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Bose-Hubbard model in a strong effective magnetic field: Emergence of a chiral
Mott insulator ground state
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Motivated by experiments on Josephson junction arrays, and cold atoms in an optical lattice in a synthetic
magnetic field, we study the “fully frustrated” Bose-Hubbard model with half a magnetic flux quantum per
plaquette. We obtain the phase diagram of this model on a two-leg ladder at integer filling via the density
matrix renormalization group approach, complemented by Monte Carlo simulations on an effective classical XY
model. The ground state at intermediate correlations is consistently shown to be a chiral Mott insulator (CMI)
with a gap to all excitations and staggered loop currents which spontaneously break time-reversal symmetry.
We characterize the CMI state as a vortex supersolid or an indirect exciton condensate, and discuss various
experimental implications.
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The simplest model to understand strongly correlated
bosons is the Bose-Hubbard (BH) model [1], which describes
bosons hopping on a lattice and interacting via a local repulsive
interaction. With increasing repulsion, at integer filling, its
ground state undergoes a superfluid to Mott insulator quantum
phase transition which has been studied using ultracold atoms
in an optical lattice [2].

Recent experiments have used two-photon Raman transi-
tions to create a uniform or staggered “synthetic magnetic
field” for neutral atoms [3], permitting one to access large
magnetic fields for lattice bosons. The multiple degenerate
minima in the resulting Hofstadter spectrum can be populated
by noninteracting bosons in many ways. Repulsive interactions
quench this “kinetic frustration,” leading to unconventional
superfluids [4–7], or quantum Hall liquids [8]. Tuning the sign
of the atom hopping amplitude or populating higher bands also
leads to such frustrated bosonic fluids [4]. These developments
motivate us to study the interplay of strong correlations and
frustration in the fully frustrated Bose-Hubbard (FFBH), with
half a “magnetic flux” quantum per plaquette [5–7]. At large
integer filling, the FFBH is also the simplest quantum variant
of the classical fully frustrated XY (FFXY) model [9,10] of
Josephson junction arrays (JJAs) [11].

Here, we obtain the phase diagram shown in Fig. 1 of
the FFBH model at integer filling on a two-leg ladder using
the density matrix renormalization group (DMRG) method
[12] and Monte Carlo (MC) simulations. Our key result
is that the ground state of the FFBH and quantum FFXY
models at intermediate Hubbard repulsion is a chiral Mott
Insulator (CMI). The CMI is fully gapped, yet simultaneously
supports staggered loop currents that spontaneously break
time-reversal symmetry. With increasing repulsion, the CMI
undergoes an Ising transition into an ordinary Mott insulator
(MI) where the loop currents vanish. Weakening the repul-
sion leads to a Berezinskii-Kosterlitz-Thouless (BKT) [13]

transition out of the CMI into a previously studied chiral
superfluid (CSF) phase [14] which retains current order. We
show that the CMI may be viewed as a vortex supersolid or an
exciton condensate, and discuss the loop current, the charge
gap, and the momentum distribution across the phase diagram.

Fully frustrated Bose-Hubbard ladder. The Hamiltonian of
the FFBH model on a two-leg ladder is

H = −t
∑

x

(a†
xax+1 + a

†
x+1ax) + t

∑

x

(b†xbx+1 + b
†
x+1bx)

− t⊥
∑

x

(a†
xbx + b†xax) + U

2

∑

x

(
n2

a,x + n2
b,x

)
, (1)

where a and b label the two legs of the ladder (see Fig. 2), t⊥
couples the two legs, and U is the local boson repulsion. The
opposite signs of the hopping amplitude (±t) on the two legs
leads to an Aharonov-Bohm phase of π for a boson hopping
around an elementary plaquette [15].

