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ABSTRACT

We introduce the numbers of hot and cold spots, nh and nc, of excursion sets of the cosmic microwave background
(CMB) temperature anisotropy maps as statistical observables that can discriminate different non-Gaussian models.
We numerically compute them from simulations of non-Gaussian CMB temperature fluctuation maps. The first
kind of non-Gaussian model we study is the local type primordial non-Gaussianity. The second kind of model has
some specific form of the probability distribution function from which the temperature fluctuation value at each
pixel is drawn, obtained using HEALPIX. We find the characteristic non-Gaussian deviation shapes of nh and nc,
which is distinct for each of the models under consideration. We further demonstrate that nh and nc carry additional
information compared to the genus, which is just their linear combination, making them valuable additions to the
Minkowski Functionals in constraining non-Gaussianity.
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1. INTRODUCTION

The statistical nature of the cosmic microwave background
(CMB) radiation temperature fluctuation field that we see today
must be predominantly inherited from those of the primordial
density fluctuations. Inflation is currently the forerunner among
possible mechanisms that could have produced the primordial
density perturbations. All models of inflation, in general, predict
some amount of deviation of these fluctuations from a Gaussian
distribution, with the details of the deviations being model de-
pendent. The knowledge of these deviations, if observed, for
example, in the CMB, will thus be of much value in distinguish-
ing among various models of inflation. The observational search
for primordial non-Gaussianity, however, is not easy since vari-
ous observational effects can mask the true CMB signal. Given
this difficulty the need for efficient, sensitive, and complemen-
tary observables that can characterize non-Gaussian deviations
cannot be overemphasized.

Popular statistical measures of non-Gaussianity that can
be obtained from the CMB fall under two broad categories.
The first are observables that are defined in harmonic space
(Komatsu et al. 2011; Smidt et al. 2010; Curto et al. 2011;
Vielva & Sanz 2010) such as the bispectrum, trispectrum,
wavelets, the spherical Mexican hat wavelet, etc. The second
category consists of those that directly exploit the geometric
and topological properties of the temperature fluctuation field.
A popular class of observables, the Minkowski Functionals
(MFs; Tomita 1986; Coles 1988; Gott et al. 1990; Schmalzing
& Gorski 1998; Winitzki & Kosowsky 1998), has long been
applied to constrain non-Gaussianity in the CMB. Considerable
progress has been made in understanding them analytically for
weakly non-Gaussian random fields (Matsubara 2003; Hikage
et al. 2006, 2008; Komatsu et al. 2009; Pogosyan et al. 2009;
Matsubara 2010; Gay et al. 2012). Of the three MFs that can
be defined for a two-dimensional random field, the third one,
known as the genus, is a topological quantity which depends

on the global properties of the random field. It is given by the
difference of the numbers of hot and cold spots at any given
temperature fluctuation field value. The genus and other MFs
have non-Gaussian deviation shapes that are characteristic of
the non-Gaussian model. The non-Gaussian deviation shape of
each observable tells us what field values are best probed by the
observable, and these are the values where the deviations are the
largest.

In this paper, we introduce the numbers of hot and cold spots
as statistical observables in their own right. Just like the genus,
they are topological quantities that depend only on the global
properties of the temperature fluctuation field. They have been
studied earlier by Coles and Barrow (Coles & Barrow 1987) and
an approximate formula is known for Gaussian and some non-
Gaussian random fields (Vanmarcke 1983). Our goal here is to
determine their sensitivity and non-Gaussian deviation shapes
as signatures of various kinds of non-Gaussianities. We have
computed them using numerical methods from simulated non-
Gaussian CMB maps. We first compute them for simulations
containing the so-called local type primordial non-Gaussian
model parameterized by fNL (Liguori et al. 2003) and gNL
(Chingangbam & Park 2009). We also compute them using non-
Gaussian simulations provided by HEALPIX (Rocha et al. 2005;
Górski et al. 2005). We have obtained the characteristic non-
Gaussian deviations for these different types of input primordial
non-Gaussianity.

