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ABSTRACT

Quantum interference phenomena manifest themselves in several ways in the polarized solar spectrum formed due
to coherent scattering processes. One such effect arises due to interference between the fine structure (J ) states
giving rise to multiplets. Another effect is that which arises due to interference between the hyperfine structure (F )
states. We extend the redistribution matrix derived for the J-state interference to the case of F-state interference.
We then incorporate it into the polarized radiative transfer equation and solve it for isothermal constant property
slab atmospheres. The relevant transfer equation is solved using a polarized approximate lambda iteration (PALI)
technique based on operator perturbation. An alternative method derived from the Neumann series expansion is
also proposed and is found to be relatively more efficient than the PALI method. The effects of partial frequency
redistribution and the F-state interference on the shapes of the linearly polarized Stokes profiles are discussed. The
emergent Stokes profiles are computed for hypothetical line transitions arising due to hyperfine structure splitting
of the upper J = 3/2 and lower J = 1/2 levels of a two-level atom model with nuclear spin Is = 3/2. We confine
our attention to the non-magnetic scattering in the collisionless regime.
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1. INTRODUCTION

The linearly polarized solar spectrum is produced by coherent
scattering processes taking place in the solar atmosphere.
This so-called second solar spectrum is highly structured and
reveals various physical processes responsible for generating the
polarized signals in the spectrum. Quantum interference is one
such physical process whose importance has been highlighted
in the second solar spectrum studies (see Stenflo 1980, 1994,
1997). The coherent superposition of the fine structure states
leads to the J-state interference, whereas the F-state interference
arises due to superposition of the hyperfine structure states
(see Figure 1). The J-state interference theory for the case
of frequency coherent scattering was developed by Stenflo
(1980, 1994, 1997). This theory was extended to include partial
frequency redistribution (PRD) in line scattering by Smitha et al.
(2011b, hereafter called P1). The J-state PRD matrix derived in
P1 is used in the polarized line transfer equation in Smitha et al.
(2011a, herafter P2). An alternative scattering theory of J-state
interference based on a metalevel approach was developed by
Landi Degl’Innocenti et al. (1997), which also includes the
F-state interference effects. All the papers mentioned so far
are applicable to the case of a colisionless regime.

The second solar spectrum contains several lines which have
signatures of F-state interference. Examples of these lines are
Na i D2 at 5890 Å, Ba ii D2 at 4554 Å, Mn i 8741 Å, Sc ii 4247 Å,
etc. In this paper, we are concerned with the line formation
studies involving the F-state interference process and PRD.
The F-state redistribution matrix derived in this paper can be
used for modeling the non-magnetic quiet region observations
of hyperfine structure splitting (HFS) in the lines mentioned
above.

The F-state interference theory applicable to the frequency
coherent scattering was developed by Stenflo (1997). This
theory, along with PRD, was applied by Fluri et al. (2003)
and Holzreuter et al. (2005) in the polarized line transfer

computations. In Landi Degl’Innocenti & Landolfi (2004),
the theory of F-state interference was developed under the
approximation of complete frequency redistribution (CRD). The
theory of F-state interference in a magnetic field for multi-term
atoms in the collisionless regime and under the approximation
of CRD is presented in Casini & Manso Sainz (2005).

In this paper, we extend the J-state interference theory
presented in P1 to the case of F-state interference. The F-state
redistribution matrix is derived here for the non-magnetic case
and in the collisionless regime. The reason for considering the
non-magnetic case in this paper is that the formulation of P1
was confined to the linear Zeeman regime of field strengths
(the spacing between the Zeeman m-states being smaller than
the spacing between the fine structure states). In the present
context, the hyperfine splitting becomes comparable to the
Zeeman splitting even for weak magnetic fields, and we quickly
enter the Paschen–Back regime of field strengths (level crossing
of the m-states belonging to different F-states), in which the
formulation presented in P1 is not valid. Since the Paschen–Back
effect is outside the scope of this paper, our treatment here
is limited to the non-magnetic case, but there are plans to
pursue the extension to the Paschen–Back regime in future
work. We further assume that the lower level is unpolarized
and infinitely sharp. While this assumption is made for the sake
of mathematical simplicity, it is physically justified for the long-
lived ground states, which are correspondingly more vulnerable
to collisional depolarization.

