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Abstract Development and applications of many-body methods capable of reliable computation of potential 
energy curves (PEC) containing avoided curve-crossing zone remains a challenging area of activity in electronic 
structure theory till date. In this paper, we present the PEC of the ground state and the corresponding lowest 
charge transfer state of an isolated 1 : 1 AI+3.He complex, calculated using the third order effective valence sheU 
Hamiltonian, H~rd, method (a variant of quasi-degenerate multi-reference perturbation theory) and then analyze 
the aspect of avoided curve-crossing between these two states of the complex. The published theoretical data 
of this complex is very limited and to our knowledge no experimental data has been reported yet for the ground 
and excited electronic states of this complex. Thus, a comprehensive theoretical investigation of such a complex 
would be very useful to identify its structural properties. In our numerical analysis, a comparison of our findings 
is made with the results generated via other many-body methods whenever available. The results obtained from 
our method appear quite promising, implying the efficacy of H;rd method to compute the energy surfaces (with 
degeneracy/quasi-degeneracy of varying degrees) over a wide range of geometries including the avoided 
curve-crossing zone. We further report the ground state spectroscopic constants of this complex obtained from 
the improved virtual orbital·complete active space configuration interaction (IVO-CASCI) based numerical gradient 
method. The spectroscopic constants predicted by the IVO-CASCI are in agreement with those determined from 
the state·of-the-art coupled cluster method. 

Keywords: AI+3.He complex, avoided crossing, stability multi·reference perturbation method, geometry 
optimization 
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1. Introduction 
The fates of optical spectra and a host of dynamical processes pertaining to molecular 
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systems having arbitrary level of complexity and generality are shaped to a large extent 

by the avoided crossings of the ionic and covalent potential energy curves. It is, 

however pertinent to mention that the curve-crossing phenomenon is not exclusive to 

molecular systems only, it rather extends even to systems as adsorbates on metal 

surfaces, typically involving an ionic interaction between the adsorbate and the 

adsorbent [1,2], thus taking into account the redox processes at metal surfaces and 

its obvious consequences to corrosion science. Thus, the importance of such studies 

not only encompasses the realm of traditional chemistry, it fans out to incorporate even 

the domains of physics and materials science. Noticeable among such phenomena are 

the spectroscopic abnormalities, pre-dissociation, quenching, energy transfer processes, 
ion-pair formation or recombination, chemi-ionization, collisional excitation, as well as 

the harpooning mechanism of chemical reactions. A molecular level understanding of 

the charge-transfer processes calls for real sophistication of the theoretical methodology 

to be developed and its consequent numerical implementation. Such a task could only 

be undertaken with a highly evolved insightful theoretical background and an algorithmic 

implementation of matching precision. 

The theoretical and also experimental study of isolated 1 : 1 complexes between 

positively charged cation and ligand has pronounced importance in understanding of 

ionic bond and in the development of the Landau-Zener model for treating the curve­

crossing phenomena. Such efforts have got recent impetus, and maintaining the spirit, 

we, in this article investigate the avoided potential energy curve (PEG) crossing of the 

ground state-singlet, X1'E+ and the open-shell singlet, A1'E+ (charge transfer state) 

states of isolated 1 : 1 AI+3.He complex using the third order effective valence shell 
Hamiltonian (H;rd) method [3]. We recognize the fact that, although both the singlet 

and triplet charge transfer states, which originate due to the transfer of an electron from 
1 s orbital of He to 3s orbital of triply charged AI cation are possible for the complexes, 

only the singlet charge transfer state, A1'E+ is involved in displaying the avoided 

crossing phenomenon with the ground state, X1'E+. At this juncture it is relevant to 

highlight the fact that inspite of the growing interest in such compounds, the real 

knowledge about these are still in an infant stage. Thus, for a theoretical chemist it 

is quite arduous to come up with a prediction of the structural aspects of such type 

of complexes at the level of chemical accuracy. Among such studies, we mention the 

work of Wilson et at [4] on metal-He complexes, and the relatively recent article by 

Wright and lee [5] on AI+3.He complex using various ab initio methods, concluding that 
the complex is kinetically stable. 

