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Due to its flexibility and possible systematic improvement, the Fock-space (FS) multireference coupled-cluster
(MRCC) method remains a very important tool for the computation of energy differences of spectroscopic interest.
In the present work, the FS MRCC method for the electron detachment process has been applied to determine
the magnetic hyperfine constant AJ and nuclear quadrupole moments Q (related to electric hyperfine constant
BJ ) for the lowest multiplets of 33S−, 35Cl, and 37Cl with Dirac-Fock orbitals. In addition, we also report
2P3/2([Ne]3s23p5) → 2P1/2([Ne]3s23p5) magnetic dipole transition matrix element and electron affinity of 35Cl
(i.e., ionization energy of Cl−). Calculated properties are in very good agreement with the available new standard
or reference values.
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I. INTRODUCTION

The study of magnetic dipole hyperfine structures (related
to AJ ) are of considerable interest in atomic, molecular, and
nuclear physics as these kind of studies not only provide the
foundation for a wide range of experiments and precision
measurements but also can be used as stringent tests of
our fundamental concepts and theories. In fact, some recent
studies of frequency standards have yielded sensitive probes
of possible temporal variation of the fundamental constants
[1–3]. Likewise, the knowledge of reliable nuclear quadrupole
moments (NQM) [4–7] is very useful in chemical and solid-
state spectroscopy.1 Accurate estimation of the NQMs (termed
as Q) is also pertinent in nuclear physics for testing nuclear
models. It is also important to note that as the ratio of
the quadrupole splittings (act as a gauge of the electron
distribution) for two isotopes can be directly measured by
spectroscopic methods, the Q value for one isotope can help
determine the value for the other isotopes. As emphasized
in the previous articles due to Pyykkö [6,7], during the past
two decades the best way to estimate the NQMs has been by
combining the experimental quadrupole coupling constants
(also known as the electric quadrupole hyperfine interaction
constant, B) [8] with calculated electric field gradients (EFG)
at the nucleus. Therefore, the accurate determination of
NQM relies on both the precise measurement of the nuclear
quadrupole coupling constant from spectroscopic methods and
the accurate calculation of the EFG (identified here as b)
for atoms, molecules, or the solid state. Atomic experiments
yield nuclear quadrupole coupling constants, usually with
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1Atomic nuclei with the nuclear spin I � 1 have nuclear electric

quadrupole moments.

high accuracy and, hence, the reliability of the derived
NQM values depends mainly on the accuracy of the EFG
calculation. Although, traditionally, EFGs have been estimated
from magnetic hyperfine structure along with the correction
for quadrupole shielding by Sternheimer’s formulation [9],
in recent times, the EFGs have been calculated by robust
and accurate quality ab initio calculations without any further
corrections [7]. The error in the measured NQM is determined
by the uncertainty in the measurement of EFG. It is worth
mentioning that the EFG is very sensitive to changes of the
electron distribution. Relativistic effect is as important as
electron correlation in the calculation of EFGs. In addition,
calculations aiming at high accuracy should include large basis
sets (it is important to go to the basis-set limit to get stable
EFGs) and high-order treatment of electron correlations [7].
Over the past years, high-level computational methods of
quantum chemistry have been employed for the theoretical
determination of EFG in small or moderate sized systems
and these have led to significantly improved data for NQMs.
This molecular method has also resolved some discrepancies
between the NQMs computed by different techniques or
schemes [5,7]. It is well known that the properties such as
magnetic dipole and electric quadrupole hyperfine structures
are described by the operators that are prominent in the nuclear
region. On the other hand, properties like electronic dipole-
quadrupole transition matrix elements (both electric and
magnetic) are described by the operators that are prominent
at large distance. Thus, accurate determination of hyperfine
interaction constants and transition matrix elements require
wave functions which can describe the atomic and molecular
system(s) over the entire range. Ab initio methods like the
multireference coupled-cluster scheme within the framework
of the four-component Dirac-Coulomb Hamiltonian is very
promising in the calculation of both relativistic and electron
correlation effects in an effective manner.

