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This paper reports the use of a GIS based Probabilistic Certainty Factor method to assess the
geo-environmental factors that contribute to landslide susceptibility in Tevankarai Ar sub-watershed,
Kodaikkanal. Landslide occurrences are a common phenomenon in the Tevankarai Ar sub-watershed,
Kodaikkanal owing to rugged terrain at high altitude, high frequency of intense rainfall and rapidly
expanding urban growth. The spatial database of the factors influencing landslides are compiled pri-
marily from topographical maps, aerial photographs and satellite images. They are relief, slope, aspect,
curvature, weathering, soil, land use, proximity to road and proximity to drainage. Certainty Factor
Approach is used to study the interaction between the factors and the landslide, highlighting the impor-
tance of each factor in causing landslide. The results show that slope, aspect, soil and proximity to roads
play important role in landslide susceptibility. The landslide susceptibility map is classified into five sus-
ceptible classes – low, very low, uncertain, high and very high − 93.32% of the study area falls under the
stable category and 6.34% falls under the highly and very highly unstable category. The relative landslide
density index (R index) is used to validate the landslide susceptibility map. R index increases with
the increase in the susceptibility class. This shows that the factors selected for the study and susceptibility
mapping using certainty factor are appropriate for the study area. Highly unstable zones show intense
anthropogenic activities like high density settlement areas, and busy roads connecting the hill town and
the plains.

1. Introduction

Landslides are the most threatening geo-hazard
in hill and mountain terrains. Landslides are the
result of the effect of the conditioning factors which
govern the stability conditions of the slope and
the triggering factor. The triggering factor is natu-
ral or anthropogenic, intense and short-term, irre-
versibly altering the slope causing landslide (Glade
and Crozier 2005). Landslides and rock falls rank

high in the list of geo-hazards in Tevankarai Ar sub-
watershed, Kodaikkanal Taluk, South India posing
a severe threat to property and infrastructure and
stand as a major constraint on the development of
Tevankarai Ar sub-watershed. It is therefore neces-
sary to understand the landslide process, to assess
the factors that contribute to instability, analyze
the hazard and predict the future landslides to
combat the damages caused due to landslides and
evolve suitable mitigation measures. Landslide
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susceptibility map provides such a document that
portrays the likelihood or possibility of new land-
slides occurring in an area, and therefore helping
to reduce future damages – explicitly or implicitly
representing a forecast of future terrain behaviour.
Landslide susceptibility mapping and analysis is
done using many different methods and techniques.
A detailed outline of the various methods and their
advantages and disadvantages are systematically
compared in literature (van Westen et al. 2006;
Keefer and Larsen 2007). GIS is an effective tool
for managing and manipulating the spatial data
with an appropriate model for mapping landslide
susceptibility.

Probabilistic models like frequency ratio (Lee and
Sambath 2006; Lee and Pradhan 2006, 2007; Vijith
and Madhu 2008; Bai et al. 2010; Erener and
Duzgun 2010; Yilmaz 2010; Akinci et al. 2011;
Constantin et al. 2011; Mezughi et al. 2011;
Evangelin et al. 2011a), logistic regression (Ayalew
and Yamagishi 2005; Duman et al. 2006;
Nefeslioglu et al. 2008; Das et al. 2010; Fenghau
et al. 2010; Mancini et al. 2010; Pradhan 2010;
Ercanoglu and Temiz 2011; Sujatha et al. 2011b)
and certainty factor (Binaghi et al. 1998; Luzi and
Pergalani 1999; Lan et al. 2004; Fenghau et al.
2010; Kanungo et al. 2011; Lim et al. 2011; Hamid
et al. 2012) are successfully used to map land-
slide susceptibility. The application of a quantita-
tive approach provides objectivity over qualitative
analysis. The natural variability of the geotech-
nical parameters and the uncertainties concern-
ing the boundary conditions favour statistical and
probabilistic approaches; the principal parameters
are distributed statistically to account for their
spatial variability. However, sufficient and accu-
rate information about the landslide and contribut-
ing parameters are needed to construct this model
(Zhu and Huang 2006).

The scope of the paper is to study the geo-
environmental factors that contribute to landslides
and to define their relationship with landslide
occurrences in the study area using a GIS-based
bivariate probabilistic model – the Certainty Factor
approach (Chung and Fabbri 1993; Lan et al. 2004).
The authors have assessed the landslide suscepti-
bility of Tevankarai Ar sub-watershed, Kodaikkanal
using techniques like Weighted Similar Choice
Fuzzy model (Evangelin and Rajamanickam 2011),
Probabilistic Frequency Ratio (Evangelin et al.
2011a) and Logistic Regression model (Evangelin
et al. 2011a). The weighted similar choice fuzzy
model is a qualitative approach based on the
intrinsic properties of the slope and the degree of
susceptibility or the weight for each intrinsic fac-
tor is rated taking into account the opinion of
the geo-scientist. The other methods are quan-
titative methods based on the relation between

landslide occurrence and the landslide influenc-
ing physical parameters. Though all the methods
have shown good performance, it is observed that

Figure 1. Relief map showing landslide locations in the
study area.
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Figure 2. Monthly distribution of rainfall.
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logistic regression model performs better than the
weighted similar choice fuzzy model and proba-
bilistic frequency ratio model. This paper is yet
an another effort in assessing the landslide sus-
ceptibility of the study area using certainty fac-
tor approach, with an objective of refining the
susceptibility zonation of the Tevankarai Ar sub-
watershed. It is an indirect mapping method that
expresses a quantitative relationship between land-
slide occurrence and landslide influencing para-
meter. This model can be used to predict the areas
prone to landslides, not only in the study area, but
also in similar geo-environmental set-up. The per-
formance of the landslide susceptibility map gen-
erated using certainty factor approach is assessed
using validation dataset (temporal) of known land-
slide locations. The impact of the landslide on the
population and infrastructure is studied using the
landslide susceptibility map generated.