The generation of smooth PECs containing various degrees of degeneracy is a 

crucial test case for multi-reference methods. The most stringent test of any MR­

method for the computation of PEC is encountered in situations where the orbitals 

change very rapidly owing to very small geometrical distortions, as is frequently 

envisaged in the case of avoided curve-crossings. It is important to mention the fact 
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that the construction of the reference function is very crucial in order to scan the PEC 
over the wide range of geometries including curve-crossing region. The curve-crossings 
(conical intersections) are located at completely different internuclear distances if 
dynamical correlation is included, vis-a-vis the situation when it is based on a mean 
field description (say, MCSCF or CASSCF : complete active space self-consistent 
field). At the curve-crossing zone, the relative energies of the two states depend on 
which is chosen for orbital optimization, which can lead to root switching problems in 
an MCSCF (or CASSCF) calculation. Additionally, geometry optimization can cause 
root switching as well, if optimization passes through the conical intersection. To 
address this problem, it is possible to carry out a so-called 'state-averaged' MCSCF 
(or CASSCF) calculation. In a state-averaged calculation, the orbitals are variationally 
optimized not for anyone state energy, but rather for the average of the two (or more 
than two, if a larger number of states are of interest). But it is inportant to recognize 
the fact that each state requires a different set of orbitals, meaning that one, in 

prinCiple, should not use state-average calculations in a blanket manner. Rather, both 
states should be described in separate state selective calculations. This makes it hard 
to describe a smooth avoided crossing as the calculations cannot benefit from a joint 
diagonalization which would lead naturally to an avoided crossing as in (2 x 2) 
eigenvalue problem. A major objection of the state average calculation is that the 
quality of anyone state's wave function is lower than what it would be were it to be 
the only state under consideration. On the other hand, a virtue of a state-averaged 
calculation is that all states are expressed using the same MOs, thereby ensuring 
orthogonality, which is critical if, say, transition dipoles between states are to be 
computed. A number of different weight factors were explored by various researchers 
for the state-averaged MCSCF (or CASSCF), and there is considerable sensitivity 
exhibited in the convergence of the MCSCF (or CASSCF) calculation to the weights of 
the states used. Thus, state average MCSCF (or CASSCF) calculations are very 
laborious in the sense that to reproduce the proper pattern of the avoided crossing a 
plethora of numerical analyses are needed regarding weight factors of the two states 
involved. To overcome these 'objections', one can use a very large CAS. 

The CAS-based perturbative methods which are used as rigorous models capable 
of reliable computations of PEC for systems of arbitrary complexity and generality are 
Hv [3], MRMP [6], MCQDPT [7), CASPT2 [8), MRMP using APSG [9), CIPSI [10], and 
so on. The various CAS-based perturbative methods can also differ in their choice of 
unperturbed Hamiltonian apart from the mode of representing the reference function in 
the context of relaxed or unrelaxed coefficients. At this point, it pertinent to mention 
the work of Mukherjee and co-workers [11]. The SS-MRCC method [12) of Mukherjee 
and co-workers allows transparent simplification via truncation of the working equations, 
leading to various perturbative methods (termed as SS-MRPT [11]) of practical utility. 
The well known effective valence shell Hamiltonian (Hv) method developed by Freed and 
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co-workers [3J is based on quasi-degenerate many-body perturbation theory. The 

efficiency and accuracy of the Hv method has already been tested and demonstrated 

with numerous examples, and several studies on the convergence properties explain 

why these successes have been achieved. The effective valence shell Hamiltonian, Hili 
method is obtained by projecting the full Hamiltonian onto a valence space that is 

spanned by a pre-chosen set of valence orbitals. The projection can be accomplished 

with the aid of quasi degenerate many-body perturbation theory. We will discuss the 

detailed theoretical aspect of this method in the next section. The MCQDPT approach 

starting from a MCSCF (or CASSCF) wave function is another effective method for 

recovering dynamic correlation. It is computationally efficient when compared with the 

alternative of MRCI method as is the case for Hv method. However, the Hv method is 

computationally less expensive than the MCQDPT method, since it (i) does not require 

iterations beyond those in the initial SCF calculation, (ii) is free from convergence 

difficulties which arise due to the intruder effect with increasing size of the CAS in 

