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On the temperature distribution along a solar flare loop

Udlt Narain Astrophysics Research Group, Meerut College, Meerut 250 001

Received 1982 November 6; accepted 1982 December 27

Abstract. We have obtained expressions for temperature distribution along a
solar flare loop in the presence of a source of continued heating in constant
cross section and line dipole geometries under nonstatic conditions. The
quantitative results are presented for the flare kernel of 1973 September 1 for
sources of small and large extensions.

It is found that the fall of temperature in constantcross section geometry is
faster than that in line dipole geometry. The rate of fall is faster under static
conditions than under nonstatic ones. Further, the fall of temperature is
faster if the source is stronger and confined to a smaller region at the top of
the loop than when the whole loop is heated by a weaker source.
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1. Introduction

Rocket and satellite observations indicate that the flaring regions consist of a num-
ber of loops of different sizes. The magnetic fields in these regions are such that the
cross section of the loops varies from top to bottom, For some loops the conditions
are such that conduction dominates over other cooling mechanisms (Krieger 1978).
In such cases loop geometry plays an important role (Antiochos & Sturrock 1976).
In many cases the observed and the calculated conductive cooling times of flare
loops do not agree with each other and the inclusion of geometrical inhibition of
conduction does not in general help (Krieger 1978). This discrepancy can always
be removed by postulating the existence of a source of heating, the indirect obser-
vational evidence of which is now becoming available (Levine & Withbroe 1977;
Gerassimenko et al. 1978).

The evolution of temperature in a cooling flare loop is not well understood (Krall
et al. 1978; Antiochos & Krall 1979). Therefore it is of interest to undertake such
an investigation. Here we obtain expressions for the temperature distribution along
a loop with and without geometrical inhibition in presence of a source of heating.
Results are discussed in the context of the flare kernel of 1973 September 1.

2. Theoretical formulation
The energy equation of the problem is (Narain 1981)
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d(152) _ 2do_ 12 (500
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+ Ka=(t) exp (— s*/A*R?), (1)

where p is the plasma density, p the plasma pressure, 4 the area of cross section para-
meter, x the coefficient of thermal conductivity, T the plasma temperature, Ku(¢) the
time-dependent part of the source, s the arc length along the loop, ¥ the extension of
the source and R the vertical height of the loop from bottom to top (Antiochos &
Sturrock 1976). The flare loops are quite hot (T <~ 10¢ K). The scale height of such
a hot plasma contained in the loops is ~ 10 cm which is larger than the height
(~ 10°-10° cm) of the loops. Consequently gravitational effects may be ignored
and the pressure taken to be independent of arclength s. For a fully ionized hydro-
gen plasma

p = 2nkT, (2)

where # is the electron number density and & the Boltzmann constant.
In equation (1) it is assumed that the flow of mass and energy takes place along
the magnetic field lines which are current-free above the chromosphere. The coeffi-

cient of thermal conductivity along the magnetic field lines is (Antiochos & Sturrock
1976)

x = aT7?% (ax =~ 10~°). ...(3)

The conduction across the field lines may be ignored. Following Krieger (1978) one
can estimate the conductive and the radiative cooling times. A smaller conductive
cooling time means that the conduction dominates over radiation. Equation (1)
ignores the radiation loss.

In the post-flare phase the temperature and the heating both begin to decline. It
is therefore expected that the physical variables may not have strong correlation in
their dependence on space and time coordinates. Consequently temperature efc. may

be written as a product of two functions one depending on arclength s and the other
on time r. Thus s

T(s, t) = TuTs(s) Ti(2), ..(4)

where T'w is the temperature at s =0 and ¢ = 0.

2.1 Constant cross section geometry

In this case the area of cross section of the loop is throughout the same and the area
of cross section parameter is given by (Antiochos & Sturrock 1976)

A(s) = 1, , .05

On combining equations (1) through (5) with the equation of continuity and the gas
equation we get

dp | 25pdTy) I o (40
(_dt+ T, dt)( )+TB a ) T

356 a5
a T, T

(equation continued on p. 58)
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L Ku(t) Li(ys) dTs 1.5s dp dTs
ds dt ds

aT%® TS T, aT3S T35 T,

= i (Tz's i]_-'g) _|_ KH(t) exp (— sg/YZR‘Z)’ ---(6)
ds 8 ds 36 35
Y T
where
s
L(¥s) Eo_f exp (—s?/v2R?) ds. ..(D

Equation (6) when solved leads to the temperature distribution along the loop.

The temperature falls and the electron density rises with time in the loops (Krall
et al. 1978; Nagai 1980). Their variations are such that the pressure p falls slowly
with time (Antiochos & Krall 1979). Consequently we may set dp/dt = 0 or p = p, =
constant till radiation becomes comparable to conduction. The time-dependence of
the source of heating is not known. Either it can be fixed through observational
results for a particular event (Strauss & Papagiannis 1971) or by assuming a parti-
cular time dependence and then comparing it with the observational results for
different events. We assume the following time dependence for the source :

Ka(t) = Omax T3%. ..(8)

This renders equation (6) separable.
Under the boundary condition Ty = 1 at # = 0 the time dependent part inte-
grates to :

Ty = (1 + (t/7e)) 27, ...(9)
with

ve = 2.5po/a T30 k2, ...(10)
in which ki is the constant of separation. The part depending on arclength s has

the form

2y 2 (dxb)"*_ Omax I(vs) dy

—_—— =5
ds ¥ \ds aT35 § ds
133 Qmex oxp (= PR _ _ ja (1)
al35
where
¢ =T ...(12)
One of the boundary conditions for solving equation (11) numerically is
dy
=1 < = = 0. ...(13
g =1, Is Oats =0 (13)
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The other condition, following Antiochos & Sturrock (1978), is
¢ = 0ats = sp. ...(14)

