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Abstract. We investigate the ground state phase diagram for a two species Bose mixture
in a one dimensional optical lattice using the finite size density matrix renormalization
group(FSDMRG) method. We present our result for different combinations of inter and intra-
species repulsion strengths with a commensurate filling factor. We obtain a superfluid(SF) to
Mott insulator(MI) transition when the inter species interaction term is less than the intra-
species interaction term. However, when the former is slightly greater than the latter we find
that the two different species reside in spatially separate regions.

1. Introduction
Ultracold atoms in optical lattices are ideally suited for studying quantum phase transitions in
many particle systems because of the unprecedented control of the inter atomic interactions that
is possible in such a system. This was exploited by Griener et al [1] to observe the superfluid
(SF) to Mott insulator (MI) transition in a three dimensional optical lattice. The quantum
phase transition was subsequently observed in a one dimensional optical lattice [2]. A number
of theoretical investigations have been carried out on a single species of ultracold bosonic atoms
in one-dimensional optical lattices [3, 4]. In addition, several interesting predictions have been
made for different types of mixtures of cold bosonic atoms [5], fermions [6] and bose-fermi
mixture [7, 8] using a variety of approaches.

In this paper we present a numerical study of a two species bosonic mixture in a one
dimensional optical lattice. It has been well established that the Bose-Hubbard(BH) model
is appropriate for explaining the behaviour of ultracold Bose gases in optical lattices [9]. The
different phases in a two species Bose mixture are determined by the competition between the
kinetic energy, the on-site interactions and the interspecies interactions between the bosons. The
Hamiltonian for such a system is given by:

H = −ta
∑

<i,j>

(a†iaj + h.c)− tb
∑
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Here ai (bi) is bosonic annihilation operator for bosonic atoms of a (b) type localized on site
i. na

i = a†iai and nb
i = b†ibi are the number operators. ta (tb) and Ua (U b) are the hopping

amplitudes corresponding to adjacent sites 〈ij〉 and the intra-species repulsive interaction
respectively for a (b) type of atom. The inter-species interaction is given by Uab. In this
work we consider inter-exchange symmetry a ←→ b, implying ta = tb = t and Ua = U b = U .
We set our energy scale by t = 1.

We have carried out our investigations of quantum phase transitions in the above system by
using the Finite-Size Density Matrix Renormalization Group(FSDMRG) method[10, 11] which
is clearly one of the most powerful approaches to study one dimensional lattice systems. We first
summarize our results. We obtain the transition from the superfluid phase (where the atoms
are randomly distributed across the lattice) to the Mott insulator phase (where equal number
of atoms are localized at different lattice sites) whenever the inter species interaction is less
than the intra-species interaction. However, in the opposite case, i.e., when the inter species
interaction is larger than the intra-species interaction, we obtain a novel phase separation where
the two species reside in spatially separated regions. The individual species of bosons in this
spatially separated region may be in the superfluid or Mott insulator phase depending on the
strength of the inter species interaction.

The remaining part of this paper is organized as follows. Section 2 contains the details of
the FSDMRG calculation. Section 3 contains our results. We end with concluding remarks in
Section 4.

2. FSDMRG method
The finite size density matrix renormalization group method has proven to be one of the most
powerful methods to study one dimensional interacting quantum systems [4, 10]. Open boundary
conditions would be appropriate for such an approach since the error in the calculations would
be significantly less than in the case periodic boundary conditions as the size of the system
increases. We present below the salient features of this method

Each iteration of our FSDMRG method consists of the following two steps:

(i) The system size is increased from L to L + 2 by adding two sites as in the case of the
infinite-system density-matrix renormalization group method (DMRG).

(ii) The system size L is held fixed, but the energy of a target state is improved iteratively by
a sweeping procedure, described below, till convergence is obtained.