2. Geographic description of the study area

The study area falls (figure 1) in the Dindigul Dis-
trict of Tamilnadu, located at the eastern tip of
the Western Ghats. It covers an area of 63.44 km2.
It is bounded between the latitudes 10◦13′23′′

and 10◦19′23′′N and 77◦27′8′′ and 77◦33′48′′E
longitudes. The climate is of temperate type with
relatively even temperatures throughout the year.
The average maximum temperature is 17◦–25◦C
and minimum 5◦–12◦C. Annual average rainfall
varies from 1650–1800 mm and is distributed across
most of the months (figure 2). The region receives
rainfall during both south-west (June–September)
and north-east (October–early December). Mid-
December to March is relatively dry and April
and May experiences intense summer showers. The
rainfall data is obtained from the Kodaikkanal
Observatory and Byrant National Park rainfall

(a) (b)

(c) (d)

Figure 3. Examples of Landslide in Study area at (a) Munjikal, (b) & (c) Kodaikkanal town and (d) Kovilpatti.
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stations. Figure 2 shows the monthly variation of
rainfall (World Meteorological Organization). This
area witnesses a rapid urban development with
land clearing for housing and commercial establish-
ments and also an enormous increase in building
density causing erosion and landslides (figure 3).

The study area is a typical hill terrain domi-
nated by denudational landforms. The prominent
features include fracture valleys, structural con-
trolled valleys, pediments and valley fills. The cliffs,
which are very few in number, are also noted. They
are isolated and steeper; mostly with very little
or no vegetative cover. The elevation is higher in
the southern part of the basin (Mamumdi Malai
Peak, 2195 m in the south; Perumalai Peak, 2337 m
in the north–northeast) and decrease towards the
north and rises again in the north–northeast. The
slope morphometry depicted by the slope gradient,
slope aspect and slope curvature are presented in
figure 4(a, b and c). The study area is a gentle val-
ley; nearly 87% of the slopes have a gradient less
than 35◦. Bedrock geology consists of charnock-
ite in varying degrees of weathering with limited
soil cover ranging between nearly bare areas in the
north and north-eastern parts to maximum thick-
ness up to 3.1 m in the southern parts. The lin-
eament trend observed is in the order of NE–SW,
N–S, E–W, NW–SE and WNW–ESE directions
(figure 4d). Maximum number of lineaments are
clustered in the northern and northwestern part of
the sub-watershed. Two major faults are noticed
in the NE–SW running to a length of 14.93 km
and the other in nearly N–S direction, running to a
length of 5.9 km inside the study area, respectively.
The Tevankarai stream flows along the N–S fault.
Minor lineaments are present in the study area
in a random fashion. They appear to be formed
as a reflex of the distress due to the major faults
in the study area. The lineament density of the
study area is 1.76 km/km2. Lineament clusters are
observed at Kodaikkanal, Pettupparai, Adukkam,
Ganguvarodai and Bharati Annanagar. The
drainage pattern is mostly dentritic and has a
drainage density of 4.688 km/km2. The land use
is represented by settlements (10.72%), forests
(15.5%), agricultural land and plantations
(47.96%) and rest by roads, rivers and barren land.

3. Geo-spatial database of
geo-environmental factors

influencing landslides

Landslide susceptibility analysis involves data col-
lection and construction of a spatial database from
which relevant factors are extracted. A spatial
database that considers the landslide influencing
factors is constructed for the study area. Landslide

influencing parameters selected for this study are –
relief, slope, aspect, curvature, weathering, soil,
land use, proximity to drainage and proximity to
road. Rainfall is observed to be the triggering fac-
tor, which initiates the landslide events. The the-
matic layers of the pre-disposing factors are derived
from IRS LISS III satellite images, aerial pho-
tographs, Survey of India topographic maps and
field surveys. Soil related data and weathering
information are compiled through field surveys and
laboratory investigation. All the different thematic
layers of the identified landslide influencing param-
eters were imported into the ArcMap GIS for the
analysis.

3.1 Landslide inventory map

Slope failures in the region belong to different
landslide types, mostly translational slides (debris
slides) and debris flows. Debris slides, affecting
weathered material are predominant in this region
and are converted to debris flows in the presence
of depressions where water is accumulated, espe-
cially when the regolith is thick. The landslides for
study are generalized under shallow landslides and
include small translational slides and debris flows.
Spatial distribution of landslides in the area is con-
trolled by morphology of slope and anthropogenic
interference. Most of the slope failures take place
on colluvial deposits though some of them affect
underlying formations. Few examples of landslides
in the study area which are mapped during the
field survey are shown in figure 3. Mobilised vol-
umes are small and failure surfaces are located at
a depth less than 3 m.