CASSCF calculations. The Hv approach generates both singly and doubly excited 

states with accuracy comparable to CASSCF treatments as it contains higher order 

excitations in addition to the singly and doubly excited configurations in the CAS. Not 

only that, the latter contrasts with the CIS method which cannot treat doubly excited 

states. Not only that, the IVO-CASCI scheme differs from the traditional CI approach 

in the evaluation of orbitals and orbital energies. The traditional CI method determines 

both the occupied and unoccupied orbitals and their orbital energies using a single 

Fock operator in which the unoccupied orbitals describe the motion of an electron in 

the field of N other electrons. Consequently, the virtual orbitals are, at best, more 

appropriate for describing negative ion states than the low lying excited states of 

interest. The Hv method obtains the unoccupied orbitals and their energies from a set 

of VJ-1 potential Fock operators in order to optimize the CASCI predictions of low lying 

electronic states and thereby to minimize the higher order perturbative corrections. In 

this paper, we mainly concentrate on the applicability of the third order Hv method to 

compute the PEC involving avoided curve-crossing of a very interesting and challenging 

AI+3.He complex. To establish the effectiveness of the Hv method, we have also 

generated the same using MCQDPT method [7] for comparison. 

The determination of the location of stationary points on PECs (and hence the 

determination of equilibrium and transition state structures) through geometry optimization 
using efficient techniques is a very challenging task for any theoretical chemist. The 

theoretical determination of optimized molecular geometries and vibrational frequencies 

requires the computation of derivatives of the total energy with respect to all internal 

coordinates. Ideally, energy gradient should be determined analytically since numerical 

energy derivative scheme is computationally expensive owing to the fact that the energy 

is computed twice along each of the totally symmetric modes (for the backward and 

forward displacements). The gradient technique for the calculation of molecular properties 

had been in vogue for at least a couple of decades. Needless to highlight is the fact 



Study of isolated 1 : 1 AI+3.He complex using many-body perturbation theory etc. 1027 

that such methods have been exploited mostly in the realm of single reference context. 
However, the adoption of the same strategy within the periphery of a genuinly MR 
method is still in the stage of infancy. Thus, it would serve as a challenge for a 
theoretical chemist to develop a truely MR based analytic derivative method for the 
property calculation in general. We, in this article, embark on such a sojourn and 
exploit our newly developed numerical derivative based IVO-CASCI (developed by 
Chaudhuri et al [13]) method to compute the equilibrium bond length and vibrational 
frequencies, and other spectroscopic properties via geometry optimization. To test the 
quality of the perturbed wave-function generated via IVO-CASCI method, we study the 
spectroscopic parameters of the AI+3.He complex via numerical gradient technique [13]. 

The AI+3.He system is sufficiently complex for benchmarking the ability of the numerical 
gradient based IVO-CASCI method for describing the ground state geometry and vibra­
tional frequencies. We want to emphasize the fact that the IVO-CASCI method has 
wide applicability in situations such as (i) calculations of atomic spectra, (ii) computation 
of PEC and electronic spectra starting from simple di-atomic to extended molecular 
systems. 

We are now in a position to discuss the organization of our paper. The 
organization of the paper is as follows. In Section 2, we will describe the theoretical 
development of the Hv method. The discussion on numerical analysis of various results 
are presented in the Section 3. The last section consists of our summarizing remarks. 