042512-11050-2947/2011/84(4)/042512(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.042512


DAS, CHAUDHURI, CHATTOPADHYAY, AND MAHAPATRA PHYSICAL REVIEW A 84, 042512 (2011)

In this paper, we study the hyperfine interactions in isoelec-
tronic S− and Cl systems using Fock-space (FS) multireference
coupled-cluster (MRCC) method, a multireference variant
of the coupled-cluster method, within the framework of
the four-component Dirac-Coulomb Hamiltonian. The study
of hyperfine interactions for these systems is particularly
important as the experimental [10–12] and theoretical studies
(at ab-initio level) are scarce [9,13–17]. The first ab initio
study on the NQM of 35,37Cl and 33S (on S−) was carried out
by Sundholm and Olsen [13,18]. Using the multiconfiguration
Hartree-Fock (MCHF) method, they estimated the NQM of
35Cl, 37Cl, and 33S− to be −81.65 mb [13], −64.35 mb [13],
and −67.8 mb [18], respectively. Alonso et al. [14] obtained a
value of −85.5(1.1) mb from the ab initio full-potential linear-
augmented plane-wave method. In their scheme, the EFG was
estimated by using the generalized gradient approximation
(for exchange and correlation effects). Their solid-state-based
value for 35Cl was later revised to −85.0(1.1) mb [7]. The
calculated Q(35Cl) from to Kellö and Sadlej [15] is −81.6 mb.
In their calculation, the electron correlation contribution has
been accounted for at the level of the coupled-cluster method
with singles, doubles, and perturbative triples [CCSD(T)]
approximation and the spin-averaged no-pair approximation
to the Dirac-Coulomb Hamiltonian has been used for the eval-
uation of the relativistic contribution. A full-blown relativistic
MRCC calculation on the NQM of 35Cl was later carried out by
Yakobi et al. [16]. They used the relativistic FS MRCC method
to calculate the EFG at the atomic nuclei by the finite-field
approach. Their best estimated Q (35Cl) after incorporating
the Gaunt corrections (main part of the Breit interaction) is
−81.1 mb. This value is accepted as the new standard value
for Q (35Cl) [7]. Recently, Carette et al. [17] re-examined
these two systems using the multireference configuration
interaction (MRCI) method with nonrelativistic spinors in
which the relativistic corrections were incorporated via Pauli
approximation. With this scheme, they obtained a value of
−65.7, −81.764, and −64.438 mb for the NQM of 33S−,
35Cl, and 37Cl, respectively. Carette et al. [17] also obtained a
reliable estimate of magnetic dipole hyperfine constants (AJ )
for these systems. However, their assignment of magnetic
dipole hyperfine constants for 35Cl and 37Cl appears to be
inverted [19]. Since the nuclear magnetic moment of 35Cl is
higher than that of 37Cl, the magnetic dipole hyperfine constant
of 35Cl should also be higher than that of 37Cl (magnetic
dipole hyperfine constant is directly proportional to the nuclear
magnetic moment). Thus, these systems merit reinvestigation
with full-blown relativistic many-body methods for proper
assignments of magnetic dipole hyperfine constants of Cl
isotopes and other spectroscopic constants.

It has now been widely accepted that the FS MRCC [20–22]
method is a compact, efficient, and balanced formulation for
the energy differences relative to a closed-shell reference state.
The FS MRCC method can have many versions [20,21].
Guided by a general idea of having a single Fermi vacuum
for all references, one can formulate different versions of
the FS MRCC method. The critical feature of FS MRCC
formulation is it size extensivity which is fulfilled by the
exponential definition of the wave operator. By construction,
the FS MRCC method has been tailored to treat differen-
tial correlation effects and orbital relaxation accompanying

ionization, electron attachment, or excitation. Both effects play
a crucial role in shaping diverse structural and spectroscopic
properties. Thus, the FS MRCC method is the natural method
of choice for the computation of energy differences of spec-
troscopic interest. Its wide use in high-precision theoretical
spectroscopic calculations or predictions is well documented
in the literature [21,23,24]. The FS MRCC method starts
with the CC solution for a closed-shell parent state (termed a
core), generally, the ground state, and then the higher valence
sectors are hierarchically addressed until the desired valence
sector is reached (since equations for the Fock space excitation
operator in a given sector do not involve amplitudes from the
higher valence sectors). To improve the convergence behavior
of the traditional FS MRCC equations in the presence of
intruder states,2 various methodologies have been developed
and implemented [23–25]. It is worth mentioning that in recent
times various attempts have been made to extend the FS MRCC
method to various relativistic systems [26–28].