Rainfall is identified as the triggering factor in
the region. Landslides predominantly occur during
monsoons and also in summer when the summer
showers are intense. Intense rainfall increases pore
pressure, and thus lowering the shearing resistance
of the formations. The spatial distribution of the
landslides in the area is observed to be controlled
by both morphological and hydrological character-
istics of the slopes. It is noted that steep gradients
of slopes are sensitive to small changes in cohe-
sion or pore pressure. Failures are prominent within
the slope gradients of 15◦–35◦ in the study area.
Anthropogenic activities like manipulating slope in
the form of small terraces, irrigation of slopes, high
building density and roads also cause landslide in
this region.

Spatial information of the landslides is a decisive
factor in the assessment of landslide susceptibility
and shows the location of perceptible landslides.
It is the key factor used in landslide susceptibil-
ity mapping by certainty factor approach. 131 were
detected of which 120 landslides were mapped in
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the field, depending on the size. From the field
study, it is noted that the depth of failure is <1.5 m
and the length <10 m in most cases. The land-
slide database is generated by thorough field sur-
vey and analysis of topographic maps and aerial
photographs of scale 1:25,000 and 1:50,000. The
field survey reveals that average length and width
of 90% of the landslides in the study area are less
than 30 m. Each landslide can be assumed to be
a single 30 m pixel. Only the main scrap is used.
Hence, a pixel size of 30 × 30 m was adopted for
all the themes. Therefore, the study area covers
a digital image of 70,475 pixels and landslides fell
into a total of 120 of these. The landslide dataset is
divided into two parts using a temporal criterion.
84 cases are used for assessment and 36 cases are
kept for validating the landslide susceptibility map.
Landslides in the study are of medium and small
size. Sampling circle with a radius of 60 m are used
for the analysis (Nefeslioglu et al. 2011). Figure 1
shows the relief of the study area with the location
of landslide occurrence used as training dataset.

3.2 Digital elevation model-based derivatives

Surface topography controls the run-off direction
and flow sources, thereby limiting the density
and spatial extent of landslides (Chauhan et al.
2010; Nandi and Shakoor 2010; Regmi et al. 2010;
Ghimire 2011; Xu et al. 2012; Kayastha et al.
2012). Key terrain attributes – slope gradient,
aspect, curvature and relief, derived from DEM are
used for the susceptibility analysis. DEM is created
from contours of 20 m interval. Slope, one of the
most important parameter in slope stability analy-
sis comprises of six classes. The landslide inventory
shows that most of the landslides have occurred in
the slope angles between 15◦ and 35◦ (figure 4a).
Aspect refers to the direction of maximum slope
and plays a vital role in causing slope instability. It
is divided into nine classes – N, NE, E, SE, S, SW,
W, NW and flat (figure 4b). West facing slopes are
most vulnerable to landslides as they are scantily
vegetated and marked with intense anthropogenic

activities. The curvature map is classified into three
classes – concave, flat and convex (figure 4c). Con-
cave slopes which have a tendency to hold moisture
are prone to landslides. The maximum elevation
in the study area is 2337 m and the minimum
is 1100 m. Relief data layer is divided into seven
classes of 200 m elevation (figure 1). Descriptive
statistics of the topographical parameters are given
in table 1.

3.3 Weathering

Weathering is a major factor influencing the poten-
tial failure (Nagarajan et al. 2000; Ercanoglu 2005).
It is observed that rather than variations in the
bedrock profile, degree of weathering governs the
susceptibility to landslides in this region. There
are weathered charnockite in the uppermost layers
to a depth of 2.5 m. It is observed that the northern
part of the study area is slightly weathered while
the south-eastern part is very highly weathered
(figure 4d).

3.4 Soil

The soil map is prepared from the field surveys and
profile information collected from the Kodaikkanal
Horticulture Department. Grain size analysis is
performed on these samples and they are classi-
fied using textural classification. Soil in the study
area falls into three categories, namely, sandy clay,
sandy clay loam and sandy loam (figure 4e). Nearly
56.5% of the total area is sandy clay loam. The
soil cover in the study area is shallow and varies
from a minimum depth of 70 cm in the proxim-
ity of Vilpatti to a maximum of 126 cm in the
extreme south-eastern part of the study area near
Ayyaraganam. Locally, thicker deposits (3.1 m)
are noticed in some locations like Senbaganur–
Shrinivasapuram road in the southeastern area
while the north and northeastern parts are nearly
bare. But in general, slopes with a soil cover of
2.5 m are not found in the study area (Evangelin
and Rajamanickam 2011).

Table 1. Descriptive statistics of topographic and proximity parameters.

Range Minimum Maximum Mean Std. dev.

Factors 0 1 0 1 0 1 0 1 0 1

Relief 1304 875 1032 1289 2336 2164 1688 1767 371.4 171.1

Slope 66.15 38.68 0 1.68 66.15 40.36 19.17 24.17 9.53 8.64

Aspect 361 356 −1 −1 360 355 176.48 179.39 111.79 123.44

Curvature 29.67 5.77 −13.78 −1.44 15.89 4.33 −0.005 1.19 1.31 1.15

Proximity to drainage 192.09 192.09 0 0 192.09 192.09 63.07 71.74 49.56 51.07

Proximity to roads 192.09 150 0 0 192.09 150 80.59 39.3 57.91 41.98

0: Areas with no landslides; 1: Landslides.
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3.5 Land use

Land use is one of the key factors responsible for
the occurrence of landslides. The vegetation binds
soil together through an interlocking network of
roots forming erosion resistant mats thereby stabi-
lizing the slopes (Dai and Lee 2002) while barren
slopes are prone to landslides. The land use map
(figure 4f) is classified into cropland, plantation,
settlements, forests, scrub, barren land and water-
bodies. The highest frequency of slides is observed
in the cropland category.

