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Abstract. It is shown that the exact nonlinear solution for the Hall–Alfvén waves
can be obtained in a uniformly rotating weakly ionized plasma such as those which
exist in various types of accretion disks. In addition this piece of work demonstrates
a method of eliminating the inaccuracies embedded in the literature on this subject.

1. Introduction
The Alfvén waves have been invoked in various astrophysical situations for their
diverse roles. They can accelerate particles such as in cosmic rays, heat plasmas
such as in the Solar corona, and provide models for magnetohydrodynamic (MHD)
turbulence such as in the Solar wind [1, 2]. The Alfvén waves of large amplitude
are required for all of these purposes. The nonlinear couplings of the waves transfer
energy to shorter spatial scales so that they can resonantly interact with the plasma
particles resulting in their heating [3]. The heating processes becomes particularly
favorable at short wavelengths. One way of obtaining short wavelength modes is to
go beyond the ideal MHD and include non-ideal effects such as the Hall effect [4].
It is well known that the Alfvén waves are the exact solutions of the ideal MHD
system. We have recently shown that the Alfvén waves of arbitrary amplitude
form the normal modes even in the presence of the Hall effect [5]. In this paper we
explore such a possibility for partially ionized rotating plasmas. The motivation
behind this investigation is to study MHD processes in accretion disks such as the
protoplanetary and protostellar disks. These disks have a low degree of ionization
and therefore are weakly coupled with the magnetic field. The magnetic coupling,
on the other hand, is absolutely essential for the outward transport of the angular
momentum through processes such as the the magneto-rotational instability [6].
The Alfvén wave heating of protoplanetary disks has been an active area of study
[7, 8] for additional heating and ionization in the disks. We determine the linear
dispersion relation of the Hall–Alfvén waves in a uniformly rotating weakly ionized
plasma including the electrical resistivity in Sec. 1. It is demonstrated in Sec. 2 that
the linear dispersion relation is also valid in the nonlinear regime.We thus obtain the
linear damping of these nonlinear waves in contrast to the earlier work [7, 8] on non-
linear damping of the linear waves and end the paper with some concluding remarks.
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2. Hall–Alfvén waves
The partially ionized plasma in the protoplanetary disks consists of electrons,
heavy ions such as those of potassium and neutral hydrogen molecules along with
a small percentage of helium molecules. The ions and the neutrals are coupled
through collisions. The dynamics of such a system is essentially controlled by the
neutrals, with the ions and electrons being treated as inertia-less [9, 10]. We write
the equations in a dimensionless form by normalizing (as used in the astrophysical
literature [9, 10] emphasizing the dynamics of the neutrals) the time and the space
variables, respectively, with the gyro-period ω−1

cn = mnc/eB0, and the inertial length
λn = c/ωpn, where ωpn = (4πe2n/mn)1/2 is the plasma frequency and n and mn are
respectively the density and the mass. The index n refers to the neutral particles.
The magnetic and the velocity fields are respectively normalized to the uniform
ambient field B0 and the Alfvén speed VA = B0/

√
4πρ, where ρ is the uniform

mass density. Typically the Alfvén Mach number is larger than one for assumed
subthermal magnetic fields. The resistivity η is normalized by (λ2

nωcn) In these units
the following dimensionless equations

∂B
∂t

= ∇ × [(V− ε∇ × B) × B] + η∇2B (2.1)

∂(∇ × V)
∂t

= ∇ × [V× (∇ × V) − B× (∇ × B)] (2.2)

constitute the dissipative Hall-MHD in the incompressible limit. Here ε= n/ne (In
the approximate range 105–1010 in protoplanetary disks) and ne is the electron
density. Equation (2.2) has been obtained by taking the curl of the equation of
motion of the neutral component. Thus, the neutral fluid behaves like a charged
fluid due to the strong coupling with the ions. The electrical resistivity η is provided
by the electron–neutral and the electron–ion collisions, the former being the dom-
inant in weakly ionized plasmas. The equilibrium of the system is described by
B0 = êz,V0 = rΩêθ with constant Ω and constant densities. We split the fields into
their ambient and the fluctuating parts:

B = êz + b; V = V0 + v (2.3)

and substitute in (2.1) and (2.2) to get

∂b
∂t

= ∇ × [(v− ε∇ × b) × êz + V0 × b+ (v− ε∇ × b) × b] + η∇2b (2.4)

∂

∂t
(∇ × v) = ∇ × [v× (∇ × v) + v× (∇ × V0)

+V0 × (∇ × v) + (∇ × b) × êz + (∇ × b) × b]. (2.5)

The linearized equations in cylindrical geometry turn out to be

∂

∂t
b = (êz · ∇)[v− ε∇ × b] − ΩZ+ η∇2b, (2.6)

