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Abstract. This paper deals with surface profilometry, where we try to detect a periodic structure,
hidden in randomness using the matched filter method of analysing the intensity of light, scattered
from the surface. From the direct problem of light scattering from a composite rough surface of the
above type, we find that the detectability of the periodic structure can be hindered by the random-
ness, being dependent on the correlation function of the random part. In our earlier works, we had
concentrated mainly on the Cauchy-type correlation function for the rough part. In the present work,
we show that this technique can determine the periodic structure of different kinds of correlation
functions of the roughness, including Cauchy, Gaussian etc. We study the detection by the matched
filter method as the nature of the correlation function is varied.
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1. Introduction

The detection of a surface periodic structure buried in randomness is both an important
and a difficult problem. The problem becomes more complicated if either the effect of the
randomness increases or the amplitude of the periodic part decreases, making the signal
relatively weak.

We use here, the matched filter method for analysing the intensity of the scattered light.
We briefly introduce the strategy of the matched filter method as follows. If the surface
under study is composed of a periodic part, hidden behind randomness, the scattered inten-
sity will consist of peaks, located periodically, while the peaks will be broadened due to the
background of randomness. This is given in §§2 and 3 which deal with the direct problem.
The matched filter method, introduced below, is a procedure, in which we search in the
scattered intensity of light for a sequence of peaks, that are identically shaped but are of
varying amplitudes. We explore here, problems with high randomness, i.e. peaks which are
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partially overlapping with each other, so that the higher-order peaks, appearing on either
side of the central one are subsumed by the central maxima. The strategy here, follows the
following steps: (a) anticipate the shapes of the peaks, (b) numerically subtract the contri-
bution from the strongest peak, (c) examine the shapes of the accompanying side lobes and
(d) justify, in the ‘least square sense’ the best case, where the subtracted central peak has
the same shape as those of the residual side lobes.

The best fit for the shape of the peaks being thus found, one then tries to extract the loca-
tions and the amplitudes of the peaks. In the numerical cases, studied by us, the amplitude
a of the periodic part of the random surface is very small. The intensity distribution of the
scattered radiation may look very similar to that for the a = 0 case. It thus becomes neces-
sary to distinguish between the two cases, i.e. a = 0 and a = amatched (value of a obtained
by matched filter analysis). This method is completed by performing the statistical tests,
which distinguish between the two competing cases.

Matched filter can be applied to any problem involving scattering from a random surface
having hidden periodic structures. Some of the fields where this technique can be used
are in medical imaging, in astrophysics for detecting very low angular separation between
astronomical objects like binary stars, in spectroscopy, for resolving two closely spaced
spectral lines, like Zeeman lines. There are different applications, depending on the field
of interest.

We have already shown [1–11] that by the present method, detection of the various peaks
of a periodic structure is possible up to (r0/�) ∼ 0.11, where r0 is the coherence length
of the scattered radiation due to the random part of the surface and � is the wavelength of
the periodic part of the surface. We have studied the usefulness of the method of Cauchy
type correlation function of the randomness and for different values for the amplitude a of
the periodic structure. We have already discussed and shown by simulation studies [11]
that for a given randomness, detection is easier for increasing amplitudes of the periodic
structure. The aim of this work is to test the capability of the matched filter as the nature
of the surface roughness changes, i.e. as the form of the correlation function of the surface
roughness changes. We apply the matched filter analysis technique for different cases of
correlation functions of the randomness. The results presented here give us information
about the capabilities and limitations of the matched filter technique.

In the following, we first explain the theory behind the matched filter method. We follow
this with an extension of the technique for different types of rough surfaces. The difference
between the correlation function and the von Karman type of correlation function is dis-
cussed in the next section. The results of computer fits, for different types of randomness,
follow next and we end the paper with our discussion and conclusions on the merits of this
type of analysis.