3.6 Proximity to drainage

The presence of streams influences stability by
toe erosion or by saturating the toe material or
both (Gokeceoglu and Aksoy 1996; Nandi and
Shakoor 2010). Also there is maximum infiltration
along slopes adjacent to streams where the mate-
rials have maximum permeability. The inclusion
of drainage channels as a factor controlling land-
slide susceptibility is useful for delineating proba-
ble travel paths down the slope from susceptible
initiation areas. Five classes of drainage buffers at
a distance of 50 m intervals from the drainage lines
are used (figure 4g).

3.7 Proximity to road

The most important anthropogenic activity caus-
ing slope instability problem is the modification
of slopes in the process of road construction. This
can be attributed to the inappropriate cut slopes
and improper drainage along the roads. 77.76% of
the slides are observed within a distance of 50 m
from the road. The distance to roads is calculated
in metres and is divided into five classes. They
are 0–50 m, 50–100 m, 100–150 m, 150–200 m and
>200 m (figure 4h).

4. Probabilistic analysis using Certainty
Factor Approach

The probabilistic analysis is performed using a
methodology integrating the results into a spatial
database using GIS. The basic assumptions are:

• future instability will take place under similar
circumstances to those in the past

• all the factors causing landslides are known and
included in the database

• all the events of instability have been identi-
fied and included in the analysis. The assump-
tions are not likely to be completely correct and

therefore validation is required to provide a mea-
sure of deviation between reality and assump-
tions made (Remondo et al. 2003). Higher
the percentage of landslides correctly predicted,
greater the validity of the assumptions and pre-
diction model based on the assumptions.

In this study, Certainty Factor, one of the com-
monly used probabilistic GIS models, is used
for mapping landslide susceptibility of Tevankarai
stream sub-watershed, Kodaikkanal Taluk. Cer-
tainty factor approach is one of the proposed favor-
ability functions to handle the problem of combi-
nation of heterogeneous data. The certainty fac-
tor approach can either be data driven or expert
driven, but as the inconsistency of expert opinion
is difficult to be evaluated (Binaghi et al. 1998), the
study considers a data driven approach. The appli-
cation of a quantitative approach provides objec-
tivity over qualitative analysis. Certainty factor is
calculated for each data layer based on the land-
slide inventory and the landslide occurrence fre-
quency in each class of every thematic layer. The
certainty factor for each pixel is defined as the
change in certainty that a proposition is true from
without the evidence (prior probability of having
landslide in the study area) to be given the evi-
dence (conditional probability of having a landslide
given a certain class of a thematic layer) for each
data layer (Binaghi et al. 1998; Luzi and Pergalani
1999; Lan et al. 2004). The certainty factor as a
function of probability was originally proposed by
Shortliffe and Buchanan (1975) and modified by
Heckerman (1986) is:

CF =

⎧
⎪⎨

⎪⎩

ppa−pps
ppa(1−pps) if ppa ≥ pps

ppa−pps
pps(1−ppa) if ppa < pps

(1)

where CF is the certainty factor, ppa is the con-
ditional probability of having a number of land-
slides in a class ‘a’ (e.g., west facing slope in aspect
layer, cropland in land use layer, etc.) and pps is
the prior probability of having the total number of
landslides in the study area ‘A’. The certainty fac-
tor ranges between −1 and 1, positive values imply
an increase in certainty, after the evidence of land-
slide is observed, and negative values correspond
to a decrease in certainty. A value close to 0 indi-
cates that the prior probability is very similar to
the conditional probability. It does not give any
indication about the certainty of the occurrence of
the event. The certainty factor values for each class
of the selected factors are shown in table 2.

The layers are combined pairwise according to
the integration rules (Chung and Fabbri 1993;
Binaghi et al. 1998). The combination of CF
values of two thematic layers ‘z’ is expressed in



1344 Evangelin Ramani Sujatha et al.

Table 2. Certainty factor of landslide related factors.