2.2 Line dipole geometry

Here the loop has a larger area of cross section at its top than that at its base.
Following Antiochos & Sturrock (1976), we have

s = R6 ...(15)
and _
4 = cos2 0. (16)

Proceeding in the same way as in the constant cross section case we get an equation
which separates into - and time-dependent parts. The time-dependent part, under
the boundary condition 7; = 1 at 8 = 0, integrates to

Ti = (1 + (¢/=p))2", ...(17)
with
™ = 2.5p/aT3° K2, ..(18)

where k2 is the constant of separation for the line dipole geometry. The 6-dependent

part is
2 2 2
%_% (Z_qé) _ MmB% _ Omax R Iz(Ye)z_«g
«T3° ¢ cos® @
2 — A2/2
1 3.5 Omax R¥exp (— 02%) _ 2 R, .(19)
ocTi;s
where
]
L(y0) = [ exp (— 0%/¥%) cos? 0 d0. ...(20)
0
The corresponding boundary conditions for this case are
¢y =1, %:0 at0 =0; ¢ =0 atb = 0. ...21D)

3. Method and results
The temperature distribution along the loop is given by equations (2), (4), (9), (10)
through (14) and (17) through (21). An examination of these equations shows that
oneneeds n, Tu, Tc, Pos ki Qmax, o and kf) for obtaining temperature distribution

in constant cross section and line, dipole geometries.
For the flare kernel of 1973 September 1 the necessary data are (Krieger 1978)

ny = 2.0 x 10Y cm—3 Tobs = 4.5 X 10?5 1

..(22)
Tu = 8.0 X 10° K 25p = [ = 1.5 x 108 cm
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Here [ is the total length of the loop and =45 the observed cooling time of the event.
The quantity po = 2nokTwm can be evaluated from the data in a straight-forward
manner. sp = RO, determines 0 when R = 5.6 X 107 cm (Elwert & Narain 1980)
is used.

We set 7¢c = Tp = Tgbs and determine ki or k?D through equations (10) or (18).

Omax for constant cross section geometry is obtained by integrating equation (11)
using Runge-Kutta method under boundary conditions (13) and (14). In line dipole
geometry case Qmax is obtained from equations (19) through (21). The calculated
data are exhibited in table 1.

Table 1. Computed parameters

Qmax (erg cm=%7) k2= k% Po 0
(dyne cm™2) (radian)
‘ vy =01 y=10
A=1 A = cos*0 =1 A = cos? 0
1150 350 185 55 1.69 x 10-18 441.6 1.34

In figure 1 temperature has been plotted against arclength s for y = 1.0 and
t = 100 s for constant cross section and line dipole geometries. Figure 2 exhibits
time-independent temperature against arclength along the loop for y = 1.0 for static
and nonstatic conditions. Figure 3 compares temperature distribution for y = 0.1
and 1.0 as a function of 6.

4. Discussion and conclusions

An examination of figure 1 shows that the fall of temperature in constant cross
section geometry is faster than in the line dipole geometry, as expected. The flow of

heat is restricted in line dipole geometry where half of the loop is like a funnel but it
is unhindered in the constant cross section geometry.
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Figure 1. Plot of temperature T'(s, ) vs Figure 2. Plot of T(s, r)/T«(¢) vs arclength s along
arclength s along the loop: dotted line the loop: dotted line refers to nonstatic case and
refers to line dipole geometry and solid solid line to static case (y = 1.0).

line to constant cross section geometry
(y = 1.0 and ¢ = 100 ).
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Figure. 3. Plot of log {78, 1)/Tu(f)} vs 6 : dotted line refers to a source of larger extension
(y = 1.0) and solid line refers to a source of smaller extension (y = 0.1).

In static case no exchange of plasma between the loop and the chromosphere takes
place (Elwert & Narain 1980). Therefore no fraction of heat energy lost to chromos-
phere returns back to the loop. In the nonstatic (present) case the heat flux conducted
to the chromosphere evaporates the chromospheric material which enters the
loop through its base. Thus part of the heat energy lost to the chromosphere is
gained back through the evaporated material. Therefore the fall of temperature in
static case is expected to be faster than that in nonstatic case. This is what figure 2
leads one to conclude. It may be remarked that the cooling in nonstatic case is faster
near the base than near the top of the loop because the cooler material from the
chromosphere exchanges heat with the loop plasma near the base first and gets heated.
As this material rises in the loop its temperature goes on increasing and its capacity
to cool decreases.

The case y = 0.1 corresponds to a source of smaller extension. It implies that
roughly one tenth of the loop is heated. The case y = 1.0 represents a source of
larger extension. The implication of this is that the whole loop is being heated. In
order that the calculated cooling time be equal to the observed cooling time the
source of smaller extension (y = 0.1) must be stronger than a source of larger
extension (y = 1.0). Table 1 clearly demonstrates this fact. A stronger source confined
to a small region at the top of the loop will cool faster than a weaker one extended
over the whole length of the loop. Therefore the fall of temperature for a stronger
source of smaller extension will be faster than that of a weaker source of larger
extension. This is what figure 3 depicts. It may be noted that the surroundings for
a source with y = 0.1 are cooler than those for a source with y = 1.0.
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The conclusions drawn in the foregoing paragraphs are not likely to be altered by
a more refined theory although the assumption of keeping pressure independent of
time is not very much justified and leads to overestimation of Qmax (Narain 1981).
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