2. Theory

Let us consider a plane surface, in which the elevations in the z direction are given by

ξ(x, y) = a cos(Qx) + δξ(x, y), (1)
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where δξ(x, y) denotes the random part, with the average and correlation being

〈δξ(x, y)〉 = 0, 〈δξ(x, y)×δξ(x ′, y′)〉 = σ 2 p(r), p(r) = exp[− (r/ l)β],
(1.1)

where the form for p(r) is an assumption in the modelling of the randomness. In expres-
sion (1.1), the symbol 〈· · · 〉 denotes the average of the quantity inside the bracket, for all
possible realizations of the randomness and the separation between the points (x , y) and
(x ′, y′) on the surface is given by r = [(x − x ′)2 + (y − y′)2]1/2. In eq. (1.1) σ gives a
measure of the typical elevation due to the randomness and we have chosen the correlation
function p(r) to be such that p(0) = 1 and p(r) → 0 for (r/ l) 	 1, where l is the correla-
tion length of the randomness on the surface while σ is a measure of the standard deviation
of the random elevations on the surface. The correlation length l tells us about the length
beyond which the randomness get uncorrelated and the exponent β describes, as to how
fast the decorrelation of the randomness occurs. The scattering geometry of the scattering
surface is given in figure 1.

We define [12,13], the wave vector v of scattering to be

vx = k(sin θ1 − sin θ2 cos θ3), vy = −ksin θ2 sin θ3,

vz = −k(cos θ1 + cos θ2), v2
xy = v2

x + v2
y . (2)

In what follows, we shall calculate the scattered intensity under the Kirchoff approximation,
which is valid for 4πrc cos θ 	 λ, rc being the typical radius of curvature of the surface
[1,2]. Following Beckman and Spizzichino [12] and Beckmann [13], we define a quantity
〈ρρ∗〉0 to be as follows. Let I (v)rough be the intensity of the light scattered in the v direction
by the surface as given in (1) and let I (0)smooth be the intensity of light scattered along
the specular direction (v = 0) for a perfectly smooth surface (a = 0 and δξ(x, y) = 0
identically), for the same value of the incident intensity. In that case 〈ρρ∗〉0 is defined as

〈ρρ∗〉0 = I (v)rough /I (v = 0)smooth .

As is clear, for a perfectly smooth surface, the entire intensity is scattered along the specular
direction, v = 0, i.e. θ2 = θ1, θ3 = 0. It can be shown that, for a surface profile as given

Figure 1. Scattering geometry as used in the paper.
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in (1), under the Kirchhoff approximation, for a scalar wave (i.e., ignoring the polarization
effects) we have

〈ρ∗ρ〉0 =
{

J 2
0 (

√
(2g1)) f(vx , vy; g) +

∞∑
n=1

J 2
n (

√
(2g1))

×[ f(vx + nQ, vy; g) + f(vx − nQ, vy; g)]
}

× B (θ1, θ2), (3)

where
√

g = σvz/
√

2 and
√

g1 = avz/
√

2 (i.e. the dimensionless quantities,
√

g and√
g1 scale the depth of the random elevations and the amplitude of the periodic part to the

wavelength of the incident light) and we have defined,

f(vx , vy; g) = (2π/A)

{∫ ∞

0
exp(−g[1 − p(r)])J0(vxyr)r dr

}
, (4)

where A is the area of the surface in the xy plane,

B(θ1, θ2) = [F3(θ1, θ2, θ3)]
2S(θ1, θ2) (5)

F3(θ1, θ2; θ3) = (1 + cos θ1 cos θ2 − sin θ1 sin θ2 sin θ3)

(cos θ1(cos θ1 + cos θ2))
(6)

S(θ1, θ2) = S(θ1)S(θ2) (7)

with

S(θ) = exp
[
(−1/4) tan θ erfc(Kcot θ)

]
(8)

K 2 = (aQ)2 + 4 (σ/ l)2 (9)

of which F3(θ1, θ2;θ3) is a geometrical factor and S(θ1, θ2) describes the ‘shadowing
effect’.