Following P2, this PRD matrix is incorporated into the
polarized line transfer equation and solved using an operator
perturbation method. We also propose a new method to solve the
F-state interference problem. It is called the scattering expansion
method (SEM) and is described in Frisch et al. (2009) and
Sampoorna et al. (2011). Recently, it has been applied to a
variety of problems (see Sowmya et al. 2012; Supriya et al.
2012). We compare the operator perturbation method and the
SEM by applying them to the problem at hand.
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Figure 1. Level diagram representing the HFS in a two-level atom model.

In Section 2, we derive the PRD matrix for F-state inter-
ference and incorporate it into the line transfer equation. In
Section 3, we describe the numerical methods used to solve the
transfer equation. Results are presented in Section 4. Section 5
is devoted to the concluding remarks.

2. BASIC EQUATIONS

2.1. The Redistribution Matrix

In this section, we present the redistribution matrix
for the F-state interference, derived starting from the
Kramers–Heisenberg formula. We restrict our attention to the
case of a non-magnetic collisionless regime.

The redistribution matrix for the F-state interference can
be derived through a straightforward replacement of quantum
numbers in the J-state interference redistribution matrix derived
in P1. The replacements are as follows (see Stenflo 1997; Landi
Degl’Innocenti & Landolfi 2004):

L → J ; J → F ; S → Is, (1)

where L, J, and S represent the orbital, electronic, and spin
quantum numbers of a given state. F is the total angular momen-
tum and Is is the nuclear spin of the atom under consideration.
The expression for the F-state interference redistribution matrix
expressed in terms of irreducible spherical tensors can be
written as

RII
ij (x, n; x ′, n′) = 3(2Jb + 1)

2Is + 1

×
∑

KFaFf FbFb′

(−1)Ff −Fa cos βFb′ Fb
eiβF

b′ Fb

× [(
hII

Fb,Fb′
)
FaFf

+ i
(
f II

Fb,Fb′
)
FaFf

]
× (2Fa + 1)(2Ff + 1)(2Fb + 1)(2Fb′ + 1)

×
{

Ja Jb 1
Fb Ff Is

}{
Ja Jb 1
Fb Fa Is

}
×

{
Ja Jb 1
Fb′ Ff Is

}{
Ja Jb 1
Fb′ Fa Is

}
×

{
1 1 K

Fb′ Fb Fa

} {
1 1 K

Fb′ Fb Ff

}
× T K

0 (i, n)T K
0 (j, n′). (2)

In the above expression, the angle βFb′ Fb
is defined as

tan βFb′ Fb
= ωFb′Fb

γ
, (3)

where h̄ωFb′Fb
represent the energy differences between the

Fb′ and Fb states in the absence of a magnetic field. γ is the

damping parameter of the upper state. The lower levels are
assumed to be infinitely sharp and unpolarized. The h and f
functions are the auxiliary quantities defined in the same way
as Equations (14) and (15) of P1, but with the replacements
given in Equation (1). T K

Q are the irreducible tensors for
polarimetry introduced by Landi Degl’Innocenti (1984). For
the non-magnetic case presented in this paper, Q = 0. The
indices i and j refer to the Stokes parameters (i, j = 0, 1, 2, 3)
with K = 0, 1, 2 and −K � Q � +K . The directions of the
incoming and scattered rays are given by n′ and n, respectively.
n = (θ, ϕ), where θ is the colatitude and ϕ is the azimuth of the
outgoing ray. x ′ and x are the incoming and scattered frequencies
in Doppler width units.