Pixels

Theme Class in class Landslides ppa pps CF

Relief (m) 1000−1200 6129 0 0 0.011366 −1.00

1200−1400 11820 51 0.004315 0.011366 −0.62

1400−1600 12282 121 0.009852 0.011366 −0.13

1600−1800 12245 331 0.027031 0.011366 0.59

1800−2000 13649 272 0.019928 0.011366 0.43

2000−2200 11169 54 0.004835 0.011366 −0.58

2200−2400 3181 0 0 0.011366 −1.00

Slope (◦) 0–5 3382 17 0.005027 0.011366 −0.56

5–15 22003 158 0.007181 0.011366 −0.37

15−25 26586 310 0.01166 0.011366 0.03

25−35 14288 274 0.019177 0.011366 0.41

35−45 3566 41 0.011497 0.011366 0.01

45−60 629 1 0.00159 0.011366 −0.86

>60 21 0 0 0.011366 −1.00

Aspect Flat 235 3 0.012766 0.011366 0.11

N 11149 136 0.012198 0.011366 0.07

NE 9442 130 0.013768 0.011366 0.18

E 9409 78 0.00829 0.011366 −0.27

SE 11017 141 0.012798 0.011366 0.11

S 6771 25 0.003692 0.011366 −0.68

SW 5023 38 0.007565 0.011366 −0.34

W 6741 54 0.008011 0.011366 −0.30

NW 10688 196 0.018338 0.011366 0.38

Curvature Concave 28484 375 0.013165 0.011366 0.14

Flat 19598 198 0.010103 0.011366 −0.11

Convex 22393 228 0.010182 0.011366 −0.11

Weathering Low 12577 40 0.00318 0.011366 −0.72

Moderate 21049 190 0.009027 0.011366 −0.21

High 17648 234 0.013259 0.011366 0.14

Very high 19201 337 0.017551 0.011366 0.36

Soil Sandy clay 23741 236 0.009941 0.011366 −0.13

Sandy clay loam 39757 165 0.00415 0.011366 −0.64

Sandy loam 6977 400 0.057331 0.011366 0.81

Land use Cropland 8409 154 0.018314 0.011366 0.38

Forest 10922 76 0.006958 0.011366 −0.39

Fallow and barren 8168 52 0.006366 0.011366 −0.44

Plantation 25393 354 0.013941 0.011366 0.19

Scrub 9425 69 0.007321 0.011366 −0.36

Settlement 7553 96 0.01271 0.011366 0.11

Water bodies 605 0 0 0.011366 −1.00

Proximity to road (m) 0−50 12415 461 0.037133 0.011366 0.70

50−100 8326 154 0.018496 0.011366 0.39

100−150 6504 53 0.008149 0.011366 −0.29

150−200 4042 15 0.003711 0.011366 −0.68

>200 39188 118 0.003011 0.011366 −0.74

Proximity to drainage (m) 0−50 34435 343 0.009961 0.011366 −0.12

50−100 22084 272 0.012317 0.011366 0.08

100−150 9872 148 0.014992 0.011366 0.24

150−200 2767 25 0.009035 0.011366 −0.21

>200 1317 13 0.009871 0.011366 −0.13

ppa: conditional probability; pps: prior probability; CF: Certainty factor.
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Table 3. Example illustrating the calculation of certainty
factor values for combination of thematic layers using inte-
gration rules (after Chung and Fabbri 1993).

Sl. no. CFrelief CFslope CFrelief slope

1 0.43 0.41 0.67

2 −0.58 −0.37 −0.73

3 −0.13 0.41 0.14

4 0.43 −0.03 0.47

CFrelief : Certainty factor value for relief; CFslope: Certainty
factor value for slope; CFrelief slope: Combined certainty
factor value after integration for various combination.

the following equation as given by Binaghi et al.
(1998):

z =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x + y − xy, x, y >= 0
x + y

1 − min (|x| , |y|) x, y opposite sign

x + y + xy, x, y < 0

(2)

The certainty factor values are computed by over-
laying each thematic layer with the landslide map
and calculate the landslide frequencies. Each the-
matic layer is reclassified according to the certainty
factor value calculated and are combined pairwise
to generate the landslide susceptibility map using
the integration rule of equation (2). Table 3 illus-
trates the integration using parallel combination.

5. Landslide susceptibility map

Landslide susceptibility map delineates areas, iden-
tifying areas with the same probability of slope

failure. The probabilistic analysis using certainty
factor provides the favourability function value for
each class of landslide influencing parameters. The
thematic layers are integrated pairwise using the
integration rules (Binaghi et al. 1998). The cer-
tainty factor in the final landslide susceptibility
map ranges from −1 to 0.993 with a mean of
−0.778 and standard deviation of 0.392. A value of
−1 indicates very low certainty of landslide occur-
rence while a certainty factor of 1 displays very
high certainty of landslide incidence at the loca-
tion. This landslide susceptibility map (figure 5a
and b) is reclassified into five susceptibility classes
(table 4) – very low (stable area), low (moderately
stable), uncertain, high (moderately instable) and
very high (highly instable) according to the clas-
sification adopted by Luzi and Pergalani (1999)
and Lan et al. (2004). The R index (Baeza and
Corominas 2001) increases with the increase in
the susceptibility class (table 5) showing that the
factors selected for the study and susceptibility
mapping are appropriate.

The prominent areas falling in the high suscep-
tibility category are Perumalai, extenstion areas
of Kodaikkanal town like Indranagar, Munjikal,
Ugartenagar and Srinivasapuram and the hill
roads connecting Kodaikkanal town to Palani and
Bathlagundu. High susceptible zones show intense
anthropogenic activities like high density settle-
ment areas and busy roads connecting the hill town
and the plains. Most parts of Senbaganur, Vil-
patti and a small part of Kodaikkanal town along
the southeastern sector fall under moderate sus-
ceptibility area. Moderate susceptibility zones are
predominantly areas with intense commercial
agricultural activities and areas that are rapidly

Figure 5. (a) Landslide susceptibility map showing training dataset of landslides and (b) with validation dataset of
landslides.
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Table 4. Landslide susceptibility zones (after Luzi and Pergalani 1999; Lan et al. 2004).