3. Intensities for different roughness situations

For strong roughness, we have g 	 1 and we can thus approximate

exp(−g[1 − p (r)]) ≈ exp[− (r/r0)
β], (10)

where r0 = l/g1/β . This indicates that for the same values of l and g the correlation length
r0 is smaller for larger β, for g 	 1. It can be seen that on using the approximation, given
in (10), the quantity f (vx , vy ; g) will have the form,

f
(
vx , vy; g

) = (2π/A)

{∫ ∞

0
exp[− (r/r0)

β]J0(vxyr)r dr

}
, (11)

= (2π/A)(r2
0 )

{∫ ∞

0
exp[−zβ]J0(vxyr0z)z dz

}
, (12)

where z = (r/r0) and we denote from now on, α = vxyr0.
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The exact form for the above integral is known only for β = 1 and 2. For all other cases
approximations are to be made, while exploiting the exact, known values of the integrals,
as given in the above cases. We shall now on deal with the case vy = 0 so that vxy = vx

and also assume that barring some multiplicative constants,

fa (vx ) = [
1 + (c/2y) v2

x

]−y
, (13)

where the values of c and y (in terms of r0 and β) are given in eqs (A.4) and (A.5) in the
Appendix. We justify this approximation (13) for f (vx ), by comparing the exact values
of the integral in (12) with the values that we obtain on using expressions (13), (A.4) and
(A.5). Figure 2 proves the correctness of this choice of approximation. It is further seen
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Figure 2. A plot of alpha (α = vx r0) vs. the normalized values of the exact function
f (vx ) and the assumed function fa(vx ). The exact function f (vx ) is denoted by points,
as obtained by numerically integrating the expression given in (12), between z = 0
and 4, in steps of 0.001 and the assumed function fa(vx ), as given by (13) is denoted
by ◦. Each curve represents a fixed β value, i.e., 1.0, 1.25, 1.5, 1.75 and 1.95, and is
represented by the curves, 1, 2, 3, 4 and 5 respectively. We find in figure 2, the extremely
good agreement between the exact and assumed values of the function f (vx ) and for
different values of β. In all cases r0 =2.024 × 10−4.

Pramana – J. Phys., Vol. 77, No. 4, October 2011 615



V C Vani and S Chatterjee

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

chi

no
rm

al
iz

ed
 a

ss
um

ed
 f

un
ct

io
n

1 

2 3 

4 

5 

Figure 3. The plot of χ(= c1/2/vx ) vs. the normalized values of the assumed function
fa(vx ), as given by (13). The relation between r0 and c, y and β is given in eqs (A.5),
(A.6) in the Appendix. Each curve represents a fixed β value, i.e., β = 1.0, 1.25, 1.5,
1.75 and 1.95, and is represented by the curves, 1, 2, 3, 4 and 5 respectively, with the
corresponding y values being 1.5, 2.80, 5.45, 13.43 and 77.42. It is to be noted that the
curvature of the curves at the origin for all the curves is the same but the curves tend to
be sharper as the exponent β increases.

that given the quantity f ′′(0) = c for all the curves, their curvature at the origin is the same
but the randomness with higher value of β gives rise to a sharper fall in the functions f (vx )

and fa(vx ). This implies that for the same value of c, the detectability is more difficult for
a lower value of β (figure 3).

A detectability criterion can be easily derived from eq. (3). In these discussions we shall
consider f (vx ) to have the form

f (vx ) = fa(vx ) = [
1 + (c/2y)v2

x

]−y
. (14)

The parameters c and y, in the function f(vx ), are determined using the values of the
wavelength of the incident light (λ), the correlation length (l), the randomness given by σ

and the nature of randomness given by β. The different Bessel functions depend on the
amplitude a of the periodic part. Given these dependencies, we study the matched filter
detection as functions of various values of c, y, a and Q. We have earlier carried out a
similar study for y = 1.5 when β = 1.0, i.e. for the Cauchy case, while for β = 2.0,
i.e. the Gaussian case, we have y → ∞, i.e. f (vx ) also turns out to be Gaussian. In the
present work we shall numerically study different cases, particularly emphasizing the role
the exponent y plays in the detection.
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The complete expression for the intensity in our simulation procedure is thus given by

〈ρ∗ρ〉0 = [Intensity of scattered light, in the direction v]
= J 2

0 (avz) [1 + (c/2y)v2
x ]−y

+
∞∑

n=1

J 2
n (avz) · [1 + (c/2y)(vx ± nQ)2]−y . (15)

We use eq. (11) in all our numerical simulations, and simulate 〈ρ∗ρ〉0 for some selected val-
ues of y and c. We then try to see whether the matched filter method succeeds in obtaining
the correct values for the parameters a and Q, in every case of the specified randomness.
This will give us information about the matched filter fits, its applicability and also its
limitations.