2. Theoretical considerations 

A. Generation of Improved Virtual Orbitals : 

One portion of the CASSCF procedure effectively involves a CASCI computation using 
orbitals optimized for a single state or for some weighted average of several states. A 
CI computation of dimension 0 is well known to provide rigorous upper bounds to the 
energies of the D lowest electronic states [14] but, of course, accurate bounds are 
expected only for the lowest few of these states, which, fortunately, are generally the 
states of interest. However, the use of orbitals optimized for one (or for the average of 
a few) states generally yields a poor representation of the other states, and this feature 

is partially responsible for the poor convergence of the CASSCF procedure as the 
dimension of the CAS grows. Our alternative approach involves directly choosing 
orbitals that simultaneously provide a good representation for several of the lowest lying 
electronic states. This procedure is followed in Hv computations in which the CAS 
orbitals are defined as comprising the highest occupied orbitals (perhaps, only for 
certain symmetries) in the SCF approximation to the ground (or a low lying) state and 
a set of the lowest lying IVO orbitals constructed from the remaining unoccupied space 
in the basis set. This approach is designed to maximize the accuracy of the first order 
Hv approximation, which is equivalent to a CASCI, for the low lying electronic states 
in order to minimize the required perturbative corrections [15]. Earlier Hv computations 
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used a computationally complex sequence of SCF computations to obtain the IVOs, 
but more recently they employ a simple direct method for generating the IVOs for 

several common situations [16]. The significant improvement in computational efficiency 
for determining the IVOs is one of the important features contributing to the packageability 
of the IVO-CASCI method [17] and its use for geometry optimization [13]. 

Since the basic philosophy of generating the IVOs is the same for both 

restricted and unrestricted HF orbitals, we only present the restricted HF case, which 
is used herein. When the ground state of the system is a closed shell, we begin with 
the Hartree-Fock (HF) molecular orbitals (MOs) for the ground state wave-function, Po 
== A[¢161¢2~ ... IPn9nl where A is the antisymmetrizer. Let the indices i, j, k, .,. refer 
to the occupied HF MOs {4>;} and u, II, W, .. , to unoccupied HF MOs. All the HF MOs 

are determined by diagonalizing the one electron Hartree-Fock operator 1 F, 

lRm = (¢/IH+ ~ (2Jk - Kk )\ ¢m) = Dim E I , (1) 

where I and m designate any (occupied or unoccupied) HF MO and E, is the HF orbital 

energy. The operator H is the one-electron portion of the Hamiltonian, and Jk and Kk 

are Coulomb and exchange operators, respectively, for the occupied orbital rPk' 

An excited state HF computation would provide a new set {X} of MOs that 

produce the lowest possible energies for the low lying singly excited i[/cx~lt state, 

(2) 

corresponding to an excitation of an electron from the orbital Xa to X,,, where the + 
and - signs correspond to triplet and singlet states, respectively. The new Mas, {x,,} 
and {XI,} may be expressed as a linear combination of the ground state Mas {rPi'¢U}' 
If, however, the orbitals are restricted such that the {Xcx} are linear combinations of only 
the occupied ground state MOs {¢,,} and the {X,,} are expanded only in terms of the 
unoccupied {CPu}, 

occ unocc 

X" == 2: ao.;¢i; XI' = 2: C"u¢u, 
;=1 u=l 

(3) 

then the new orbital set {Xn,X,.} not only leaves the ground state wave-function 
unchanged but also ensures the orthogonality and applicability of Brillouin's theorem 

between the HF ground state and the lJ!CX~IL excited states. In addition, this choice also 
benefits from using a common set of MOs for the ground and excited states, a choice 
which simplifies the computation of oscillator strengths, etc. However, we avoid the 

computationally laborious re-optimization of the occupied orbitals by setting {Xa} == {¢cx}, 
i.e., by choosing ao:j = O"j, thereby simplifing enormously the procedure for generating 
the IVOs. Hence, the coupled equations determining the coefficients a . and c reduce 