2.2. The Polarized Line Transfer Equation

The one-dimensional radiative transfer equation for solving
the line formation problems with PRD and F-state interference
in scattering in the absence of a magnetic field is given by

μ
∂ I(τ, x, μ)

∂τ
= (φHFS(x) + r)[I(τ, x, μ) − S(τ, x, μ)], (4)

where I = (I,Q)T is the Stokes vector and S = (SI , SQ)T

is the Stokes source vector. Equation (4) is valid for the case
of a two-level atom with an infinitely sharp and unpolarized
ground level. μ = cos θ represents the line of sight. r is the
ratio of continuum to the frequency-integrated line absorption
coefficient. The positive Stokes Q represents electric vector
vibrations perpendicular to the solar limb. τ is the line optical
depth defined by dτ = −kLdz, where kL is the frequency-
integrated line absorption coefficient defined for a two-level
atom with HFS. If ηL is the line absorption coefficient, then for
the standard two-level atom without HFS, ηL = kLφ(x), where
φ(x) is the Voigt profile function. In the presence of HFS, ηL is
given by (see Equation (7) of P2)

ηL(ν) = kL

(2Is + 1)

∑
FaFb

(2Fa + 1)(2Fb + 1)

×
{

Jb Ja 1
Fa Fb Is

}2

φ(νFbFa
− ν), (5)

where

kL = hνJbJa

4π
N (Ja)B(Ja → Jb) (6)

is the frequency-integrated absorption coefficient for all the
F-states. Thus, φHFS(x) is the weighted sum of the individ-
ual Voigt profiles φ(νFbFa

− ν) representing each Fa → Fb

absorption.
For the particular case of the Ja = 1/2 → Jb = 3/2 →

Jf = 1/2 transition with Is = 3/2, φHFS(x) takes the form

φHFS(x) =
[

2

32
φ(ν0 1 − ν) +

5

32
φ(ν1 1 − ν)

+
5

32
φ(ν2 1 − ν) +

1

32
φ(ν1 2 − ν)

+
5

32
φ(ν2 2 − ν) +

14

32
φ(ν3 2 − ν)

]
. (7)

We have verified that if the F-states are very closely spaced,
then a single profile function φ(νJbJa

− ν), corresponding to the
Ja → Jb transition, can be used instead of φHFS(x) (see Landi
Degl’Innocenti & Landolfi 2004).

2



The Astrophysical Journal, 758:112 (7pp), 2012 October 20 Smitha et al.

The total source vector S in Equation (4) is given by

S(τ, x, μ) = φHFS(x)Sl(τ, x, μ) + r Sc

φHFS(x) + r
, (8)

where the unpolarized continuum source vector Sc = BU ,
where B is the Planck function and U = (1, 0)T . The line source
vector for a two-level atom with HFS is given by

Sl(τ, x, μ) = εBU +
1

φHFS(x)

∫ +∞

−∞
dx ′

×
∫ +1

−1

dμ′

2
R(x, μ; x ′, μ′)I(τ, x ′, μ′). (9)

Here, ε = ΓI /(ΓI + ΓR) is the photon destruction probability
per scattering, also known as the thermalization parameter, with
ΓI and ΓR being the inelastic and radiative de-excitation rates
of the upper state Fb. To a first approximation, these rates are
assumed to be the same for all the F-states. R(x, μ; x ′, μ′) is the
redistribution matrix defined in Equation (2) but integrated over
the azimuths ϕ′ of the incoming radiation. Such a simplification
is possible due to the azimuthal symmetry of the problem. This
redistribution matrix can be rewritten as

Rij (x, μ; x ′, μ′) =
∑
K

RK (x, x ′)

× T K
0 (i, μ)T K

0 (j, μ′). (10)

The redistribution function components RK (x, x ′) are
given by

RK (x, x ′) = 3(2Jb + 1)

2Is + 1

∑
FaFf FbFb′

(−1)Ff −Fa

× cos βFb′ Fb

[
cos βFb′ Fb

(
hII

Fb,Fb′
)
FaFf

− sin βFb′Fb

(
f II

Fb,Fb′
)
FaFf

]
× (2Fa + 1)(2Ff + 1)(2Fb + 1)(2Fb′ + 1)

×
{

Ja Jb 1
Fb Ff Is

}{
Ja Jb 1
Fb Fa Is

}
×

{
Ja Jb 1
Fb′ Ff Is

} {
Ja Jb 1
Fb′ Fa Is

}
×

{
1 1 K

Fb′ Fb Fa

} {
1 1 K

Fb′ Fb Ff

}
. (11)

For simplicity, we use the angle-averaged versions of the
auxiliary functions (hII

Fb,Fb′ )FaFf
and (f II

Fb,Fb′ )FaFf
.