For a model represented by Eq. (1) we first construct the Hamiltonian matrix of the superblock
configuration B`

1 • • Br
1, where B`

1 and Br
1 represent left- and right-block Hamiltonians,

respectively, and each one of the • represents a single-site Hamiltonian. In the first step of
the DMRG iteration both B`

1 and Br
1 also represent single sites, so, at this step, we have a

four-site chain. The number of possible states per site in the Bose-Hubbard model Eq. (1) is
infinite since there can be any number of bosons on a site. In a practical DMRG calculation we
must restrict the number nmax of states or bosons allowed per site. The smaller the interaction
parameter U , the larger must nmax be. As in earlier calculations [4] on related models, we
find that nmax = 4 is sufficient for the values of U considered here. This means that there are
4× 4 = 16 (4 each a and b type bosons) states per every single site.

We now diagonalize the Hamiltonian matrix of the superblock and obtain the energy and the
eigenfunction of a target state. In our study the target state is the ground state of the system
of size L with either Na = L, N b = L or Na = L± 1, N b = L bosons. Here Na(N b) represents
total number of a(b) type of bosons. The latter is required for obtaining the gap in the energy
spectrum. We now divide the superblock into two equal halves, the left and the right parts,
which are treated, respectively, as the system and the universe. The density matrix for this
system, namely, B`

2 ≡ B`
1 •, is calculated from the target state. If we write the target state as
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| ψ〉 =
∑

i,j ψi,j | i〉 | j〉, where | i〉 and | j〉 are, respectively, the basis states of the system
and the universe, then the density matrix for the system has elements ρi,i′ =

∑
j ψi,jψi′,j . The

eigenvalues of this density matrix measure the weight of each of its eigenstates in the target
state. The optimal states for describing the system are the ones with the largest eigenvalues
of the associated density matrix. In the first step of the DMRG the superblock, and hence
the dimension of the density matrix, is small, so all the states can be retained. However, in
subsequent steps, when the sizes of the superblocks and density matrices increase, only the most
significant states are retained, i.e. the ones corresponding to the largest M eigenvalues of the
density matrix (in our studies we choose M = 128). We then obtain the effective Hamiltonian
for the system B`

2 in the basis of the significant eigenstates of the density matrix; this is used in
turn as the left block for the next DMRG iteration. In the same manner we obtain the effective
Hamiltonian for the right block, i.e., Br

2 ≡ •Br
1. In the next step of the DMRG we construct the

Hamiltonian matrix for the superblock B`
2••Br

2, so the size of the system increases from L = 4 to
L = 6. For a system of size L, we continue, as in the first step, by diagonalizing the Hamiltonian
matrix for the configuration B`

L
2
−1
• •Br

L
2
−1

and setting B`
L
2

≡ B`
L
2
−1
• and Br

L
2

≡ •Br
L
2
−1

in the

next step of the DMRG iteration. Thus at each step of the DMRG iteration the left and right
blocks increase in length by one site and the total length L of the chain increases by 2.

In the infinite-system DMRG method outlined above the left- and right-block bases are not
optimized in the following sense: The DMRG estimate for the target-state energy, at the step
when the length of the system is L, is not as close to the exact value of the target-state energy
for this system size as it can be. It has been found that the FSDMRG method overcomes this
problem [10]. In this method we first use the infinite-system DMRG iterations to build up the
system to size L. The L-site superblock configuration is now given by B`

L
2
−1
• • Br

L
2
−1

. In the

next step of the FSDMRG method, the superblock configuration B`
L
2

• • Br
L
2
−2

, which clearly

keeps the system size fixed at L, is used. This procedure is called sweeping in the right direction
since it increases (decreases) the size of the left (right) block by one site. For this superblock the
system is B`

L
2

•, the universe is •Br
L
2
−2

, the associated density matrix can be found, and from

its most significant states the new effective Hamiltonian for the left block, with (L
2 + 1) sites, is

obtained. We sweep again, in this way, to obtain a left block with (L
2 + 2) sites and so on till

the left block has (L − 3) sites and the right block has 1 site so that, along with the two sites
in between these blocks, the system still has size L; or, if a preassigned convergence criterion
for the target-state energy is satisfied, this sweeping can be terminated earlier. Note that, in
these sweeping steps, for the right block we need Br

1 to Br
L−3, which we have already obtained

in earlier steps of the infinite-system DMRG. Next we sweep leftward: the size of the left (right)
block decreases (increases) by one site at each step. Furthermore, in each of the right- and left-
sweeping steps, the energy of the target state decreases systematically till it converges (we use
a six-figure convergence criterion in our calculations).