II. METHODOLOGY

In this section we want to discuss in brief the important
and essential theoretical aspects which are pertinent for our
present work.

A. Basic preliminaries

The calculations reported here are carried out in the frame-
work of the four-component Dirac-Coulomb Hamiltonian

H =
∑

i

hD(i) +
∑
i<j

e2/rij , (1)

where hD is the one-electron Dirac Hamiltonian. Here, the
nuclei are described by the Fermi nucleus model to capture
the effect arising from finite-size nuclear correction.

In the FS MRCC theory, we seek the solution of the
Schrödinger equation H�K = EK�K for the K th state of the
system. The wave function �K is constructed by operating
with the valence universal wave operator � on the model
function. We start by assuming that there exists a set of
model functions spanning a model space of dimension M with
the projector P = ∑M

I |�I 〉〈�I | while the complementary
functions (virtual) spanning the complement of the model
space are characterized by the projector Q. The union of
P and Q defines the entire space. The ansatz [20,21] used
is � = �c�v = exp(T ){exp(S)} (which is valence universal
in the sense that the same � is used for all solutions),

2The Fock-space approach is plagued by divergence problems
in the iterative process when intruder states occur. The intruders
originate from situations where some high-lying model functions
come close in energy with some low-lying virtual functions, spoiling
the convergence of the MRCC equations and hence of the quality of
the all computed roots. That situation is more likely to occur when
large model spaces are used. Intruder states cause problems with
converging the desired physical solution of the MRCC equations
and are blamed for the significant deterioration of the quality of the
results, when the ground state becomes nondegenerate. Intruder states
or solutions constitute a serious limitation of the MRCC approach.
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where {} denotes the normal-ordered form. The Fock space
excitation operator is defined with respect to a reference
determinant, which we take to be a closed shell (this restriction
makes application more convenient, but a single open-shell
determinant may also be employed). The starting point of the
FS MRCC method involves solution of cluster equations for
the (0,0) valence sector. This is the usual single reference
problem; its implementation in the framework of two- and
four-component relativistic functions has been described
nicely in Ref. [29]. Calling the similarity transformed Hamil-
tonian exp(−T )H exp(T ) as H̄ , the closed-shell CC equations
determining the amplitudes of T can be compactly written as

〈�∗
l |H |�〉 = 0 ∀ l, (2)

where T consists of hole-particle excitations from � and
〈�∗

l |�〉 = 0.
The FS Bloch equation for k-hole and l-particle valence

sector can be written as [20,21]

Q(k,l)H�vP (k,l) = Q(k,l)�vH effP (k,l),
(3)

P (k,l)H�vP (k,l) = P (k,l)�vH effP (k,l).

The hierarchical structure of the wave operator as well as
the resulting equations is a characteristic feature of the FS
MRCC approach. Here, Heff defined as PH�P (in terms
of the matrix elements, HIJ

eff = 〈�I |H�|�J 〉). The energy
difference with respect to the reference state can be obtained
directly by removing the term H

(0,0)
eff = Eref from Eq. (3). Here,

H�v denotes all the connected terms in which �v are joined
to H . After convergence is achieved in a particular sector,
Heff is diagonalized to yield all energies of P (k,l) states in
that sector relative to the correlated energy of the reference
determinant. This amounts to obtaining a large number of
states simultaneously. The energies obtained by diagonalizing
Heff are size extensive [21]. This, in contrast to the single
reference approach, enjoys an obvious advantage of bypassing
the computationally expensive four-component HF and four-
index transformation steps prior to the calculation of every CC
energy. The method is additionally meritorious in the sense
that full spatial and spin symmetries remain embedded in this
approach through the inclusion of all pertinent determinants
in P , alleviating the possibilities of symmetry breaking
which deters the single determinant open-shell approaches.

The ease of evaluating the full manifold of excited states
via a single run is definitely a remarkable asset of the
method.