We do not intend to address all the issues of observational
systematic effects in this first paper but instead focus on the
theoretical understanding of their behavior upon potential non-
Gaussianity. The expectation in introducing them is that we can
get additional information about non-Gaussian fields by using
these two observables in addition to the genus and other MFs.
Since the genus is given by the difference between these two
numbers, in taking their linear combination we are throwing
away some information. This expectation will be most justified
if the number of hot spots is independent of the number of
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Figure 1. Left panel: a patch of a smoothed Gaussian fluctuation field. The field is defined on a square with periodic boundary condition so field values that are at
opposite ends of the square are identified. The y-axis gives the level value, ν. Middle panel: the red regions give the excursion set for ν = 0. The set is fragmented
into several contiguous or connected regions. Some of the connected regions have holes within them. Each connected region is called a hot spot while each hole is
called a cold spot. Right panel: iso-temperature contours enclosing the excursion region (red lines) and holes (blue lines) for ν = 0. One can see partial contours that
are located at extreme ends of the square which together form closed contours. nh is the number of isolated connected regions, which can be obtained by counting the
closed red contours. nc is the number of holes within the connected regions and can be obtained by counting the blue contours.

(A color version of this figure is available in the online journal.)

cold spots. As we will see in Section 3, this is not always the
case and whether they are independent or not depends on the
non-Gaussian model. For example, for the local type primordial
non-Gaussian model parameterized by fNL and gNL, we find
that they are related to each other in a specific way. However,
even for the models where they are related, there is still the
additional gain of information coming from the fact that they
have non-Gaussian deviation shapes that are quite distinct from
those of the genus and the other MFs and hence they best extract
non-Gaussian deviations of the field at values different from the
MFs. Therefore, they carry information that is complementary to
the MFs. We further calculate the uncertainties in the numbers
of hot and cold spots, taking into account cosmic variance,
instrumental noise, and sample boundaries at our choice of
smoothing scales. We demonstrate that there exists additional
information in the numbers of hot and cold spots compared to
the genus, as shown in Section 4.

This paper is organized as follows: in Section 2, we briefly
describe excursion sets and hot and cold spots, followed by
our method for numerically computing them. We then show the
results for the numbers of hot and cold spots computed from
Gaussian CMB temperature fluctuation maps. In Section 3, we
present the non-Gaussian deviations of the numbers of hot and
cold spots for the different kinds of non-Gaussianity that we
have studied, first, the local type non-Gaussianity and second for
the input non-Gaussian probability distribution function (PDF)
models obtained using HEALPIX. In Section 4, we analyze how
observational effects such as beam profiles, instrument noise,
and incomplete sky coverage affect the numbers of hot and
cold spots by computing them from simulations to which these
effects have been added. Further, we compare their sensitivity to
non-Gaussianity with that of the genus and show that they can
give more information than the genus. We end with a summary
and discussion of the implications of our results in Section 5.

2. HOT AND COLD SPOT COUNTS

Let f ≡ (T (n̂) − T0)/T0 denote the CMB temperature
anisotropy field, where T0 denotes the mean temperature. By
rescaling f by its rms value, σ0, we can define the threshold
temperature, ν ≡ f/σ0. At each value of ν, if we consider the

set of all pixels that have values equal to or above ν we obtain
what is usually referred to as an excursion set. This set consists
of many connected regions into which the temperature field
“manifold” has fractured, and holes within those regions due to
the excluded pixels. As is commonly done in the literature, we
call each connected region a hot spot and each hole a cold spot.
For an excursion set indexed by ν, we define

1. nh ≡ number of hot spots and
2. nc ≡ number of cold spots.

As we change ν, the excursion sets behave as though they are
a one-parameter family of spaces parameterized by ν, and their
properties such as the numbers of the hot and cold spots change
systematically as a function of ν.