∂

∂t
∇ × v = (êz · ∇)[2Ωv+ ∇ × b] − ΩY (2.7)

where

Z = êr
∂

∂θ
br + êθ

∂

∂θ
bθ + êz

∂

∂θ
bz (2.8)
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and Y has the same form except that the components of b are replaced by those of
(∇ × v). In order to solve these equations we assume that b = b(r) exp(ikz + imθ −
iωt), v = v(r) exp(ikz + imθ − iωt) and substitute in (2.6) and (2.7) to arrive at

v− ε∇ × b = −ωmb
k

+ i
η

k
∇2b, (2.9)

2Ωv+ ∇ × b = −ωm
k

∇ × v (2.10)

where ωm = (ω − mΩ) and ∇ is a full operator which has been retained for
conciseness. Combining (2.9) and (2.10), we find

∇ × ∇ × b− (ω2
m − β − iωmη∇2)(εωmk)−1∇ × b− 2Ωε−1[1 − iηω−1

m ∇2]b = 0 (2.11)

where β = (2Ωε + 1)k2. The solution of (2.11) is

∇ × b = αb (2.12)

and the corresponding linear dispersion relation is found to be

ω2
m + ωm

[
2Ωk

α
− αεk + iηα2

]
− β + 2iηαΩk = 0. (2.13)

The eigenfunctions are the Chandrasekhar–Kendall functions described as

br = µ−2

(
imαbz

r
+ ik

∂

∂r
bz

)
; bθ = µ−2

(
−α

∂

∂r
bz − mkbz

r

)
; bz = AJm(µr)

(2.14)
where µ2 = α2 − k2 is to be interpreted as the radial wave number.
A similar dispersion relation was obtained in the slab geometry [11, 12]. If we

drop the properties related to the cylindrical geometry in (2.13) by taking Ω = 0
(the azimuthal mode number m automatically disappears since it appears only
in the form mΩ), we recover the dispersion relation of the Alfvén wave including
constant resistivity in the slab geometry.

3. Exact nonlinear dispersion relation
Here we show that the solution (2.12) along with the linearized equations (2.9) and
(2.10) for the fluctuations v and b are also the solution of the complete nonlinear
equations (2.4) and (2.5). The nonlinear terms from (2.4) and (2.5) are (v− ε∇×b)×b
and (v × (∇ × v) + (∇ × b) × b). One can easily check that the nonlinear terms
vanish for the relationships of b and v given in (2.9), (2.10) and (2.12). Thus, we
conclude that the dispersion relation (2.13) and the eigenfunctions (2.14) represent
the exact solutions of the incompressible dissipative Hall-MHD of the weakly
ionized uniformly rotating plasma for fluctuations of arbitrary amplitudes.

4. Hall–Alfvén waves in accretion disks
Accretion disks are generally differentially rotating systems at the Keplerian fre-
quency Ω(r) =

√
GMr−3 where G is the gravitational constant, M is the mass

of the central compact object such as a star and r is the radial position of the
orbiting matter. The importance of the resistive and the Hall effects in proto-
planetary weakly ionized disks has been recently emphasized [9, 10]. In [9, 10]
as well as in more recent studies [13, 14], linear or nonlinear fluctuations with
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only axial wave vector kz along the ambient magnetic field B0 are prescribed for
wave propagation, neglecting completely the azimuthal and the radial variations
in a cylindrical system. Even when the radial variation is considered, it has been
done by Fourier analyzing in the radial coordinate. Now it is well known that an
inhomogeneous system such as one rotating with speed Vθ = Ωr even with constant
Ω is not an autonomous system in r and should not be Fourier analyzed in the radial
coordinate. We wish to point out that the complete neglect of the radial and the
azimuthal variations violates the ∇ · b = 0 condition along with the z component
of the induction equation. Both of these maladies can be cured as we have shown
in the previous section. Our solution (2.12) automatically satisfies the divergence
condition. Further we find that the radial variation can only be neglected if one
retains the azimuthal variation and the azimuthal mode number m in this case
must be equal to ±1. This can be easily seen by writing the components of (2.12)
for ∂/∂r = 0. We see that the only consistent solution is bz = 0, α = ±k,m = ±1;
the corresponding dispersion relation being

ω2
m + 2Ωωm

[
1 − εk2

2Ω
+

iηk2

2Ω

]
− [(1 + 2Ωε)k2 − 2iΩηk2] = 0 (4.1)

and the eigenfunctions are b = constant [êr + iêθ] exp(−iωt+ iθ+ ikz) representing
circularly polarized waves. The constancy of Ω is a good assumption over the
wavelength scales of interest for the microscopic processes. We find that these
nonlinear waves are strongly damped for the relevant parameters. Thus, if somehow
these waves could be excited, they can damp and heat the plasma to further ionize it.

5. Conclusion
We have furnished the correct analysis of the Hall-MHD of rotating weakly ionized
dissipative plasmas, a system of extreme importance for accretion disks of various
types. The exact nonlinear solution of the wave will go way beyond the usual linear
and the so-called local solutions in delineating the nonlinear phenomena in accretion
disks and their role in heating and ionizing the cold weakly ionized disks.
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