In our FSDMRG method in which we sweep, as described above, at every step of the DMRG
scheme and not only in the one that corresponds to the largest value of L. This helps in
obtaining accurate correlation functions. Furthermore, since the superfluid phase in models
such as Eq. (1), in d = 1 and at T = 0, is critical and has a correlation length that diverges
with the system size L, finite-size effects must be removed by using finite-size scaling as we
show below. For this purpose, the energies and correlation functions, obtained from a DMRG
calculation, should have converged properly for each system size L. It is important, therefore,
that we use the FSDMRG method as opposed to the infinite-system DMRG method especially
in the vicinities of continuous phase transitions.

Since the bases of left- and right-block Hamiltonians are truncated by neglecting the
eigenstates of the density matrix corresponding to small eigenvalues, this leads to truncation
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errors. If we retain M states, the density-matrix weight of the discarded states is PM =∑M
α=1(1 − ωα), where ωα are the eigenvalues of density matrix. PM provides a convenient

measure of the truncation errors. We find that these errors depend on the order-parameter,
correlation length in a phase. For a fixed M , we find very small truncation errors in the gapped
phase and the truncation errors are largest in the SF phase. In our calculations we choose M
such that the truncation error is always less than 5× 10−5; we find that M = 128 suffices.

3. Results
The various parameters that we calculate to study the ground state properties of model (1) are
the energy gap GL, which is the difference between the energies needed to add and remove one
atom from a system of atoms,i.e.,

GL = EL(Na + 1, Nb) + EL(Na − 1, Nb)− 2EL(Na, Nb) (2)

and the on-site density correlation function

〈nα
i 〉 = 〈ψ0LNaNb

|nα
i |ψ0LNaNb

〉. (3)

Here α, is an index representing type a or b bosons, EL(Na, Nb) is the ground-state energy for a
system of size L with Na (Nb) number of a (b) type bosons and |ψ0LNaNb

〉 is the corresponding
ground-state wavefunction, which are obtained by the FSDMRG method discussed above.
Defining the ratio of the inter and intra species interactions ∆ = Uab/U , we study the ground
state of model (1) for ∆ < 1 and ∆ > 1. The ground state exhibits some similarities as well
as differences when ∆ < 1 and ∆ > 1. When the kinetic energy is the dominant term in the
model, the ground state is in 2SF (both a and b species are in the SF phase) state for all ∆.
This similarity is, however, lost when the interactions dominate. For ∆ < 1, i.e., Uab < U , the
large U phase is Mott insulator with non-zero energy gap in the ground state. This state has
an uniform local density of bosons for each species, i.e., 〈na

i 〉 = 〈nb
i〉 for all i. The 2SF to MI

transition is possible only when the total density ρ = ρa +ρb is an integer. Since we have chosen
Uab ∼ U in this work (∆ = 0.95 and 1.05), the 2SF-MI transition for model (1) is similar to the
SF-MI transition for single species bosons with the same density of bosons. For ∆ > 1 and for
small values of U , the ground state is a 2SF state. However, when U increases, the ground state
first goes into superfluid phase with a and b bosons spatially separated into different regions of
the lattice. This phase may be called the phase separated superfluid(PS-SF). There is no gap
in the ground state energy spectrum and the phase separation order parameter defined as

OPS =
1
L

∑

i

〈ψ0LNaNb
|(|na

i − nb
i |)|ψ0LNaNb

〉. (4)

is non-zero. A further increase in U results in opening up of the gap in the energy spectrum.
This Mott insulator has a non-zero phase separation order parameter and it may be called the
phase separated Mott-Insulator(PS-MI). The total local density 〈ni〉(= 〈(na

i +nb
i)〉) = ρ continue

to remain uniform across the lattice.
In d = 1, the appearance of the MI phase is signaled by the opening up of the gap GL→∞.