2.3. Decomposition of the Stokes Vectors
into the Reduced Basis

Decomposition of the Stokes source vector S in the reduced
basis makes it independent of θ . The decomposition of S defined
in Equation (8) can be carried out in a way similar to the one
presented in Section 2.1 of P2. Hence, we do not repeat them
here. The transfer equation for the reduced Stokes vector I can
be written as

μ
∂I(τ, x, μ)

∂τ
= (φHFS(x) + r)[I(τ, x, μ) − S(τ, x)]. (12)

The corresponding irreducible total and line source vectors are
given by

S(τ, x) = φHFS(x)Sl (τ, x) + rG(τ )

φHFS(x) + r
, (13)

and

Sl (τ, x) = εG(τ ) +
∫ +∞

−∞

R̃(x, x ′)
φHFS(x)

J (τ, x ′)dx ′. (14)

Here, R̃(x, x ′) is a (2 × 2) diagonal matrix with elements
R̃ = diag (R0,R2), where RK are defined in Equation (11).
G(τ ) = (B, 0)T is the primary source vector, and J (τ, x) is the
mean intensity defined in Equation (22) of P2.

3. NUMERICAL METHODS

Here, we describe two numerical techniques to solve the
reduced form of the transfer equation. We compare their
performance on some benchmark problems.

3.1. Operator Perturbation Method

The solution of the polarized line transfer equation defined in
Equation (12) using the polarized approximate lambda iteration
(PALI) method is described in Sections 3.1 and 3.2 of P2. The
same equations also hold well for the present problem. Hence,
we do not repeat those equations here. The only difference is
that the redistribution matrix for J-state interference is now to
be replaced by the corresponding redistribution matrix for the
F-state interference presented in this paper. Also, the profile
function is to be replaced with φHFS(x).

3.2. Scattering Expansion Method

In recent years, a new method based on Neumann series
expansion of the polarized source vector has been developed
(see Frisch et al. 2009). It is applied to a variety of astrophysical
problems. Here, we describe the application of this method to
the problem at hand.

In this method, the reduced line source vector defined in
Equation (14) is rewritten in the component form for the non-
magnetic case as

SK
0 (τ, x) = G(τ )δK0δ00 +

∫ +1

−1

dμ′

2

×
∫ +∞

−∞
dx ′RK (x, x ′)

φHFS(x)

∑
K ′

ΨKK ′
0 (μ′)IK ′

0 (τ, x ′, μ′). (15)

ΨKK ′
0 are the components of the Rayleigh phase matrix in the

reduced basis (see Appendix A of Frisch 2007). We first consider
the component S0

0 . Expanding the summation over K ′ on the
right-hand side of Equation (15), we obtain

S0
0 (τ, x) = G(τ )

+
∫ +1

−1

dμ′

2

∫ +∞

−∞
dx ′R0(x, x ′)

φHFS(x)
Ψ00

0 (μ′)I 0
0 (τ, x ′, μ′)

+
∫ +1

−1

dμ′

2

∫ +∞

−∞
dx ′R2(x, x ′)

φHFS(x)
Ψ02

0 (μ′)I 2
0 (τ, x ′, μ′). (16)

The degree of linear polarization arising due to Rayleigh scatter-
ing is small because of the small degree of anisotropy prevailing
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in the solar atmosphere. Hence, the effect of linear polarization
on Stokes I can be neglected to a good approximation. Neglect-
ing the contribution from I 2

0 in Equation (16), we get

S̃0
0 (τ, x) � G(τ ) +

∫ +1

−1

dμ′

2

×
∫ +∞

−∞
dx ′R0(x, x ′)

φHFS(x)
Ψ00

0 (μ′)I 0
0 (τ, x ′, μ′), (17)

where S̃0
0 denotes the approximate value of S0

0 . It is the solution
of a non-LTE unpolarized radiative transfer equation and is
computed using the frequency-by-frequency (FBF) technique
of Paletou & Auer (1995).