We can relate the numbers of hot and cold spots to the numbers
of closed iso-temperature contours. The boundaries of each
excursion set are iso-temperature contours for the corresponding
ν. We can assign an orientation to each of the contours—positive
for those that enclose hot spots and negative for the ones
that enclose cold spots. nh and nc are then simply counts of
closed positive and negative orientation contours, respectively.
For the purpose of illustration, in Figure 1 we have shown
a smoothed Gaussian random field defined on a square with
periodic boundary condition. The left panel shows the full field.
The middle panel shows the excursion set for the same field for
ν = 0. Connected regions and holes are clearly visible. The right
panel shows the boundary or iso-temperature contours for the
same excursion set—red enclosing hot spots and blue enclosing
cold spots.

Mathematically, we can express nh and nc as line integrals

nh = 1

2π

∫
C+

K ds, nc = 1

2π

∫
C−

K ds, (1)

where K is the total curvature of iso-temperature contours for
each ν. C+ denotes contours that enclose hot spots while C−
denotes contours that enclose cold spots. The genus, g, is given
by a linear combination of nh and nc:

g(ν) = nh(ν) − nc(ν). (2)
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Figure 2. nh, nc, and g measured from Gaussian simulations smoothed with
FWHM=30′. The y-axis values are per unit area of the sphere. The plots are
average over 200 simulations.

(A color version of this figure is available in the online journal.)

For a Gaussian fluctuation field, g is given by the expression

g(ν) = Aν e−ν2/2, (3)

where the amplitude A carries the physical information about
the field and is given by A = (1/2π3) (σ1/σ0)2, with σ1 being
the rms of the gradient field.

Note that we could equivalently define our excursion set at
each ν to consist of the pixels having values below ν, in which
case the definitions of nh and nc would get interchanged.

2.1. Numerical Method for Computing the
Numbers of Hot and Cold Spots

Our method for computing the numbers of hot and cold spots
is based on the method for computing the genus outlined in Gott
et al. (1990). It is essentially an implementation of Equation (1)
based on connecting iso-temperature pixels with the information
of the orientation of the contour retained. At the end contours
with the same orientation are counted to get nh and nc.

In Figure 2, we have shown nh, nc, and g versus ν obtained
by averaging over measurements from 200 simulated Gaussian
CMB anisotropy maps with the HEALPIX resolution parameter
Nside = 512 and smoothed with a Gaussian filter with
FWHM= 30′. The simulations have ΛCDM parameter values
given by WMAP 5 year data (Komatsu et al. 2009). The
Gaussian genus formula serves to test the accuracy of the
numerical computation of nh and nc (unless of course there
is some error which contributes equally to both nh and nc and
cancels out for the genus). It has been shown in C. Park et al.
(2012, in preparation) that precise details of the numbers of
hot and cold spots in terms of Betti numbers for Gaussian
random fields such as the amplitude and location of peaks vary
significantly as we vary the power index, n, of the input three-
dimensional power spectrum P (k) ∝ k−n. The trend is that as n
increases the amplitude increases and the peak shifts closer to
ν = 0. For n ∼ 3, which is relevant for the CMB, the result that
we have obtained is in agreement with this trend.

3. NON-GAUSSIAN DEVIATIONS OF THE NUMBERS
OF HOT AND COLD SPOTS

In this section, we compute the non-Gaussian deviations of
numbers of hot and cold spots for different models of primordial
non-Gaussianity.

3.1. Local Type Primordial Non-Gaussianity

We consider the following expansion to cubic order of the
primordial gravitational potential:

Φ(x) = ΦG(x)+fNL((ΦG(x))2 −〈(ΦG)2〉)+gNL(ΦG(x))3 + · · · ,
(4)

where ΦG is a Gaussian potential and fNL and gNL are constants
which parameterize the first and second order nonlinearities,
respectively, in the gravitational potential. Then, expanding
the CMB temperature fluctuation field in multipoles, as f =∑

�m a�mY�m, we can calculate a�m by convolving Φ with the
full radiation transfer function Δ�, as

a�m = 4π (−i)�
∫

d3k

(2π )3
Φ(k, ti) Δ�(k, t0) Y ∗

�m(k̂). (5)