Since the ratio (a/λ) is small, the central peak, given by the J 2
0 term dominates over the

successive peaks, which vary as J 2
n . Also since we choose the cases where (r0/�) � 1,

the central peak also subsumes the higher-order peaks. The consequent result is that only
the zeroth-order peak is seen and it will be very wide, smearing out all other peaks. The
matched filter detection procedure removes the lower-order (thus the stronger) peaks from
the scattered light intensity (known to us) and thus helps to detect the next order peak, a
process to be undertaken step by step. This procedure ensures the detection of the highest-
order peak in the remaining data and makes the detection of all the peaks simpler. The
interested reader can find a detailed explanation in [1–11]. The present paper deals with
this case for different values of (a/λ) and (r0/�) and y (which describes the tail regions
of different peaks) and also tries to explore the applicability of the matched filter method
when these parameters are changed.

4. Relation with the von Karman correlation spectrum

From the definition of the correlation function, it is seen that the structure function of the
rough part is given by

Dξξ(r, r′) = 〈|ξ(r) − ξ(r′)|2〉 = σ 2[p(0) − p(|ρ|)], (16)

where ρ = (r,r′). Thus from the above, we can approximate for |ρ| →0,

〈|ξ(r) − ξ(r′)|2〉 = σ 2[p(0) − p(|ρ|)] = σ 2((|ρ|/ l)β)

= 〈(∂ξ(r)/∂r)2〉 |ρ|2 . (17)

This shows that we should have

〈(∂ξ(r)/∂r)2〉 = σ 2 |ρ|β−2 (l)β . (18)
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Figure 4. Plots of the correlation functions used in the matched filter calculations and
the von Karman correlation function. p denotes the function used in matched filter and
pvk represents the von Karman correlation function. The x-axis depicts the values of
(r/ l). Plots (a), (b), (c) and (d) represent p, pvk (vk stands for von Karman), (1 − p)
and (1 − pvk).

Thus the gradient of the surface diverges for β < 2, as can be the case for surfaces
with sharp edges or with steep grooves. The latter represents β = 1.0, i.e. an expo-
nential decay of the correlation function, produced by a ‘random telegraph signal’ kind
of disorder. Many authors consider, the von Karman correlation function, pVK(|ρ|) =
[2v−1�(v)]−1 ((|ρ|) / l)v Kv(|ρ| / l), while we consider, p(|ρ|) = exp[− (|ρ| / l)β]. Our
model coincides with the von Karman model in the limit (|ρ| / l) → 0, with β = 2v. In
the opposite limit, our model has a fall as exp[− (|ρ| / l)β], while the von Karman one falls
as, (|ρ| / l)v−(1/2) exp(− |ρ| / l). Their differences in the (|ρ| / l) → ∞ would give rise
to light scattering patterns, which differ from each other only in the low-angle scattering
regime. However, this difference gets obliterated as the quantity g ∼ (σ/λ) becomes larger
and larger. This can be seen as follows. As can be seen, the scattering cross-section is
proportional to f (vx , vy , vz), which is a Fourier transform of F(r) = exp(−g(1 − p(r))).
In figure 4 we plot p(r), pVK(r), [1 − p(r)] and [1 − pVK(r)], the last two are propor-
tional to the structure function in the two cases. Finally, in figure 5 we plot the quantities,
exp(−g(1− p(r))) and exp(−g(1− pVK(r))), for different values of g and find that the two
curves come closer to each other as g increases. It thus follows that their Fourier transforms
too will differ marginally in such cases.
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Figure 5. Plot of the functions F(r). Each plot contains two graphs: F(r) =
exp(−g(1 − p(r)) (continuous curve) and FVK(r) = exp(−g(1 − pVK(r))) (dashed
curve). We find from the plots (a) to (d) that both the functions become very close to
each other, as g increases from 1 to 10.