CXI "V 
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to a single eigenvalue equation of the form F'C = cr, where the operator F' is given 

by 

(4) 

where 1 F is the ground state Fock operator and the additional term A~w accounts for 
the excitation of an electron out of orbital ¢co 

(5) 

The minus sign in eqs. (2, 5) applies for 3iJia->/L a triplet state, while the plus sign is 

for the singlet 1iJiQ -4JL state [18-20]. The corresponding transition energy is 

(6) 

where Eo is the HF ground state energy and II' is the eigenvalue of PC = cr for the 
p,-th orbital. 

B. The effective valence shell Hamiltonian (Hv) method: 

As in conventional many-body perturbation theory, the Hv method [3] begins with the 

decomposition of the exact Hamiltonian H into the zeroth order Hamiltonian HO and the 

perturbation V The zeroth order Hamiltonian Ho is assumed to yield a complete set 

of eigenvectors {¢i} with eigenvalues E/O) . The full space in which H operates is then 

partitioned into a small reference space with the projector 

d 

P = E I Pi) (Pi I ' 
i=1 

(7) 

and its orthogonal compliment 

00 

Q = 1- P = E I qj) (qj I, 
j=d+1 

(8) 

where the sets {Pi} and {qj} span the reference and complimentary spaces, respectively, 

and d is the dimension of the reference space. The reference space functions IlJi~) 
are the projections on the reference space of the exact eigenfunctions IlJi k ) , 

(9) 

and the wave operator [l can be used to regenerate the exact eigenfunctions, 

(10) 

Using the projectors P and Q, the full Schr6dinger equation (H I iJi m) = Em I !pm)) can 

be transformed into the effective Schr6dinger equation, 

(11 ) 
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where Em are the corresponding exact energies, and Helf = PHJ2P. The effective 

operator Helf through third order is given by 

1 [(2) v(3) h 1 Hv = PHP+"2 Veff + eft + .c. , (12) 

in which h.c. designates the Hermitian conjugate of the 

brackets. 

preceding terms in square 

Here, the operators V~~) and YeW) are defined as 

(2) Q VP Ve1f = PV P Q ' 
Eo - Ho (13) 

v(J) == PV Q Q V P Q Q VP - PV Q 2 VPVP. 
e E6 - Ho Eo - Ho (E6 - Hg) (14) 

where Et is the zeroth order energy (see below) of the P-space states. Apart from the 

choice of reference (P) space, the only variability in all multi-reference many-body 
perturbative theories (MR-MBPT) lies in the choice of orbitals, orbital energies, and the 

definition of the zeroth order Hamiltonian Ho since the perturbation approximation is 
completely determined by these choices. The zeroth order Hamiltonian is, generally, 

prescribed as a sum of one-electron operators, 

HaU) = 2:1 ¢c) Ec (¢c 1 + 2:1 ¢v! Ev (¢v 1 + I:: 1 ¢e! Ee (¢e 1 ' 
c v e 

(15) 

in terms of the core (c), valence (v) and excited (e) orbitals and their corresponding 
orbital energies. Unlike traditional MR-MBPT, the zeroth order Hamiltonian Ho in the Hv 
method is defined as 

HoU) = 2:1 ¢c) Ec (¢c 1 + 2:1 ¢v) Ev (cPv 1+ I:: 1 ¢e) Ee (cPe 1 ' 
c v e 

(16) 

to improve the perturbative convergence [21]. The average valence orbital energy Ev in 

eq. (16) is obtained from the original set of valence orbital energies by the democratic 
averaging, 

"Nv - 6· Ej E ==,-1_ 
v N ' 

v 
(17) 

with Nv being the number of valence orbitals cPv spanning the complete active P space 
(CAS). The valence orbitals ¢v that are unoccupied in an SCF approximation for the 

ground state are determined, along with their orbital energies Ev, using improved virtual 
orbitals (IVOs). The first order approximation, the PHP term in eq. (12) provides the 
IVO-CASCI method, which has been shown to provide comparable accuracy to the 

CASSCF approximation without the need for iterations beyond the initial SCF 
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approximation (see Ref. [16]). 

