Radio 
Telescope), HEM may find an interestIng application for reconstructing 
1mges over non~isoplanat1c fields of view (Shevgaonkar 1986c). 
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Presently, due to super"\resol ving nature, the MEN images are of 
qualitative interest only. For the quantitative analysis the common 
practice is still to smooth the super"'resol ved image to the instIUllent 
resolution. Hopefully the problem of image calibration will be well 
understood in the future and the HEM images will claim the right to 
their superiority. 
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