5. Numerical results

The purpose of this numerical analysis is to show that the matched filter method of analysis
is valid for different correlation functions representing different kinds of rough surfaces.
The important thing is to reproduce not just the peak but also the tail distribution in the
intensity of the scattered light. As is already known, intensity of the scattered light depends
on the surface roughness. For the Cauchy kind of distribution, β = 1.0 and thus p(r) =
exp(−r/ l), while f (vx ) = [1 + (vxr0)

2]−3/2. Thus the fall is quite large till (vxr0) = 1
and beyond that the fall is slow, being a power law kind of the type, (vxr0)

−3. For the
Gaussian case, p(r) = exp[(−r/ l)2], while f (vx ) = exp[−(vxr0/2)2], i.e. has a fairly
slow fall till vxr0 = 2 and falls abruptly for higher values of vxr0. We consider different
roughness and show graphically the results of the matched filter analysis.

The procedure for the analysis is as follows. The calculations are carried out for different
sets of parameters y, a, c and Q, for λ = 6328 Å. Intensity values are obtained for each
case using eq. (11), which is treated by us as the ‘data’. Design of the matched filter
follows, involving the characterization of the central or zero-order peak, first-order and
second-order peaks of the intensity. The conditions of matching are applied for each case,
the basic demands for an acceptable fit being: (1) The higher-order peaks must match with
the shape of the central peak and (2) the peaks must be equally spaced.
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We begin by assuming that the peaks have the shape, fa(vx ) = [1 + c′v2
x/2y′] −y′

and
select the values of c′ and y′, which satisfy our observed 〈ρ∗ρ〉0 profile. This is done for
the total intensity profile as well as for the structures contained within this profile.

We start with the parameters c′ and y′ for designing the matched filter. Matched filter
design is derived from the light scattering data from the rough surface. The search for the
correct values of c′ and y′, pertaining to the rough part of the surface, proceeds as follows.

1. The parameters c′ and y′ are both varied. We do not float both parameters. Instead,
we vary both of them in known steps. This procedure has the following advantages:
The data fit remains linear, the search procedure is simpler and we reach a unique
minimum.

2. We first vary both parameters in a wide range. This is a blind search and is coarse in
nature. The results give us an approximate idea about the location of the least square
deviation.

3. This next step refines the search. The values of c′ and y′ are restricted, based on
the results of step 2. The best fit values for c and y are found by a method of least
squares, satisfying the conditions (1) and (2) stipulated above. Once the parameters
c′ and y′ are fixed, we keep them fixed at their best fit values and search for the values
of a and Q. We follow the same procedure as in steps 2 and 3. For every possible
choice of a and Q, we calculate the quantity 〈ρ∗ρ〉, as obtained by (15) and settle
for the case, giving the least square in the deviation between the theoretical and the
observed values. The result of this procedure is illustrated in figures 6 and 7. The
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Figure 6. The matched filter reconstruction. The central peak is shown by a continuous
line (-------), first-order peaks by (· · ·) and second-order peaks by (- - -). (a) to (d) represent
different values of the exponent y. (a) y = 0.1, (b) y = 0.3, (c) y = 0.5, (d) y = 0.8.
Every peak is normalized to its own maximum. In all cases r0 = 2.024 × 10−4.
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Figure 7. The matched filter reconstruction. The central peak is shown by a continuous
line (-------), first-order peaks by (· · ·) and second-order peaks by (- - -). (a) to (d) represent
different values of the exponent y. (a) y = 1, (b) y = 5, (c) y = 10, (d) y = 20. Every
peak is normalized to its own maximum. In all cases r0 = 2.024 × 10−4.

adjustments of c and y are done in such a way, that the side lobes, that are left behind
when the central maxima of the type fa(vx ) is taken away from 〈ρ∗ρ〉, leaves behind
a side lobe, whose shape is the same as that of fa(vx ). In other words, the accepted
values of c and y are those for which the shape of the side lobes also have a form
[1 + (c′/2y)(vx ± Q)2]−y′

. With this choice of c′ and y′ one then identifies the peaks
of the side lobes to be located at ±Q, while the value of a is determined by noting
that the height of the side lobes must vary as given by the Bessel function terms in
(15) and also retain the shape, as given by the matched filter. Further, once the values
of c, y, a and Q are found, the second-order peaks can be found by subtracting out
the first two terms of (15) from the data of 〈ρ∗ρ〉. While c′ and y′ are fixed, the values
of a and Q are fine-tuned to ensure that the first- and second-order lobes match the
shape as predicted by the matched filter parameters. These values of the numerically
determined parameters match the values with which the simulations were made.