However, GL is finite for finite systems and we must extrapolate to the L → ∞ limit, which is
best done by using finite-size scaling [4]. In the critical region, i.e., SF region, the gap

GL ≈ L−1f(L/ξ), (5)

where the scaling function f(x) ∼ x, x → 0 and ξ is the correlation length. ξ → ∞ in the SF
region. Thus plots of LGL versus U , for different system sizes L, consist of curves that intersect
at the critical point at which the correlation length for L = ∞ diverges and gap G∞ vanishes.
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Figure 1. Scaling of gap LGL is plotted as a function of U for different system sizes for
∆ = 0.95. The coalescence of different curve for U ' 3.4 shows a Kosterlitz-Thouless-type
2SF-MI transition.
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Figure 2. Plots of 〈na
i 〉 and 〈nb

i〉 versus i for U = 1 and U = 4 and ∆ = 1.05, for system
size L = 50. The deviation in 〈na

i 〉 and 〈nb
i〉 near the boundaries for U = 1 is due to the open

boundary condition used in our FSDMRG

In the absence of the inter-species interaction Uab, the ground state of model (1) is a simple
independent mixture of the individual species of bosons. In order to investigate the influence of
Uab on its ground state, we consider two cases ∆ = 0.95 and 1.05. It should be noted that in the
single species model with only the on-site interaction, the MI phase is possible only for integer
densities. Thus since ρa = ρb = 1/2, the MI phase is absent when Uab = 0 and the model (1) will
have only the SF phase. Figure (1) shows a plot of scaling of gap LGL versus U for ∆ = 0.95.
Curves for different values of L coalesce for U ≤ Uc ' 3.4 indicating a MI phase for U > Uc. The
emergence of this phase is due to the intra-species as well as inter-species interaction strengths.
The fact that Uc ' 3.4, indicates that the model (1) when ∆ ≈ 1 behaves like a single species of
bosons at unit density [4]. These results are along expected lines because, when Uab ≈ U , every
boson in the system interacts with all the other bosons, irrespective of whether they are of type
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a or b, with the same strength and therefore the species index become irrelevant. However, the
situation changes when the inter-species interaction Uab > U . The on-site densities 〈na

i 〉 and
〈nb

i〉 are plotted in Fig. (2) for ∆ = 1.05. It is clear that there is a spatial separation between the
two different species of bosons for U = 4 and no spatial separation for U = 1. This highlights
a Phase Separation (PS) transition as a function of U . The question then arises whether this
spatially separated phase is a superfluid or a Mott Insulator. In order to sort this out, we plot
both the scaling of the gap LGL and the order parameter OPS for phase separation in Fig. (3).
It is evident that the transition to the MI phase happens at around Uc ' 3.4 and to the spatially
separated phase around Uc ' 1.3. The gap remains zero for 1.3 < U < 3.4. Thus for ∆ = 1.05,
there are three phases: the superfluid phase (2SF) for U < 1.3, superfluid, but phase separated
(PS-SF) for 1.3 < U < 3.4 and finally Mott Insulator, but again phase separated (PS-MI) for
U > 3.4.
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Figure 3. Plots of LGL (a) and OPS (b) versus U demonstrate various phases in the case
∆ = 1.05.

4. Conclusion
From the above discussion, the following conclusions can be drawn. For the values of the
interaction strengths and the density considered here, we obtain several phases: 2SF, MI, PS-
SF and PS-MI. For Uab ≤ U , the Mott Insulator phase is possible since the total density is an
integer. The superfluid to Mott Insulator transition in model (1) is then similar to the single
species Bose-Hubbard model with the same total density. The deviation from this behaviour,
however, occurs for Uab > U , where we observe a phase separation. The Mott insulator phase is
then phase separated. In this case, we observe a phase separated superfluid PS-SF sandwiched
between 2SF and PS-MI.

7th Asian International Seminar on Atomic and Molecular Physics IOP Publishing
Journal of Physics: Conference Series 80 (2007) 012039 doi:10.1088/1742-6596/80/1/012039

6



Acknowledgments
One of us (TM) thanks K. V. P. Latha of Indian Institute of Astrophysics for useful suggestions.

References
[1] Greiner M, et al, Nature 415, 39 (2002).
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