We use simulations of non-Gaussian CMB maps (Liguori et al.
2003; Chingangbam & Park 2009) which have Equation (4) as
the input potential to calculate a�m. The input power spectrum
of ΦG is given as PΦ(k) = (A0/k3)(k/k0)ns−1, where A, ns,
and k0 are taken from WMAP 5 year ΛCDM parameter values
(Komatsu et al. 2009). The simulation resolution used is given
by Nside = 512, as in Section 2.1. We use Δ� calculated with all
perturbation terms kept to linear order (Seljak & Zaldarriaga
1996) and hence the non-Gaussianity that shows up in the
resulting CMB temperature field is a direct consequence of the
primordial input. We have computed nh and nc for three kinds
of simulations—pure fNL, pure gNL, and a mixture of the two.
In order to quantify the non-Gaussian deviations we define

Δni = nNG
i − nG

i , (6)

where i stands for h or c, the index G stands for Gaussian, and
NG for non-Gaussian. Plots are shown normalized by n

G,max
i ,

which is the amplitude of nG
i .

In Figure 3, we have plotted Δnh and Δnc versus ν for pure
fNL and pure gNL cases. We have used the values fNL = ±100
and gNL = ±1 × 106 and shown plots for two smoothing
angles—FWHM = 30′ and 90′. For each case, it is important
to note that Δni has a characteristic non-Gaussian deviation
shape and they can be easily distinguished from each other.
There is slight variation of the deviation shapes as functions of
the smoothing angle. Roughly speaking, the magnitude of the
deviation at higher threshold values |ν| � 2 is larger for larger
smoothing angles. An interesting observation is that for each
case we can see that nh and nc are correlated as

Δnh(ν, fNL) = −Δnc(−ν, fNL)

Δnh(ν, gNL) = Δnc(−ν, gNL). (7)

In Figure 4 we have plotted Δnh versus Δnc at each value of ν
for pure fNL (green, solid line) and for pure gNL (brown, dotted)
models. This is another way of visualizing the characteristics of
the non-Gaussianity caused by fNL or gNL. Figure 5 shows Δni

for the case when both fNL and gNL contribute to the primordial
non-Gaussianity for the same smoothing angles and parameter
values. If we compare with non-Gaussian deviations of the genus
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Figure 3. Non-Gaussian deviations of nh and nc for pure fNL (upper panels) and pure gNL (lower panels) input primordial non-Gaussianity at two smoothing
angles—FWHM = 30′ and 90′. Δni is defined as given in Equation (6). n

G,max
i is the maximum value of nG

i (ν). The y-axis values are per unit area of the sphere. The
simulations have WMAP 5 year ΛCDM parameter values. The results are average over 200 simulations.

(A color version of this figure is available in the online journal.)

Figure 4. Plots of Δnh vs. Δnc for pure fNL (green, solid line) and for pure gNL
(brown, dotted) models. This is a different way of showing the characteristics
of the non-Gaussianity caused by the fNL and gNL terms.

(A color version of this figure is available in the online journal.)

(see Figure 2 of Hikage et al. 2006 for pure fNL case and Figure 4
of Chingangbam & Park 2009 for pure gNL case), we find that
the amplitude of the deviations of nh and nc are smaller by about
a factor of two.

We can get some idea about the dependence of Δnh and Δnc on
fNL and gNL from the analytic expressions of the non-Gaussian
deviation of the genus (Hikage et al. 2006; Matsubara 2003),
which is given as an expansion in powers of σ0. For pure fNL
and pure gNL cases, keeping the genus expansion up to σ0 and
σ 2

0 orders, respectively, the genus non-Gaussian deviations have
linear dependence on fNL and gNL. When both fNL and gNL are
present, then at σ 2

0 order there must be cross terms containing
both fNL and gNL. Hence the non-Gaussian deviation of the
genus will not be a simple linear combination of deviation terms
depending on fNL and gNL independently. Since the genus is just
the subtraction of nc from nh, we can expect nc and nh to behave
in a roughly similar fashion.