For U = 0, the boson dispersion [in Fig. 2(a)] exhibits two
bands, with the lowest (α) band having degenerate minima
at momenta k = 0,π . This leads to a large degeneracy of
many-body ground states—the ground state for N bosons
corresponds to having N1 bosons in one minimum and
(N − N1) in the other for any N1 � N—which is broken
by the repulsion. The minimum at k = 0 (k = π ) has a
wave function that mainly resides on leg-a (leg-b). Since the
Hubbard repulsion favors a uniform density, it prefers an equal
number of bosons at k = 0,π . A mean-field Bose condensed
state thus takes the form

|ψ〉 = 1√
N !

[eiϕ(α†
0 + eiθα†

π )]N |0〉. (2)

Here ϕ is the U (1) condensate phase, θ is the relative phase
between the two modes, and α

†
0,π creates quasiparticles at

k = 0,π .
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FIG. 1. (Color online) (a) Phase diagram of the effective classical
model HXY , with Jτ = J‖, obtained via MC simulations (see text for
details). (b) Phase diagram of the FFBH model in Eq. (1) obtained
using DMRG. Both models exhibit a chiral Mott insulator (CMI)
state sandwiched between a chiral superfluid (CSF) and an ordinary
Mott insulator (MI). (1/Jτ in the XY model ∼√

U/t in the FFBH
model [16].)

For small U , Hartree theory [6,16] shows θ = ±π/2, while
ϕ has (nonuniversal) power-law order. This Luttinger liquid is
the CSF—it supports the long-range staggered current pattern
in Fig. 2(b). The two signs of θ correspond to patterns related
by time reversal or unit lattice translation. For very large
U , both θ and ϕ are disordered, leading to an ordinary MI
which respects all the symmetries of H . Interestingly, for
intermediate U , we find that ϕ is disordered, leading to loss
of superfluidity, while θ is pinned at ±π/2, spontaneously
breaking (Ising) time-reversal symmetry. This fully gapped
intermediate state is the CMI. This goes beyond mean-field
theory [6], which predicts a direct CSF-MI transition [16].

Physical pictures for the CMI. The CSF, with staggered
currents depicted in Fig. 2(b), is best viewed as a vortex crystal
where vortices and antivortices are nucleated by the presence
of frustration, and locked into an “antiferromagnetic” pattern
due to the intervortex repulsion. At large U , this crystal melts
and the vortices completely delocalize—this vortex superfluid
is well known to be simply a dual description of the ordinary
MI [17]. However, if a small number of defect vortices in the
vortex crystal delocalize and condense, they kill superfluidity
but preserve the background vortex crystallinity. This vortex
supersolid is the dual description of the CMI.

FIG. 2. (Color online) (a) Dispersion of the FFBH model at U =
0, with two degenerate minima in the low-energy α band. Interactions
force an equal number of bosons (on average) to condense into each
of the two minima. (b) Alternating pattern of plaquette currents in the
presence of chiral order.

A different but equivalent picture emerges if we start from
the usual MI at large U which supports charge gapped particle
and hole excitations (adding or removing bosons). These
excitations have degenerate dispersion minima at k = 0,π

as in Fig. 2(a), similar to the original noninteracting bosons.
Decreasing U decreases the MI charge gap. If the charge gap
vanishes, the resulting gapless particles and holes at k = 0,π

could yield a Bose condensed (or power-law) superfluid.
However, a precursor phase emerges from first condensing
a neutral indirect exciton, composed of a particle and a hole at
different momenta (k = 0 and k = π ), while the particles and
holes are still gapped. The CMI is precisely this intervening
“exciton condensate” [16].