The polarization is computed from the higher order terms in
the series expansion. The S2

0 component is given by

S̃2
0 (τ, x) �

∫ +1

−1

dμ′

2

∫ +∞

−∞
dx ′R2(x, x ′)

φHFS(x)

× Ψ20
0 (μ′)Ĩ 0

0 (τ, x ′, μ′)

+
∫ +1

−1

dμ′

2

∫ +∞

−∞
dx ′R2(x, x ′)

φHFS(x)

× Ψ22
0 (μ′)Ĩ 2

0 (τ, x ′, μ′). (18)

Retaining only the contribution from Ĩ 0
0 on the right-hand side

of Equation (18), we obtain the single scattering approximation
to the polarized component of the source vector as

[
S̃2

0 (τ, x)
](1) �

∫ +1

−1

dμ′

2

∫ +∞

−∞
dx ′R2(x, x ′)

φHFS(x)

× Ψ20
0 (μ′)Ĩ 0

0 (τ, x ′, μ′). (19)

The superscript (1) denotes single (first) scattering. This solution
serves as a starting point for the computations of higher order
scattering terms. Thus, the iterative sequence of SEM can be
represented by[

S̃2
0 (τ, x)

](n) �
[
S̃2

0 (τ, x)
](1)

+
∫ +1

−1

dμ′

2

∫ +∞

−∞
dx ′R2(x, x ′)

φHFS(x)

× Ψ22
0 (μ′)

[
Ĩ 2

0 (τ, x ′, μ′)
](n−1)

, (20)

where the superscript (n) denotes the nth scattering. The iter-
ative cycle is continued until the required convergence criteria
is met.

In the following, we compare the performance of these two
numerical methods by plotting the maximum relative correction
defined as

c(n) = max
{
c

(n)
1 , c

(n)
2

}
< 10−8, (21)

where

c
(n)
1 = max τ,x,μ

{∣∣δS(n)
I (τ, x, μ)

∣∣∣∣S̄(n)
I (τ, x, μ)

∣∣
}

, (22)

and

c
(n)
2 = max x,μ

{
P (n)(x, μ) − P (n−1)(x, μ)

P (n−1)(x, μ)

}
, (23)

as a function of the iteration number as shown in Figure 2. In the
above equations, P = [Q/I ] is the degree of linear polarization
and S̄

(n)
I = (1/2)[S(n)

I + S
(n−1)
I ].

Figure 2. Comparison of PALI (solid line) and the scattering expansion method
(dotted line). The model parameters are given in the text. A convergence criteria
of 10−8 are used.

Figure 2 is computed for a test problem defined by the model
parameters (T , a, ε, r, B) = (2 × 1010, 2 × 10−3, 10−4, 0, 1),
where T is the optical thickness of the self-emitting slab and a
is the damping parameter of the upper level Jb. From the figure,
one can clearly see that the convergence rate of the SEM is
larger by several factors in comparison to the PALI method. The
reason for the PALI method being slow is that the source function
corrections are computed iteratively from an approximate initial
guess and then the approximate lambda operator is perturbed
until the source function corrections fall below a convergence
criterion. On the other hand, the initial guess in the SEM
for polarized line formation is the single scattered solution
itself (which already contains the physical characteristics of
the scattering mechanism under consideration). For this reason,
SEM takes just a few iterations to converge to the same level
of accuracy as the PALI method. Furthermore, SEM is easy
to implement for problems of any physical and/or numerical
complexity. This makes the SEM the method of choice. For a
detailed comparison of PALI and SEM, we refer the reader to
Sampoorna et al. (2011) and Supriya et al. (2012). The simple
lambda iteration for polarization and the SEM is essentially
similar. In the lambda iteration, a source vector correction is
computed at each iteration, and the current source vector is
updated until convergence is reached. In the SEM, each iteration
can be seen as contributing a higher order scattering term to
the series expansion of the polarized component of the source
vector. This component is updated by adding successively higher
order terms in the scattering expansion of the source vector.
These points are clearly explained, respectively, in Trujillo
Bueno & Manso Sainz (1999, see the discussion following
their Equation (28)) and Frisch et al. (2009, see the discussion
following their Equation (36)).