All these four parameters c, y, a and Q together decide the nature of the surface and
hence the intensity of the scattered light from the surface. Now, we show with the help of
graphs, the scattered intensities and the detection of the various peaks.

As the value of c increases, roughness decreases, peaks become sharper and detection
of the various peaks is possible even at a lower amplitude of periodicity a. (There is also
the exponent involved, deciding the rate of fall of the correlation.) Higher the value of the
exponent, detection of the buried signal is easier, since the tail region falls faster. Amplitude
of the signal a determines the values taken by the Bessel functions, and hence gives us
the amplitude of the peaks, while the wave vector of the periodic part Q determines the
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position of the various peaks. The effect of all these parameters determines the capability
of the matched filter.

Matched filter reproduction in various cases, involving various values of the parameters
are shown below. We consider mainly the role of the parameters c and y. Our findings with
a, the amplitude of the signal, is already published [11]. Our ‘proof’ will be in the form of
figures and is followed by discussions in the end.

Figures 6 and 7 show the matched filter fits for a fixed value of c = 3 × 10−8 and the
exponent y varying from 0.1 to 20.

In figure 6 we find that when the exponent is 0.1 or 0.3, the tail regions are not well
reproduced. This value can be taken as the limit of the matched filter method of data anal-
ysis. In figures 6c and d, where the exponent takes the value 0.5 and 0.8, the reproduction
is fair. The fact that for smaller values of y, detection becomes difficult, results from the
behaviour in the tail of f (vx ) as y is made smaller. When y reduces, the shape of f (vx )

becomes wide and hence the peaks cannot be separated out.
It is further seen from figure 7 that as the exponent y increases, the fall of f (vx ) is quite

abrupt. This sharpness in f (vx ) makes the detection easier. A Gaussian profile for the
correlation function yields a Gaussian profile for the peaks too, and the absence of long
tails in these Gaussian profiles thus aids detection. Considering the good fits given by the
matched filter for exponents upwards of 0.5, we conclude that the matched filter technique
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Figure 8. The matched filter reconstruction. The central peak is shown by a continuous
line (-------), first-order peaks by (· · ·) and second-order peaks by (- - -). (a) to (d) represent
different values of c. y = 1.5 in all cases. (a) c = 3.0 × 10−9, (b) c = 8.0 × 10−9, (c)
c = 3.0×10−8 and (d) c = 3.0×10−7. Every peak is normalized to its own maximum.
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is quite capable to ‘see through’ even long tails, a result which we had not anticipated in
our previous works.

Figure 8 shows the quality of the matched filter detection for various values of c.
As the roughness decreases, the parameter c increases and detection of the periodic struc-

ture becomes easier, and after the roughness increases beyond a certain level (in this case
represented by c = 3 × 10−9 and y = 1.5), the matched filter cannot detect the periodic
signal anymore. This detection regime is found to be much wider than what would be given
if the conventional methods were followed (i.e. merely to look for peaks in the scattered
intensities). The matched filter methods make the peaks ‘revealing’, which the conven-
tional methods fail to do. The basic issues related to this question are addressed in ref.
[11], which the interested reader may refer to.

The choice of y = 1.5 was made in many of our investigations, to model a roughness,
produced by grooves of height σ but of various widths. The number of grooves per unit
length is considered to follow a Poisson statistics, there being on an average (1/ l) grooves
per unit length. As y approaches infinity, we are dealing with a random surface, whose
curvature is a well-defined quantity. In all our computations, we have chosen c and y
in such a way that all the higher-order peaks are submerged in the central maxima. We
define the detectability regime to be the region in the (c, y, �, a) space, where the usual
intensity profile shows up the peaks in the intensity. In an earlier paper, we had investigated
the regime of detectability in the (c, y, �, a) parameter space. In the present paper, we
have chosen the above parameters to lie in the non-detectabilty range, to demonstrate the
usefulness of the present method. This helps us also to understand as to what extent the
present method is capable of meeting the demands.

In all our fits r0 = 2.024 × 10−4. β values are mentioned in the figure caption for the
relevant figures. The value of r0 is decided by the quantities σ , l, β and λ, which combine
to give the quantities c and y. Also, since r0 scales as the width of the peaks, presenting a
plot in terms of r0vx will not add to the information obtained from the plot.