Effective bilayer XY model. To quantitatively flesh out the
phase diagram described above, we first study the FFBH
model at large fillings, where it is equivalent to a quantum
FFXY model used to describe JJAs of charge 2e Cooper
pairs with an Aharonov-Bohm flux of hc/4e per plaquette.
The quantum FFXY Hamiltonian in turn maps on to an
effective classical model on a “space-time lattice,” leading
to a classical two-dimensional (2D) bilayer square lattice
model [16] HXY = −∑

i,δ Jδ cos (ϕi − ϕi+δ) , where ϕi are
the boson phases, and (i,i + δ) denote nearest-neighbor sites
along δ. The couplings Jδ take on values ±J‖ on the two
legs, J⊥ on the rungs linking the two layers, and Jτ in the
imaginary time direction [16]. (We choose the “time step”
in the imaginary time direction to set J‖ = Jτ [16].) Phase
ordering leads to a superfluid, while the fully paramagnetic
phase of HXY is the ordinary MI. Based on small system studies
of HXY [18], it has been argued that the isotropic case J⊥ = J‖
exhibits a single-phase transition with unique exponents, while
the highly anisotropic case harbors two separate transitions
[18]. Here we use extensive MC simulations, on L × L × 2
bilayers with L = 16–64, to obtain the phase diagram shown
in Fig. 1(a). We find three phases: the CSF, the regular MI,
and an intervening CMI for a wide range of J⊥ including
the isotropic point J⊥ = J‖. We show that CSF-CMI and
CMI-MI phase transitions are BKT and 2D Ising transitions,
respectively.

Figure 3 shows the MC data for J⊥ = 1. Similar data was
also obtained for various J⊥/Jτ . Figure 3(a) shows that the
helicity modulus 	 (related to the superfluid density) has
an increasingly abrupt change with 1/Jτ for increasing L,
indicative of a jump as at a BKT transition. If the transition
out of the CSF is indeed a BKT transition, 	 can be fit to
the finite-size scaling form 	(L) = A(1 + 1

2(log L+C) ) (with fit
parameters A,C) right at the transition point, with A taking
on the universal value of 2/π , while C is a nonuniversal
constant [10,19]. Fitting 	(L) to this form, we find that the
error to this fit shows a sharp minimum [10,19] at a certain
1/Jτ (Fig. 3 inset), with A ≈ 2/π at this dip. This not only
allows us to precisely locate the transition out of the CSF state,
but the value of A also confirms its BKT nature.

To check for staggered loop currents, we compute the
Binder cumulant BL = (1 − 〈m4〉L/3〈m2〉2

L), for the order
parameter m = 1

L2

∑
iτ (−1)i Jiτ , where Ji,τ is the current

around a spatial plaquette. For small 1/Jτ , we find BL → 2/3,
indicating long-range current order, while BL → 0 for large
1/Jτ , indicating absence of loop currents. Figure 3(b) shows
the transition point where the current order vanishes, as seen

041602-2



RAPID COMMUNICATIONS

BOSE-HUBBARD MODEL IN A STRONG EFFECTIVE . . . PHYSICAL REVIEW A 85, 041602(R) (2012)

0.9 0.95 1 1.05 1.1
1/Jτ

0

0.2

0.4

0.6

H
el

ic
it

y 
M

od
ul

us
 Γ

16*16*2
24*24*2
32*32*2
36*36*2
40*40*2
48*48*2
2/π

0.96 0.98 1 1.02
1/Jτ

0.4

0.5

0.6

B
in

de
r 

cu
m

ul
an

t
B L

32*32*2
40*40*2
52*52*2
64*64*2

3.6 3.8 4
ln(L)

4.5

5

ln
 χ

cr
it

0.888 0.894
1/Jτ

0

0.02

rm
s 

er
ro

r

(a) (b)

FIG. 3. (Color online) (a) Helicity modulus 	 vs 1/Jτ for
different system sizes for J⊥ = 1. Inset of (a): rms error of fit to the
BKT finite-size scaling form of 	 shows a deep minimum [16] at the
transition, at 1/Jτ = 0.887(1), and yields a jump 
	 ≈ 0.637, close
to the BKT value 2/π . (b) Binder cumulants for the staggered current
vs 1/Jτ (for different L for J⊥ = 1) intersecting at a continuous
transition at 1/Jτ = 0.981(4). Inset of (b): Critical susceptibility vs
L gives the ratio of critical exponents γ /ν ≈ 1.72, very close to 2D
Ising value γ /ν = 7/4. Error bars are smaller than the symbol sizes.

from the crossing of BL curves [20] for different L. We find that
loop current order persists into the regime where the superfluid
order is absent, revealing an intermediate insulating phase with
staggered loop currents—this is the CMI.