3. Results and discussion 

In this section, performance of theHv method is assessed in the case of AI+3.He 
complex. The numerical application of Hv method consists of two parts : (i) computation 
of PEC using third order Hv method and (ii) calculations of spectroscopic parameters 
via geometry optimization technique using numerically oriented gradient based IVO­
CASCI method which is a first order approximation within the Hv method. 

We will present the potential energy curve of the two lowest states showing 
avoided crossing in an 1 : 1 isolated complex AI+3.He using Hv method. To get a better 
feeling of the potentiality our method, we will also incorporate the results of high level 
ab initio calculations : such as MCQDPT and CR-CCSD(T) [24]. The CR-CCSD method 
and its different variants are very powerful tools for computing and also predicting the 
structures, energetics, and many other properties of atomic and molecular systems of 
arbitrary complexity and hence, can be used as a benchmark. However, it is worth 
mentioning that the CC-method is computationally more demanding than the perturbative 
MR method. Inspite of this, since the experimental results are not available for this 
system, here we have used CR-CCSD(T) results as reference for comparative study. 

Since the systems under investigation are highly positively charged species, it is 
necessary to use the correlation consistent augmented basis sets to describe the core 
region properly. For this reason, in our numerical implementation we have employed 

aug-ccpVXZ level of basis sets. In our study, the ground state geometrical parameters 
of AI+3.He are computed using aug-cc-pVTZ basis sets whereas aug-cc-pVQZ basis 
sets [25] are used for state energy calculation, since the larger basis sets are the 
most reliable for the study of PEC (potential energy curve). Although He is a neutral 
species, we have used the same corresponding basis sets in each case. 

p:s we have already mentioned, the ground X1z:;+ state PEC of the complex 
possesses quasi-degeneracy at some points and there is a potential avoided curve­
crossing at another point with the open-shell singlet, A1:E+ state. The orbitals change 
very rapidly as a function of the minor geometrical distortion as happens in the region 
of curve-crossing. From the theoretical point of view, this complex thus poses a serious 
challenge to any theory where both dynamical and non-dynamical correlations are 
important in varying degrees along the PEC. Consequently, to describe the PEC of the 
complex properly, multi-reference method instead of a single reference one is a more 
judicious choice. A two step approach has been used in our calculations: (i) the most 
important non-dynamical correlations are treated at the CASSCF level and (ii) dynamical 
correlation effects are taken into account using the H~rd method based on CASSCF 
zeroth-order reference function. In our computations, the complete active space (CAS) 
used for the geometry optimization is constructed from 8 active electrons. (1 sand 25 
orbital of metal atom is kept frozen) and 10 active MOs (4 of a1 symmetry, 3 of b1 



1032 Sudip Chattopadhyay, Uttam Sinha Mahapatra and Rajat K Chaudhuri 

symmetry, and 3 of b2 symmetry). 

The energies for Hv3rd ground state X1z:;+ and the excited Alz:;+ state as a 

function of AI-He intemuclear distance are depicted in Figures 1 and 2. For comparison, 

we have plotted the results of MCODPT and CR-CCSD(T) methods in Figures 1 and 

2 respectively. Figure 1 demonstrates the fact that HJrd method, just like the MCODPT 

method, is quite effective to scan the PEC of the complex over the various geometries 
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Figure 1. PEes for the two lowest singlet sigma states of AI+3.He complex including the region of their avoided 
crossing. 

including the zone of avoided crOSSing. At this juncture, we might reiterate that the Hv 
method is computationally less demanding than the MCQDPT method, a fact already 

discussed in the Introduction section. From the graphical representation (Figure 2), it 
is also evident that the performance of the Hv3rd method to compute the PEC of the 

X1I;+ and A1z:;+ states is consistent with the high-level ab initio CR-CCSO(T) method. 