Susceptibility Range of

Sl. no. Description class certainty factor

1 Very low certainty–stable Very low −1–0.5

2 Low certainty–moderately stable Low −0.5–0.05

3 Uncertain Uncertain −0.05–0.05

4 High certainty–moderate instability High 0.05–0.5

5 Very high certainty–high instability Very high 0.5–1

Table 5. R index of landslide susceptibility classes.

Area Landslides R

Certainty class (%) (%) index

Very low 66.38 19.44 0.29

Low 26.94 33.33 1.23

Uncertain 0.34 0.00 0.00

High 3.70 22.22 5.99

Very high 2.64 25.00 9.44

urbanizing to accommodate the growth of tourism
and tourism-related activities.

6. Validation

An essential element of landslide susceptibility
analysis is the review of the effectiveness of the
landslide susceptibility map generated. The land-
slide database is divided into two parts – train-
ing and validation datasets for assessment and
validation of the landslide susceptibility. Land-
slides mapped in the period October–November
2009, are used as validation dataset. The valida-
tion dataset consists of 36 landslides. The landslide
susceptibility map is matched with the landslide
locations observed and mapped in 2009.

The two decision rules that must be satisfied for
a good landslide susceptibility map are:

(a) most of the actual landslides should be located
in the pixels included in the high susceptibility
classes and

(b) these high susceptibility classes should cover
small areas (Can et al. 2005; Duman et al.
2006).

The success rate curve (figure 6) shows that 93.32%
of the study falls under very low and low cer-
tainty (susceptibility) classes with 27.28% of the
landslides in it. But the high and very certainty
classes have 72.23% of the landslides though they
cover only 6.34% of the total area satisfying deci-
sion rules (a) and (b). The area under the curve is
75. 56%.

A relative landslide density index (R) is used to
verify the results quantitatively. The index given
by Baeza and Corominas (2001) is defined as:

R =
((

ni

Ni

)/

Σ
(

ni

Ni

))

× 100

where ni is the number of landslides in the sus-
ceptibility level ‘i’ and Ni is the area occupied by
the cells of susceptibility level ‘i’. Table 5 shows
the R index for each susceptibility level. It is seen
that the R index increases with the level of sus-
ceptibility. This point to the conclusion that land-
slide distribution observed in these levels indicate
susceptibility levels as consistent.

The landslide susceptibility map (figure 5a and
b) shows that the areas most susceptible to land-
slides are characterized by high road and settle-
ment density. Most of these areas fall in the south
south-eastern part of the study area. The hill road,
connecting the plains and the town, fall in this
part of the study area, making this area an activity
hub, to cater to the demands of the overflow tourist
activity. Expanding road infrastructure makes this
region vulnerable to slope instability problems.
Strict enforcement of building regulations in the
town force increase in the density of built-up area
in the sub-urban regions, skirting the town. A large
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Figure 6. Success rate curve.
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expanse of land is occupied by orchards and plan-
tations, in this region, substituting the natural for-
est cover, stimulating erosion and landslides in this
region. There are also pockets of high and very high
susceptible areas in the northeastern and north-
western part. The northwestern part is an agricul-
tural area with intense commercial vegetable gar-
dens. Here terraces are cut in slopes, and irrigation
is done using bunds, increasing the saturation. Soil
is predominantly sandy clay. This leads to frequent
local earth slumps. The hill-road and plantations
make the northeastern part of the study area vul-
nerable to landslides. The validation analysis illus-
trates how well the estimators (evidential themes)
perform with respect to the landslide used in con-
structing those estimators. It is observed that all
the estimators perform well and results using the
validation dataset are compatible with the results
using the training dataset except in case of soil.

7. Results and discussions

Certainty factor is one of the probabilistic meth-
ods used successfully for landslide susceptibility
analysis (Binaghi et al. 1998; Lan et al. 2004).
The certainty factor model performs better than
the weighted similar choice fuzzy model (Evangelin
and Rajamanickam 2011) and the probabilistic fre-
quency ratio model (Evangelin et al. 2011a). The
logistic regression model (Evangelin et al. 2011b)
and the certainty factor model show almost simi-
lar performance. This model has the advantage of
controlled overlay of parameter maps (Lan et al.
2004) unlike the other models used for the same
study area. It also overcomes some of the disadvan-
tages of logistic regression model. Logistic regres-
sion and frequency ratio models require a large
sample dataset. Logistic regressions assume a lin-
ear relation between the independent variable and
the logit function and are widely suitable for dis-
crete functions only. Multi-collinearity in the cho-
sen parameters can lead to large standard errors,
making it harder to reject the null hypothesis if
the sample dataset is small. The most important
disadvantage is the interpretation of the logistic
regression co-efficients. The relationship between
the dependent and independent variable are indi-
rect and interpretation is inconclusive, which is
one of the inherent disadvantages of any bivariate
analysis.