3.2. HEALPIX Non-Gaussian Models

We have generated non-Gaussian maps using the HEALPIX
routine sky ng sim (Rocha et al. 2005; Górski et al. 2005).
This program implements two kinds of non-Gaussian models.
The first is a model where the input probability distribution
function is taken to be an expansion in excited states of the
simple harmonic oscillator (SHO model), as given below:

P (f ) = e−f 2/2σ 2
0

∣∣∣∣∣
n∑

i=0

αiCiHi

(
f√
2σ0

)∣∣∣∣∣
2

, (8)

where Hi are Hermite polynomials, Ci are normalization con-
stants, σ0 is the variance of the Gaussian PDF, and αi , for i � 1,
are free parameters. α0 is constrained to be α0 =√

1−∑n
i |αi |2. For
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Figure 5. Same as in Figure 3 for a mixture of fNL and gNL input primordial non-Gaussianity.

(A color version of this figure is available in the online journal.)

Figure 6. Left panel: Δni for the SH0 model. We have used α1 = 0.6 and α2 = 0.6. Right panel: Δni for Gaussian power model. We have used p = 1. The plots are
average over 50 maps.

(A color version of this figure is available in the online journal.)

our simulations we have kept terms up to n = 2 such that α1
and α2 are non-zero.

The second non-Gaussian model has the input PDF of the
temperature field as an even power of a Gaussian PDF (Gaussian
power model), with the temperature fluctuation value of the kth
pixel given by

f (k) = g2p(k),

where g is a zero mean, unit variance Gaussian variable, and p
is chosen to be a positive integer. We have used p = 1 for our
simulations.

Figure 6 shows the non-Gaussian deviations of nh and nc for
these two models. Δni is again defined as given in Equation (6).
The left panel shows the deviations for the SHO model and the
right panel shows those for the Gaussian power model. As in the
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Figure 7. Plots of Δnh vs. Δnc for SHO (green, solid line) and Gaussian power
(brown, dotted line) models.

(A color version of this figure is available in the online journal.)

local non-Gaussianity case we can see characteristic deviations
for each type of non-Gaussianity.

For these models they do not have any simple correlation
between Δnh and Δnc such as what we have seen for the local
type non-Gaussianity, indicating that they carry information
independent from each other. Figure 7 shows Δnh versus Δnc

at each value of ν for these two models. These plots are a

different way to characterize the type of non-Gaussianity of the
HEALPIX non-Gaussian models.

4. STATISTICAL SENSITIVITY OF THE NUMBERS
OF HOT AND COLD SPOTS TO fNL AND gNL

To analyze the statistical power of nh and nc in realistic sit-
uations we measure them from simulations to which observa-
tional effects have been added. The observational effects are
pixel window function, beam profile for each differential as-
sembly (DA), and Gaussian noise realizations for each DA that
follow the noise pattern, followed by Galaxy and point source
masking. We then co-add Q, V, and W DA’s with appropri-
ate weights obtained from the inverse of the full-sky-averaged
pixel-noise variance in each DA, and then smooth the field.
For Galaxy masking we use the KQ75 mask. In Figure 8 we
have shown the sample variance error bars obtained from the
200 Q + V + W co-added maps prepared as described above.
It is immediately noticeable that the error bars for gNL is larger
than those of fNL at each corresponding smoothing angle. This
can be understood from Equation (4) as follows. Suppose we
have a perfectly Gaussian field φG and another “Gaussian” field
with slight statistical fluctuations φ′ = φG(1 + D), where D
quantifies the fluctuation. Then the deviation from the Gaussian
field when fNL and gNL contributions are present is given by
ΔφNG = DφG + 2D fNL(φG)2 + 3D gNL(φG)3. Hence statistical
fluctuations seen for gNL will be larger than those for fNL.

As a simple way of estimating the statistical discriminating
power of the numbers of hot and cold spots in comparison to
the genus we integrate the absolute values of the non-Gaussian
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Figure 8. Non-Gaussian deviations of nh and nc for fNL (upper panels) and gNL (lower panels) calculated after adding observational effects, namely, pixel window
function, beam profiles, noise for each DA, and galaxy and point source masking, to the simulations. These calculations are from Q + V + W co-added maps. The
error bars are the sample variance from 200 simulations.