4. RESULTS AND DISCUSSION

In this section, we present the results computed for a standard
two-level atom model with F-state interference using the PRD
matrix presented in this paper. Isothermal constant property
media characterized by (T , a, ε, r, B) are used. The slabs are
assumed to be self-emitting.
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Table 1
Wavelengths (Å) of F-state Transitions for a Hypothetical Atomic System

Fb = 0 Fb = 1 Fb = 2 Fb = 3

Fa = 1 5000.96093 5000.96075 5000.96036 N.A
Fa = 2 N.A 5000.98125 5000.98086 5000.98018

The results are presented for transitions centered at hypothet-
ical wavelengths arising due to the HFS of the Jb = 3/2 and
Ja = 1/2 levels of a two-level atom with nuclear spin Is = 3/2.
Due to the hyperfine interactions, the upper J-state splits into
four F-states with Fb = 0, 1, 2, 3, and the lower J-state splits
into Fa = 1, 2. Owing to the selection rule ΔF = 0,±1, these
F-states produce six radiative transitions (see Table 1). For sim-
plicity, the Doppler width of all the lines is taken to be constant
at ΔλD = 25 mÅ. In the transfer computations, a grid resolution
of (Nd,Nx,Nμ) = (5, 417, 5) is generally used, where Nd is the
number of depth points per decade in the logarithmically spaced
τ -grid. The first depth point is taken as τmin = 10−2. Nx is the
total number of frequency points covering the full line profile.
Nμ is the number of co-latitudes θ (μ), taken as the five points
of a Gauss–Legendre quadrature.

4.1. F-state Interference Effects in the Case
of Single Scattering

In this section, we study the behavior of the F-state inter-
ference PRD matrix derived in Section 2.1 by computing the
scattered profiles in a single scattering event. The results in
Figure 3 are computed for a 90◦ single scattering event. This is
done by giving as input an unpolarized beam of light incident on
the scattering atom at μ′ = −1 and observing the scattered ray
at μ = 0 in the scattering plane (see P1 for details on computing
polarization profiles in a 90◦ single scattered event). The dashed
line in Figure 3 is computed by ignoring the interference effects,
whereas the solid line is computed by taking into account the
interference effects between the F-states. A profile similar to the
solid line can also be seen in Fluri et al. (2003) and Holzreuter
et al. (2005), where plots of the wavelength-dependent polariz-
ability factor W2(λ) are shown. In the single scattering case, the
profiles of the W2(λ) and the Q(λ)/I (λ) are similar in shape and
differ only in magnitude (see below).

4.1.1. Principle of Spectroscopic Stability for F-state Interference

It is well known that the principle of spectroscopic stability
provides a useful tool to check any theory of quantum interfer-
ence. This was first discussed in the context of scattering polar-
ization and applied in detail in Stenflo (1994; see also Stenflo
1997; Landi Degl’Innocenti & Landolfi 2004). In this paper, we
apply it to the case of F-state interference arising due to nuclear
spin Is. According to the principle of spectroscopic stability,
in the limit of vanishing HFS in a two-level atom, the theory
of F -state interference should reduce to the standard two-level
atom theory without HFS. This can be verified by computing the
polarizability factor W2 and in turn the fractional polarization
Q/I in the limit of vanishing F-states. The value of W2 in this
asymptotic limit (which can be obtained by neglecting the Is)
can be computed as described in Stenflo (1997) with

(W2)asym =

{
1 1 2
Jb Jb Ja

}{
1 1 2
Jb Jb Jf

}
{

1 1 0
Jb Jb Ja

}{
1 1 0
Jb Jb Jf

} . (24)

Figure 3. Profiles of the intensity I and the fractional polarization Q/I , plotted
for a hypothetical line system with hyperfine structure splitting. The solid line
represents the Q/I with F-state interference and the dashed line represents
Q/I without F-state interference. Single 90◦ scattering is assumed at the
extreme limb (μ = 0). The model parameters are a = 0.002, the Doppler
width ΔλD = 0.025 Å.