Certainty factor depicts the net belief in hypoth-
esis based on some belief and allows for an expert
to express belief without committing a value of dis-
belief (Binaghi et al. 1998). The integration rule
adopted softens the effect of disconfirming evidence
on many confirming pieces of evidence (Chung and
Fabbri 1993; Binaghi et al. 1998). The combine rule

of certainty factor method preserves the commuta-
tivity of the evidence (Heckerman 1986). The pri-
mary advantage of this method lies in the expres-
sion of degrees of belief (table 4). In the frequency
ratio method, larger the frequency ratio, greater is
the probability of landslide occurrence. The land-
slide susceptibility zones are susceptible to change
on increasing or decreasing the sample dataset,
making the susceptibility zonation relative. This is
true for logistic regression model too. Certainty fac-
tor values range between −1 and 1 making it easier
to understand the effect of each category of a the-
matic layer on landslides (Chung and Fabbri 1993).
The degrees of belief are easier to interpret into sus-
ceptibility zones as the intervals remain consistent
on application to other areas. But in both logistic
regression and frequency ratio models, the range
of values for a susceptibility map differs for each
study area and combination of landslide influenc-
ing parameters. This makes it difficult to compare
susceptibility zones of two different areas for pur-
poses of planning and management strategies. The
landslide susceptibility map reflects a more realistic
portrayal of the field conditions, which is evident
from the R index (table 5).

It is noted that most of the landslides have
occurred on slopes of gradient between 25◦ and 35◦

which is coherent with other studies (Dai and Lee
2002; Santacana et al. 2003; Fernandez et al. 2004;
Magliulo et al. 2008). The study shows that slope
morphometry (aspect and curvature) plays a major
role in combination with the slope gradient. It is
seen that most landslides fall on the concave slopes
and on the flat to concave slopes. Moisture reten-
tion is higher on gentle slopes with concave shapes
rather than on steep slopes suggesting contributing
area also plays a vital role but this has not been
considered in this study. Steep slopes show rela-
tively small number of landslides on slopes greater
than 35◦ as neither colluvium nor weathered clay
can stand on these slopes (Magliulo et al. 2008).
Steep slopes are made of resistant bedrock and are
stable and usually have lesser anthropogenic activ-
ities remaining relatively undisturbed (Evangelin
and Rajamanickam 2011). Lithology is neglected
as landslide causing factor due to limited spatial
variability but degree of weathering is observed to
have played a considerable role on slope instability.
Most of landslides fall on the very highly weath-
ered zones. High and very high weathered zones
explain nearly 72.22% of landslides showing the
contribution of weathering especially in the context
of road cutting and widening activities positively
aggravates the problem of slope instability.

Land use plays a principal role in causing land-
slides – plantations, croplands and built-up land
are the categories prone to landslides. Plantations
have replaced the natural forests on the slopes.
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Though the slopes are not altered for these orch-
ards, the slopes are well irrigated and are always
wet. The orchards that replace the natural forests
have shallow roots and less litter, increasing sur-
face run-off and discourage infiltration, increasing
the failure in the slopes. Croplands are charac-
terized by cultivation on terraced slopes. Steepen-
ing of slopes and intense irrigation techniques like
ponding water cause severe slope instability. Build-
ing and town planning regulations discourage hap-
hazard development within the town. This leads
to unsystematic expansion in the form of phenom-
enal increase in built-up density and unplanned
infrastructure facilities development in the sub-
urban parts of the town like Vilpatti, Munjikal,
Srinivasapuram and Indranagar. It is evident from
the analysis that slope instability problems are very
closely related to the anthropogenic activities of
intense agriculture and plantation and increase in
building density, all of which has altered the nat-
ural landscape of the region. Most settlements fall
in the moderately susceptible areas. These settle-
ments are located very near to the Kodaikkanal
town, which bustles with tourists nearly all round
the year, forcing over-flow tourism related acti-
vities like tourist resorts and hotels and related
infra-structure in these locations. It is suggested
that new infrastructure development should be
contained in these locations. Intense commercial
agriculture is noted in the western part of the
study area, which falls in the high susceptibility
zone. These areas show more potential for growth
in terms of intense commercial agricultural acti-
vities and tourism related activities. Hence, care
has to be taken in planning and initiating devel-
opmental activities in the moderately suscepti-
ble areas – in particular, the settlement clusters
which show strains of failure, owing to increased
settlement density, especially in sub-urban areas
adjacent to the town.

Similarly proximity to roads clearly pictures the
effect of anthropogenic interference. Landslides are
abundant within a radius of 50 m from the roads.
This region has experienced a steady increase in
the influx of tourists through this decade increas-
ing vehicular traffic on the hill roads, necessitating
widening of roads. Both the increase in traffic vol-
ume throughout the year and infrastructure devel-
opment to cater to the increase in tourist influx
has lead to the increase in slope instability prob-
lems along the hill roads. Wet slopes are prone to
landslides. The certainty factor values of proxim-
ity to drainage underline this fact. Landslides are
abundant near the streams. The addition of the
parameter proximity to drainage does not show a
strong change in the total increase in the certainty
factor but displays a reclassification in the land-
slide frequency falling in each group. Sandy loam

is observed to be the most vulnerable soil category
but as most of the agricultural activity is found on
sandy clay loam and sandy clay, there is limited
spatial variability.

The integration of the landslide influencing para-
meters show that the certainty factor increases sig-
nificantly as the parameters are added indicating
that appropriate parameters are selected for the
study. The landslide susceptibility map pictures that
72.23% of the landslides fall in the high and very
high certainty category, which comprises 6.34% of
the total study area while there are no landslides
in the uncertain class. The R index used for vali-
dation of the landslide susceptibility map depicts
that performance of the susceptibility analysis is
appreciable – the R index values for the stable
areas are lesser and for areas classified as insta-
ble it is clearly higher. The area classified under
the uncertain category (class 3) is a bare minimum
(0.34%), which again indicates good performance
of the susceptibility map generated.