6. Discussion

We have examined the capability of the matched filter detection technique for different
values of c and y that appear in the expression for f (vx ). Given that the search for the
correct shape of f (vx ) is extremely important for the detection of hidden periodicity, we
have developed an efficient search procedure which very accurately arrives at the matched
filter parameters and then proceeds to find the parameters a and Q, which pertain to the
hidden periodic part. We have also discussed the limitations of this technique.

When the matched filter gives a very small value of (a/λ), it is necessary to distinguish
this case, i.e. (a/λ) � 1, from the case where (a/λ) = 0. It is seen from the Kolmogorov–
Smirnov (KS) and the maximum likelihood (ML) tests, that the case (a/λ) �= 0 cannot
be statistically distinguished from the one giving (a/λ) = 0, if the value of (a/λ) falls
below a critical value. The way these tests have to be performed to discriminate between
the two competing cases, has been dealt with in detail in our earlier work [11] to which an
interested reader is referred. The main point is that the KS and ML tests give weightage to
the peaks in the probability density function, while we anticipate the differences in the two
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cases to appear in the tails of the above function. It is thus clear that while for low values of
a, we cannot distinguish this case from the case with a = 0, in terms of the total intensity
of the scattered light or from the values at the central peak, the case a = 0 cannot give
rise to side lobe structures of the type shown, which match with each other. This idea has
been used by us in [11] and a full scale statistical test has to be developed to rule out a = 0
from the a �= 0 case, derived from our matched filter analysis. This has not been done and
is being seriously pursued by us, with an idea to give a fool-proof method, for detecting
hidden periodicities. Further, the present paper gives valid justification for assuming the
function fa(vx ) to have a form as given in (14). This assumption for light scattering from
the rough part of the surface, was made in all our previous works and the validity of this
approximation has been proved in the Appendix and in the numerical simulations. This is
an important issue, around which the present matched filter method is centred. Earlier, we
had shown that the matched filter method is capable of showing up the hidden periodicities
for exponents 1.5 ≤ y ≤ ∞. In this paper, we show that the lower limit of y for which
detection is permitted, can go as low as 0.5, a definite advance over what was anticipated
earlier, though the accuracy of the method suffers as y decreases.

The justification of the form of f (vx ), with that given by fa(vx ) and the dependence of
c and y on g and β, as given in eqs (A.5) and (A.6) show the potential of multi-wavelength
analysis for the characterization of roughness. The model of the correlation function, used
by us can incorporate various kinds of disorders, as are being discussed by various authors
[14,15]. As is discussed here, the prospect of the matched filter method depends largely on
an accurate knowledge of c and y. The selection of their values would be greatly facilitated
if one of them could be known independently. As eq. (A.6) shows, y depends only on β

and is thus independent of the wavelength of the light used for observation. Using long-
wavelength light makes the J 2

n terms very small while J 2
0 ≈ 1 and hence one would have

approximately, 〈ρ∗ρ〉 ≈ f (vx ), that would enable one to know the behaviour of f (vx ), as
the central peak is not interfered by the higher-order peaks. Once y is determined from
the data in the long-wavelength regime, experiments at higher wavelengths could be used
to make the higher-order peaks more prominent and thus ascertain the values of a and Q
more accurately.

The case β = 1 corresponds to a random surface, similar to a random telegraph signal.
Clearly, surfaces with smaller values of β are rougher. We have not theoretically studied
such cases but have presented a case study, with β = 0.1, 0.3, 0.5 and 0.8 (figure 6) and
show that the matched filter method is capable of detecting hidden randomness in such
cases too, of course within a more restricted regime in the (c, y, �, a) space than would
happen for a higher value of β.