(A color version of this figure is available in the online journal.)
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Table 1
Values of A Defined in Equation (9) for g, nh, and nc

Non-Gaussian Input Smoothing FWHM Observable A

fNL = 100 30′ g 7.4
nh 11.3
nc 11.3

90′ g 3.3
nh 7.3
nc 7.5

gNL = 106 30′ g 2.0
nh 2.5
nc 2.5

90′ g 1.1
nh 2.2
nc 2.1

deviations measured in units of the corresponding sample
variances from ν = −3 to 3. Let us denote it by A. For M
threshold levels with spacing Δν, we can calculate it as

A = Δν

M∑
i=1

(|ΔO(i)|/OG,max)/σs(i), (9)

where O can be either g, nh, or nc, and σs(i) are the respective
sample variances at each threshold level i. For our case, M = 31
and Δν = 0.2. The resulting values are shown in Table 1. We
find considerably larger values of A for nh and nc compared to g
both for fNL and gNL type non-Gaussianities, at the smoothing
angles we have considered. This demonstrates that there is loss
of statistical power for detecting the presence of non-Gaussian
deviations when we combine nh and nc to get the genus.

5. CONCLUSION

We have introduced the numbers of hot and cold spots of the
CMB temperature fluctuation field as statistical observables in
their own right and propose to use them as discriminants of non-
Gaussianity. We have studied the theoretical predictions for the
numbers of hot and cold spots and their expected non-Gaussian
deviations for various kinds of non-Gaussianities. We have
calculated them using numerical methods from simulated CMB
maps containing the different non-Gaussian models as inputs.
The first type of input non-Gaussian model we studied is the
so-called local type primordial non-Gaussianity, parameterized
by fNL and gNL at the first and second order nonlinearities,
respectively, of the perturbative expansion of the primordial
gravitational potential. This gravitational potential is convolved
with the full radiation transfer kept to linear order to obtain
the simulated CMB temperature field, and hence the non-
Gaussian deviations seen in the numbers of hot and cold spots are
direct probes of the primordial non-Gaussianity. For these local
primordial non-Gaussian models, what we find is that nh and nc
are correlated as given by Equation (7). The strengths of the non-
Gaussian deviations of nh, nc, and g are large at different regions
of ν and hence each of them best probe regions of the field
values specific to it. Therefore, they provide complementary
information. Further, we have demonstrated that there exists
additional information in the numbers of hot and cold spots
compared to their linear combination given by the genus.

The second class of non-Gaussian models that we have
considered assumes specific forms of the PDF of the temperature
fluctuation field. In particular, we studied a model where the

simulated temperature value at each pixel is drawn from a PDF
given as an expansion in SHO states. We also studied another
model where the temperature fluctuation values at each pixel
is given as even powers of a number drawn from a Gaussian
distributed field. Note that the assumption of the form of the
PDF does not tell us anything about the physical source of
the non-Gaussianity. Even though the physical origin of the
non-Gaussianity is not clear, they are quite interesting models
because they provide examples of non-Gaussian models where
nh and nc are not correlated.

It is interesting to compare the shapes of the numbers of
hot and cold spots with those of maxima and minima counts
(Pogosyan et al. 2011; Bardeen et al. 1986; Bond & Efstathiou
1987; Adler 1981). The shapes of nh and nc are roughly similar to
the maxima and minima counts, respectively, though the precise
shape information such as peak location and the amplitude is
quite different. Note that the extrema counts will measure more
number of objects per unit area in comparison to the numbers
of hot and cold spots since a typical connected/hole region can
have more than one maxima/minima. As |ν| becomes much
larger than one, nh and nc should tend toward the maxima and
minima counts, respectively.

Our next goal is to apply the number of hot and cold spots to
observational data and constrain fNL and gNL. It would also be
very useful to have their analytic expressions. We are presently
working toward these directions.

We thank the Korea Institute for Advanced Study for pro-
viding computing resources (KIAS Center for Advanced Com-
putation Linux Cluster System QUEST) where the local non-
Gaussian simulations used in this paper were computed. We also
acknowledge use of the Hydra cluster at the Indian Institute of
Astrophysics for a part of the analysis. We acknowledge use of
the HEALPIX package.
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