For J⊥/J = 1, we find the BKT transition occurring at
1/Jτ = 0.887(1) while the current order vanishes at the Ising
transition, which is located at 1/Jτ = 0.981(4), where the error
bars on the transition point are estimated from the error in
the location of the dip in the inset of Fig. 3(a) and the error
in the crossing point in Fig. 3(b), both of which yield the
limiting thermodynamic values for the transition points. This
establishes that the phase diagram supports three phases: CSF,
CMI, and MI. A similar analysis for different values of J⊥
allows us to obtain the phase diagram in Fig. 1(a).

We have already seen that the transition out of the CSF,
i.e., the CSF-CMI transition, is of the BKT type. The scaling
of the divergent susceptibility peak χcrit(L) for current order
[Fig. 3(b) inset] shows that the CMI-MI critical point is a 2D
Ising transition. Such consecutive, closely spaced, BKT-Ising
thermal transitions are also observed in the classical 2D FFXY
model [10], although its Hamiltonian is quite distinct from
HXY , and the chiral order in the classical model corresponds
to having in-plane currents rather than interlayer currents as
in our bilayer model. Such consecutive thermal transitions are
also found in spinor condensates [21].

DMRG study. We next study the FFBH ladder model in
Eq. (1) at a filling of one boson per site using the finite-size
DMRG (FS-DMRG) method [12]. (We set t = 1 here.) As
noted previously [7,22], the boson momentum distribution
n(k) in the presence of π flux exhibits two peaks; for our
gauge choice, these peaks are located at k = 0,π . In the CSF
state, which is a Luttinger liquid [23] on the ladder, we have a
singular momentum distribution n(k → 0) ∼ |k|−(1−K/2), with
K > 0 being an interaction-dependent Luttinger parameter
[16]. Similarly, n(k → π ) ∼ |k − π |−(1−K/2). Let Uc1 denote
the location of the transition out of the CSF into an insulator. If
this transition is of the BKT type, as shown from our XY model

3.90 3.95 4.00 4.05
U/t

0.4

0.5

n(
k=

0)
L

-3
/4

L=50
L=60
L=70
L=80
L=90
L=100

4.0 4.1 4.2
U/t

0.5

1.0

1.5

2.0

S
j(π

)L
2β

/ν

L=50
L=60
L=70
L=80
L=90
L=100

-10 0 10
δ L1/ν

0.5

1.0

1.5

2.0

S
j(π

)L
2β

/ν

3.50 4.00
U/t

0

0.1

G
ap(a) (b)

FIG. 4. (Color online) (a) DMRG results for n(k = 0)L−3/4 vs
U/t , for the FFBH Hamiltonian in Eq. (1) with t⊥ = t and various L.
The crossing of these curves at Uc1/t ≈ 3.98(1) yields the CMI-MI
transition (see text). The inset shows the onset of the charge gap at
Uc1. (b) Rung-current structure factor Sj (π )L2β/ν vs U/t at t⊥ = 1.
The intersection point yields the CMI-MI Ising transition at Uc2 ≈
4.08(1)t . The inset shows Sj (π )L2β/ν vs δL1/ν with δ ≡ (U − Uc2)/t ,
for different U/t , leading to a scaling collapse for 2D Ising exponents
ν = 1 and β = 1/8.

study, the exponent K should take on a universal value Kc =
1/2 at Uc1. A plot of n(k = 0)L−3/4 for different L should thus
show a crossing point at the transition out of the CSF, as seen
at Uc1 ≈ 3.98(1) in Fig. 4(a) for t⊥ = 1. Figure 4(a) (inset)
shows that the charge gap also becomes nonzero for U > Uc1,
coinciding with the point where K = 1/2, confirming that the
CSF-to-insulator transition is a BKT transition. This leads to
the phase boundary of the CSF state shown in Fig. 1(b).