For the particular case of Ja = 1/2 → Jb = 3/2 → Jf = 1/2
scattering transition, (W2)asym = 0.5. Hence, W2(λ) is expected
to approach 0.5 in the very far wings (see Figure 2 of Stenflo
1997). In the 90◦ single scattering case, the Q/I and the W2(λ)
are related through the formula (see Landi Degl’Innocenti &
Landolfi 2004)

Q(λ)/I (λ) = 3W2(λ)

4 − W2(λ)
. (25)

The above formula gives a value of Q/I = 0.428 for (W2)asym =
0.5 in the far wings.

From Figure 3, we can see that the solid curve reaches an
asymptotic value of 42.8% as demanded by the principle of
spectroscopic stability, whereas the dashed line reaches about
10% in the far wings, thereby violating the principle of spectro-
scopic stability. These arguments show that in the formulation
of the redistribution matrix, the inclusion of interference effects
between the F-states is essential.

4.2. Effects of F-state Interference in Multiply
Scattered Stokes Profiles

In this section, we present the results obtained by solving
the transfer equation including the F-state interference. In
the particular case of optically thin slabs, it can be shown,
by choosing the appropriate geometric arrangement, that the
multiply scattered solution approaches the single scattered
solution, thus proving that we have correctly incorporated the
F-state redistribution matrix in the line transfer code. See P2 for
more details regarding single scattering in a thin atmospheric
slab.

When the optical thickness of the medium is large, multiple
scattering effects come into play. Figure 4 shows one such
example, where the emergent Stokes profiles are computed for
different optical thicknesses. The dashed line in this figure
is computed by neglecting HFS. This is the standard two-
level atom case which results in a single radiative transition.

5
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Figure 4. Comparison between the multiply scattered emergent Stokes profiles
computed for different atomic systems as indicated in panel 2. The model
parameters are (a, ε, r, B) = (2 × 10−3, 10−4, 0, 1). The line of sight is given
by μ = 0.047. The wavelength positions of the six components are given in
Table 1. The spacing between the hyperfine structure components is taken to be
the same as those corresponding to the Na i D2 line.

The dotted line is computed with HFS but without interference
between the F-states. In this case, the six radiative transitions
arising due to HFS are treated independently. The solid line is
computed by taking into account the F-state interference. This
is comprised of six interfering radiative transitions between the
F-states. The three line types in this figure are quite similar to
each other in shape but differ prominently in amplitude.

For T = 2, the atmospheric slab is effectively thin and the
Q/I profiles for both the solid and dotted lines have a structuring
within the line core that is different from that of the dashed
line. This is due to the HFS of the given J-level. As the optical
thickness increases, such a structuring gets smoothed out and the
shapes (not the amplitude) of the solid and dotted line profiles
more closely resemble the dashed line profiles.

In the case of effectively thick atmospheric slabs (T > 2),
two peaks are seen on either side of the line center arising due to
PRD effects and are known as PRD wing peaks. In the line core,
the solid and dotted lines nearly coincide, whereas the dashed
line differs from these two. This shows that the depolarization in
the line core is purely due to HFS, irrespective of the interference

effects between the F-states being included. In the wings, the
solid line and the dashed line coincide, whereas the dotted line
differs significantly. Upon comparing the solid and dotted lines,
it is evident that the interference effects show up in the line
wing PRD peaks as in the case of J-state interference. However,
the J-state interference effects are seen even beyond the PRD
wing peaks, unlike the case of F-state interference. When F-
state interference is taken into account, the Q/I in the wings
reaches the value of the single line case as expected from the
principle of spectroscopic stability (see Section 4.1.1). But when
interference is neglected, the dotted and dashed lines differ
considerably in the wings, which can be seen as a violation
of the principle of spectroscopic stability. Thus, the principle
of spectroscopic stability serves as a powerful tool to check the
correctness of our formulation not only in the case of single
scattering but also in the radiative transfer computations.