The detectabilty of the periodic structure is decided by two dimensionless quantities,
x = Qr0 = (2πr0/�) and y′ = (a/λ). The former scales the coherence length r0 with the
wavelength � of the periodic part and tells us as to how the width of the peak �θ ∝ (λ/r0)

compares with the separation between the peaks, δθ ∝ (λ/�). Clearly, the detectability
will improve as the peak widths become smaller than the separation between the peaks.
Thus a larger value of x helps in detection. The role that y′ plays in deciding the detectabil-
ity, comes from the fact that higher values of (a/λ) reduce the height of the n = 0 peak and
make the n = 1, 2, 3... peaks to be of lower intensity, their intensities being proportional to
J 2

n (avz). Thus, higher values of y′ = (a/λ) also facilitate detection. These questions are
addressed in our earlier publication and are not repeated here.
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We have simulated the intensity ‘data’ with very small values of y′ = (a/λ) ∼ 0.00–
0.095. The matched filter method thus also yields a small value for the value of a. The
intensity, simulated by using this value for a, will thus be very close to the ‘data’ but so
would be the intensity, obtained by using a = 0. It is necessary to distinguish between these
two cases. The usual tests like the chi-square test and the Kolmogorov–Smirnov test would
often fail to distinguish between the two, since these tests put more weightage at the peak
of the distribution, while we expect the differences to appear in the tails. We thus introduce
two new parameters: rmf(vx ) = I mf(vx )/I data(vx ) and r0(vx ) = I mf(vx , a= 0)/I data(vx ),
where the suffixes, mf and 0 signify the matched filter case and the a = 0 case respectively.
We must examine, as to which of the two ratios lies closer to the value 1, throughout
the entire range of vx . In all the cases studied (for all of them (a/λ) � 1), we find the
ratio rmf(vx ) to yield a value closer to 1, consistently, particularly at the tails. Certainly,
this method of discrimination would breakdown if (a/λ) is very close to zero. Interested
readers may refer to our paper [11].

7. Conclusion

The role of the matched filter in detecting a periodic surface buried in a random background
is discussed. The study has dealt with the dependence of our analysis technique on various
parameters. The limitations of this technique are also pointed out.

Appendix A

In the present case, we are interested in determining the first and the second peaks, located
at vx = ±Q and vx = ±2Q respectively. Thus, it would be necessary to know the variation
of f (vx ) within this range of vx,, i.e. vx lying within ±2Q. As is known, by conventional
methods, the peaks are not detectable for (r0/�) ≤ 0.33, i.e. 2Qr0 ≤ 2(2πr0/�) = 4.14,
which means that it suffices for us to know the variation of f (vx ) within the range, vxr0 ≤
2Qr0 = 4.14, i.e. for values of vxr0 not too large. This is done by inspecting the variation
of f (vx ) by expanding the Bessel function as a power series and integrating.

By expanding the Bessel function in the integral, as a power series,

J0(vr) =
∑

[(−1)n/(n!)2] (vr/2)2n (A.1)

we get the integral in (12) to be, equal to

∑
[(−1)n/(n!)2] (v/2)2n

∫ ∞

0
exp[− (r/r0)

β]r2n+1dr

= (
l2/β

) ∑
[(−1)n/(n!)2] (vr0/2)2n � ((2n + 2)/β), (A.2)

which converges for

(vxr0/2)2 ≤ {� ((2n + 4) /β) /� ((2n + 2) /β)} {� (n + 1) /� (n + 2)}2 .

(A.3)
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To approximate the expression for f (vx ), in the form fa(vx ) = [1 + (cv2
x/2y)]−y , we

note that for small values of (cv2
x/2y),

[1 + (cv2
x/2y)]−y = 1 − (cv2

x/2) + [y(y + 1)/2!](cv2
x/2y)2 − . . . . (A.4)

Comparing the first three terms of the above expression with (A.2) we can identify

c = (r2
0 /2) [�(4/β)/�(2/β)] (A.5)

y ≈ 2[�(4/β)]2/ [�(6/β)�(2/β) − 2[�(4/β)]2]. (A.6)

The above expressions are, in general not exact but give the necessary trends for small
values of (vxr0). For the special cases of β = 1 and 2, we get from (A.6) y = 3/2 and y →
∞, respectively, which are also the exact closed form expressions for the integral, valid
over all ranges of values for (vxr0). These results enable us to approximate the envelope of
f (vx ) to be as given by the power law, fa(vx ) ≈ [1 + (cv2

x/2y)]−y . The deviation of the
exact integral from this approximation will always be small. We examine the form of this
approximation with the exact values, given by the exact integral (12) and find the deviations
between the two to be extremely small.
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