The staggered current order parameter can be ob-
tained from the rung-current structure factor Sj (k) =
1
L2

∑
x,x ′ eik(x−x ′)〈jxjx ′ 〉, with jx = i(a†

xbx − b
†
xax). Sj (k =

π ) ∼ L indicates long-range staggered current order. Our XY
model study informs us that the current order disappears
at a MI-CMI transition, which is in the Ising universality
class. We thus expect Sj (π ) to obey the critical scaling form
Sj (π )L2β/ν = f ( (U − Uc2) L1/ν), where Uc2 is the CMI-MI
critical point, f (.) is a universal scaling function, and β = 1/8
and ν = 1 are the Ising critical exponents. As a result, curves of
Sj (π )L2β/ν for different L are expected to intersect at the MI-
CMI critical point Uc2. This crossing, as seen at Uc2 ≈ 4.08(1)
for t⊥ = 1 from Fig. 4(b), allows us to carefully locate the
CMI-MI phase transition. As seen in Fig. 4(b) (inset), plotting
Sj (π )L2β/ν as a function of (U − Uc2)L1/ν shows a complete
data collapse for Uc2 = 4.08. Similar to our discussion for the
computations on the XY model, our analysis of these crossing
points in the FFBH model yields the limiting thermodynamic
values of the transition points, and the error bars are estimated
from examining the errors in these crossing points. Such an
analysis, carried out for a range of values of t⊥/t , allows us
to map out the MI-CMI phase boundary in Fig. 1(b); we find
Uc2 > Uc1, again consistent with an intermediate CMI state.

Discussion. Our computations on the FFBH model at unit
filling and the XY model (which describes the FFBH model
at large integer filling) suggest that the CMI appears near
the tip of the Mott lobes at all boson fillings on the ladder.
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We have generalized the work of Ref. [24] to obtain a long-
range Jastrow correlated wave function which captures all the
essential correlations of this CMI state on the ladder [16]. Since
the CMI is completely gapped, with not just a charge gap but
also an “Ising” gap to charge-neutral excitations, it will be
stable in a 2D system of weakly coupled FFBH ladders.

The CSF and CMI states are bosonic analogs of staggered
current metallic [25] and insulating [26] states of fermions in
models of cuprate superconductors. The CSF and CMI also
find analogs in insulating magnets: paramagnetic gapless [27]
or spin-gapped [28] phases with long-range vector chiral order.

The CMI may be realized in a Josephson junction ladder
at a magnetic field of hc/4e flux per plaquette [11], where
it would appear as an insulator in transport measurements.
With a Josephson coupling ∼1 Kelvin, we estimate that the
spontaneous loop currents could produce staggered magnetic
fields ∼1 nT for arrays with a lattice parameter 10 μm,

which could be measured using superconducting quantum
interference device (SQUID) microscopy [29]. Ultracold
bosonic atoms in the presence of a (uniform or staggered)
synthetic π flux [3] are candidates to realize the CMI. The
signature of the flux would appear as twin peaks in the atom
momentum distribution: The peaks would be sharp in the CSF
but broad in the CMI and MI. Reinterfering the k = 0 and
k = π peaks obtained in time of flight via Bragg pulses [30]
could test for the persistence of intermode coherence (the
phase θ = ±π/2) in the CMI, and distinguish it from the MI.
Jaynes-Cummings lattices in a “magnetic field” [31] could also
be used to simulate a polariton FFBH model.

We thank B. P. Das, M. P. A. Fisher, D. A. Huse, and
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from DST, Government of India (S.M. and R.V.P.), CSIR
(R.V.P.), and NSERC of Canada (A.P.).
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