Though such significant signatures of HFS and F-state
interference are seen in Q/I , the intensity I remains unaffected
by these effects.

4.3. Comparison with Wavelength-dependent
Polarizability Theory of Stenflo

In this section, we compare our redistribution matrix approach
and the wavelength-dependent polarizability W2(λ) theory for
the case of F-state interference presented in Stenflo (1997) and
used in Fluri et al. (2003) and Holzreuter et al. (2005). The
comparison is shown in Figure 5. The dotted lines show the
profiles computed using the exact PRD F-state interference
theory presented in Section 2. This is our redistribution matrix
approach. The dashed lines show the profiles computed using
the W2(λ) approach. The values of the W2(λ) are calculated from
Equation (25) using the (Q/I ) plotted in Figure 3 (solid line).
To use the W2(λ) in radiative transfer computations, we replace
the redistribution matrix RK (x, x ′) in Equation (11) by

WK (λ)[RII−A(3/2 → 1/2)], (26)

where RII−A(Jb → Jf ) is the angle-averaged frequency redis-
tribution function of Hummer (1962) for a line centered at λJbJf

corresponding to the Jb → Jf transition. For the hypotheti-
cal case under study, we have assumed the F-states to be very
closely spaced. Under such an assumption, a single redistribu-
tion function computed for the J = 3/2 → 1/2 transition can
be used to represent all the F-state transitions. However, if the
F-states are far apart, then the redistribution function needs to be
computed for each of the Fb → Ff transitions. In such a case,
the redistribution matrix RK (x, x ′) takes the following form in
the W2(λ) approach:

WK (λ)
∑
FbFf

[RII−A(Fb → Ff )]. (27)

The polarizability factor W0(λ) = 1, and W2(λ) is the
wavelength-dependent W2 factor calculated from Equation (25).
For the closely spaced F-states, a common absorption profile
function φ(x) corresponding to the Ja = 1/2 → Jb = 3/2
transition is used. But in the case of widely spaced F-states, the
φ(x) has to be taken as the sum of all the individual Fa → Fb

absorption profile functions. As seen from Figure 5, both the re-
distribution matrix approach and the W2(λ) approach give nearly
the same results.
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Figure 5. Comparison between the redistribution matrix theory (dotted line)
and wavelength-dependent polarizability factor W2(λ) theory of Stenflo (dashed
line). The optical thickness of the atmospheric slab is T = 2 × 104. The other
model parameters are the same as in Figure 4.

5. CONCLUSIONS

In this paper, we have extended the J-state interference
formulation discussed in P1 and P2 to the case of F-state
interference. The treatment is restricted to the collisionless and
non-magnetic regime. The decomposition technique presented
in Frisch (2007) is applied to the F-state interference problem.
It helps to incorporate the F-state interference redistribution
matrix into the reduced form of the line radiative transfer
equation. The transfer equation is solved using the traditional
PALI and the scattering expansion methods by suitably adapting
them to handle the F-state interference problem. The SEM is
found to be more efficient and faster than the PALI method.

The Stokes profiles computed by taking into account HFS are
similar to the profiles of a single line arising from a two-level

atom model without HFS. The HFS causes a depolarization
of Q/I in the line core irrespective of whether the F-state
interference is taken into account or not. Like the J-state
interference, the F-state interference affects mainly the line
wing PRD peaks. We also show that when interference effects
are neglected, the principle of spectroscopic stability is violated
in both single-scattered and multiple-scattered profiles. Using
the fractional polarization Q/I in the 90◦ single scattering
case, we can numerically estimate the wavelength-dependent
polarizability factor W2(λ). The W2(λ) so computed can then
be used in the transfer equation to compare with our exact
redistribution matrix approach. The two approaches are found
to give identical emergent Stokes profiles.
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