To get a clear picture of the performance of Hv3rd method towards generating the region 

of avoided curve-crossing, we have also presented an expanded view of the crossing 

zone for the results of H~rd method in Figure 3. It is important to mention the fact that 

the extent of mixing of the two eigenstates, ground state X 1E+ and the excited A1L:+ 
state, involved in curve-crossing is not quite strong which is evident from the sharp 

nature of the avoided crOSSing presented in the Figure 3. It is also clear from the depth 

of the PEe (generated using HJrd, MCQDPT and CR-CCSD(T) methods) at equilibrium 
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Figure 2. PECs for the two lowest singlet sigma states of AI+3.He complex including the region of their avoided 
crossing. 

position of the ground state that the 1 : 1 isolated AI+3.He complex is expected to be 
strongly bound in nature (i.e. kinetically stable). Wright and Lee [5] also found that the 
binding for the ground state of AI+3.He complex exhibits a deep minimum in the 
potential energy curve. 

Since various variants of Hv method are quite useful to compute the energetics 
recovering both the non-dynamical and dynamical correlation in an effective and 
balanced manner for different nuclear configuration over entire region of PEC of 
notoriously difficult systems such as AI+3.He complex, the Hv method is expected to 
provide reasonable results for various spectroscopic constants using numerical gradient 
scheme. The molecular geometries and vibrational frequencies are essential ingredients 
ih finding the reaction paths and in identifying the end products of a chemical reaction, 
hence, we have also computed various spectroscopic constants using the geometry 
optimization technique. This calculation will not only establish the applicability of the 
Hv method to compute the spectroscopic constants but also present the generality of 
the method. Here, we apply the IVO-CASCI geometry optimization method using 
numerical derivatives in order to compute the bond length, vibrational frequencies and 
other spectroscopic constants of the 1 : 1 isolated AI+3.He complex which is a 

sufficiently difficult system to assess the potentiality of the method. The geometry 
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Figure 3. Expanded view of PEGs of AI+3.He complex using H~rd method in the vicinity of avoided crossing zone. 

optimization is accomplished by interfacing the IVO-CASCI method into the GAMESS 

program [22] which also supports numerical gradient calculations for the CCSD scheme 

[23]. The CCSD method provides a very accurate estimate of the equilibrium bond 
length for the ground state. For comparative study, we have also quoted the results of 

geometry optimization generated via CASSCF-based response method. The CASSCF 
optimized geometries and vibrational frequencies are computed using the Dalton 
package [26]. We emphasize that the CASSCF scheme computes energy derivatives 

analytically. We highlight the fact that the IVO-CASCI method presented in this article 

(which has the same range of applicability as CASSCF treatments) is not susceptible 
to the convergence problems that often plague the traditional CASSCF approach. For 

comparison, coupled cluster calculations are also included in our numerical analysis of 
the gradient based IVO-CASCI·geometry optimization of the AI+3.He complex. The 
computer time needed for the IVO-CASCI method (and also CASSCF) for geometry 

optimization is at least an order of magnitude less than the various coupled cluster 
approaches. If the computational efficacy of the theory is successfully established for 
a molecular system of arbitrary complexity and generality, then one can use the 

gradient-based IVO-CASCI method as a handy tool for geometry optimization. 

In Table 1 we have presented the various spectroscopic constants using the 
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Table 1. Spectroscopic constants of AI+3.He complex using aug-ccpVQZ basis (Entries within parentheses are 
obtained from aug-cc-pVDZ basis]. 