The effect of each class of the thematic layers
selected for the study is shown in table 2. Unlike
other probabilistic methods like frequency ratio and
conditional probability, there is a clear demarca-
tion of stable and unstable zones in the certainty
factor approach. Landslide activity is predicted
to be very limited in the very low and low sus-
ceptibility zones. Most part of the Kodaikkanal
town, northern part of the study area like Bharati
Annanagar, Ganguvarodai and Gandhinagar fall
under this category. Localized, small scale land-
slides in the form debris-falls or debris-flows can
be expected in case of extreme condition. These
areas are suitable for developmental projects. But
caution is required as the most landslide prone
areas falling in the high and very high suscep-
tibility zones are mainly due to anthropogenic
intervention on natural landscape. The southeast-
ern parts like Senbaganur, Korappur and Perumal
malai, and sub-urban areas like Munjikal, Indra-
nagar and Ugartenagar in the south, fall under high
and very high susceptibility zones. There are also
pockets of high and very high susceptibility zones
in the northeastern, along the road connecting the
plains and the hill-town, where there is intense traf-
fic movement and road widening activities. North-
western parts like Vilpatti and Pullaiyar Totti also
fall under very high susceptible zone. Possibility of
landslide occurrence is high during intense or pro-
longed rainfall in the moderate susceptibility zone.
Land use changes should be done with extreme cau-
tion and developmental projects should be allowed
only when prior detailed slope stability investiga-
tions. The probability of landslides is high to very
high in the high and very high susceptibility zone,
in particular, during rainy season. Development
should be restricted in this zone and measures to
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contain anthropogenic intervention in the form of
increase in building density and change in land use
pattern should be taken.

8. Conclusions

The use of certainty factor for the assessment
of landslide susceptibility analysis is found to be
appropriate to map the unstable areas under static
conditions. The study also shows that certainty
factor method is useful to analyze the relation
between parameters influencing landslides and the
landslide. The distribution of R index for the dif-
ferent susceptibility levels is consistent. Roads are
the most susceptible infrastructure and hence, it
is recommended that specific slope stability anal-
ysis should be carried out before widening the
existing roads or constructing new roads along the
high susceptibility zones. Similarly, another area of
concern is the high density built-up zones in the
sub-urban areas like Vilpatti, Munjikal, Srinivasa-
puram and Indranagar. Land planning should be
done with care in these areas and slopes should be
strengthened with native vegetation.

Landslide susceptibility map is an inevitable tool
in planning mitigation measures and streamlining
developmental activities for a better hazard free town
and land use plan. This prediction map provides
a quick and cost-effective screening tool for man-
agers and planners to focus their investigative
efforts and money on areas with higher instabil-
ity potential during planning design, and construc-
tion and maintenance operations. But it cannot
be used for design purposes. It is an effective
database containing vital information for a local
level planner.
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Bai S, Lü G, Wang J, Zhou P and Ding L 2010 GIS-based
rare events logistic regression for landslide-susceptibility
mapping of Lianyungang, China; Environ. Earth Sci.
doi: 10.1007/s12665-010-0509-3.

Binaghi E, Luzi L and Madella P 1998 Slope instability zona-
tion: A comparison between certainty factor and fuzzy
Dempster–Shafer approaches; Nat. Hazards 17 77–97.

Can T, Nefeslioglu H A, Gokceoglu C, Sonmez H and Duman
T Y 2005 Susceptibility assessments of shallow earth flows

triggered by heavy rainfall at three catchments by logistic
regression analyses; Geomorphology 72 250–271.

Chauhan S, Mukta Sharma, Arora M K and Gupta N K
2010 Landslide susceptibility zonation through ratings
derived from Artificial Neural Network; Int. J. Appl.
Earth Observ. Geoinf. 12 340–350.

Chung C F and Fabbri A G 1993 The representation of geo-
sciences information for data integration; Non-renewable
Resour. 2(2) 122–139.

Constantin Mihaela, Martin Bednarik, Marta C Jurchescu
and Marius Vlaicu 2011 Landslide susceptibility assess-
ment using the bivariate statistical analysis and the index
of entropy in the Sibiciu Basin (Romania); Environ. Earth
Sci. 63(2) 397–406.

Dai F C and Lee C F 2002 Landslide characteristics and
slope instability modeling using GIS, Lantau Island,
Hong Kong; Geomorphology 42 213–228.

Das I, Sahoo S, van Westen C, Stein A and Hack R 2010
Landside susceptibility assessment using logistic regres-
sion and its comparison with a rock mass classifica-
tion system, along a road section in northern Himalayas
(India); Geomorphology 114 627–637.

Duman T Y, Can T, Gokceoglu C, Nefeslioglu H A and
Sonmez H 2006 Application of logistic regression for land-
slide susceptibility zoning of Cekmece Area, Istanbul,
Turkey; Environ. Geol. 51 241–256.

Ercanoglu M 2005 Landslide susceptibility assessment of
SE Bartin (West Black Sea region, Turkey) by artificial
neural networks; Nat. Hazards Earth Syst. Sci. 5 979–992.

Ercanoglu M and Temiz F A 2011 Application of logistic
regression and fuzzy operators to landslide susceptibility
assessment in Azdavay (Kastamonu, Turkey); Environ.
Earth Sci. 64 949–964.
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