CASSCF IVO-CASCI CCSD CCSD(T)~ 

RIA 1.678 (1.745) 1.673 (1.735) 1.672(1.747) 1.663 

w./cm-1 811 (731) 815 (746) 815(735) 839.8 

D./cm-t 10876 10888 10859 10715 

B./cm-t 1.717 (1.587) 1.726 (1.606) 1.729(1.584) 1.757 

numerical gradient-based first-order Hv method (IVO-CASCI) and CCSD methods along 
with results of other available methods. In the table we have reported the values using 
aug-ccpVDZ and aug-ccpVQZ basis sets to indicate the variation due to basis set 
extension. From the values of various spectroscopic parameters presented in Table 1, 
we can say that the results obtained from the two basis sets using IVO-CASCI and 
CCSD method are very close. It is important to mention the fact that the results 
generated using larger basis sets are more reliable to compute the spectroscopic 
constants from the point of view of basis set saturation. The spectroscopic constants 
generated via numerical gradient-based IVO-CASCI method mimic very nicely the 

results of the full-blown CCSD(T) methods (see Ref. [5]). Wide applications over the 
last decade or so have established the ability of the CCSD(T) [27] method to display 
results with a high level of accuracy. From the table it is also evident that the binding 

energy and vibrational frequency are both quite large which also establishes the fact 
that the AI+3.He complex is expected to be a kinetically stable one inspite of the fact 
that it is not possible to isolate the complex experimentally. The high quality results 
demonstrate the fact that the IVO-CASCI-based gradient technique can serve as a good 
theoretical model for geometry optimization along with the corresponding calculation of 
various spectroscopic parameters. 

4. Conclusion 

In this paper, we have investigated the various structural properties of the isolated 1 : 1 
AI+3.He complex which has not been identified experimentally till date. The system is 
sufficiently complex for judging the ability and generality of the MR methods for 
describing the energetics, geometry and vibrational frequencies. We have calculated the 
PECs of the ground state-singlet, X1,E+ and the open-shell singlet, A1,E+ including 
avoided curve-crossing region of isolated 1 : 1 AI+3.He complex (using very large basis 
sets) generated via the H/rd method. For a comparative study relating to the 
applicability and generality of the method, we have also compared the results generated 
via H;rd method with other high level ab initio methods: MCQDPT and CR-CCSD(T). 
Frorn this comparative study, we notice that the Hv3rd method (which treat the non­
dynamical and dynamical correlation effects in a correct and balanced manner) is not 
only very promising for description of the PECs of the ground and the singlet open­
shell excited A1L;+ states of the isolated 1 : 1 AI+3.He complex but is also effective 
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for the correct description of the region of avoided curve-crossing. The promising quality 
of the PEC of the complex prompted us to study the spectroscopic parameters of the 

complex. The numerically oriented energy gradient based IVO-CASCI method is used 
to compute the vibrational frequency for the ground state of the complex via the 
geometry optimization scheme. We have also been able to demonstrate the fact that 

the spectroscopic results obtained from the IVO-CASCI-based numerical gradient are in 
close proximity to the corresponding results of other standard approaches such as 
CCSO(T) method. The accuracy of the results of Hv3rd and numerical gradient version 

of the IVO-CASCI (first order Hv) methods with respect to other standard methods 
(such as CC, MCQOPT and so on) for the AI+3.He system which is sufficiently 

complex in nature, explicitly demonstrates the efficacy of the Hv methods. Although it 
is not possible to isolate the AI+3.He complex experimentally from the numerical 
analysis of Hv3rd and gradient based IVO-CASCI methods (along with other highly 

sophisticated ab initio methods), it is quite evident that the complex is kinetically 

stable in nature. The numerical gradient based IVO-CASCI is not free from objection 
inspite of the good quality of results since the numerical gradient procedure is 
computationally expensive. To overcome this difficulty, it would be very useful to develop 
the analytic derivative formulation of the IVO-CASCI method, an issue which we have 
already started working on. We conclude this article with the hope that the 
experimentalists would soon isolate such a chemically interesting and kinetically stable 
complex. 
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