The FS MRCC equations for the one-hole valence sector
(corresponds to electron detachment process, i.e., ionization
process) can be expressed as

Q(1,0)[H + HS(1,0) − S(1,0)H eff]P (1,0) = 0,
(4)

P (1,0)[H + HS(1,0)]P (1,0) = H
(1,0)
eff .

The effective Hamiltonian constructed from H , T , and S(1,0)

is then diagonalized within the model space to obtained the
desired eigenvalues and eigenvectors. In the implementation
of the method we mainly exploit diagrammatic forms of the
FS equations to efficiently organize the calculations presented
here.

The closed-shell S2− and Cl− systems are used as reference
states. The Dirac-Hartree-Fock (DHF) functions are first
obtained and correlated by the CC approach with singles and
doubles approximation (CCSD). An electron is then removed,
and the functions of the S− and Cl are then recorrelated
following the FS scheme:

S2−(0,0) − e → S−(1,0)

Cl−(0,0) − e → Cl(1,0).

There have been many implementations of the standard
effective Hamiltonian formulation of the basic FS MRCCSD
model [22]. Since the full-blown coupled cluster with single,
double, and triple excitations is computationally expensive,
the effect of triples in the calculation of electron removal
energy is included in an approximate way [30]. In passing,
to increase the efficacy and potentiality of the FS MRCCSD
scheme, inclusion of triples has also been studied by various
workers [31].

Once the cluster amplitudes T and S are known, the tran-
sition/hyperfine matrix elements between the initial |�(1,0)

i 〉
and final |�(1,0)

f 〉 states are computed using the following
expression

〈Z〉f i =
〈
�

(1,0)
f

∣∣Z∣∣�(1,0)
i

〉
√〈

�
(1,0)
f

∣∣�(1,0)
f

〉〈
�

(1,0)
i

∣∣�(1,0)
i

〉 (5)

which can be further simplified to

〈Z〉f i =
〈
�

(1,0)
f

∣∣{1 + S†}Z{1 + S}∣∣�(1,0)
i

〉
[〈
�

(1,0)
f

∣∣{1 + S†}O{1 + S}∣∣�(1,0)
f

〉〈
�

(1,0)
i

∣∣{1 + S†}O{1 + S}∣∣�(1,0)
i

〉]1/2
, (6)

where Z = eT †
ZeT , O = eT †

eT , and |�(1,0)〉 is the model-
space function for the (1,0) valence sector. In the actual
computations, terms higher than T †ZT and T †T are not
included in computation of Z and O, respectively.

B. Electric quadrupole hyperfine structure

The NQM, Q cannot be computed directly. In the present
work, expectation value of the EFG operator is used to
calculate the electric field gradient at the nuclei which are
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needed to obtain the NQMs from experimental quadrupole
coupling constants via the following relation [17,32]:

B = 2eQb. (7)

Here, we compute the EFG b from the magnetic hyperfine
structure and estimate Q via

eQ = Bexpt

2btheor
. (8)

The EFG can be calculated from the magnetic hyperfine
structure which for the jj -coupled state |IJFMF 〉 is of the
form:

b =
[

2J (2J − 1)

(2J + 1)(2J + 2)(2J + 3)

]1/2

〈J ||T (2)||J 〉, (9)

where I and J are the total angular momentum of the nucleus
and electron state, respectively, and F = I + J . The operator
T (2) is given by

T (2) =
∑

t
(2)
i , (10)

where the sum runs over all electrons. The single-particle
matrix element of t

(2)
i can be factored out into angular part

and radial integrals as [32]

〈nκm|t (2)
i |n′κ ′m′〉 = −〈nκm|C(2)

i |n′κ ′m′〉
×

∫
r−3[Pκ (r)Pκ ′(r)+Qκ (r)Qκ ′(r)]dr,

(11)

where n, κ , and m are the principal, angular, and magnetic
quantum numbers, respectively. The angular-momentum op-
erator κ = ∓(j + 1/2) for j = l ± 1/2, with l and j being the
orbital and total angular-momentum operator. The functions
P (r) and Q(r) are the large and the small components of the
radial functions.

C. Magnetic dipole hyperfine structure

The magnetic dipole hyperfine constant A is defined as

A = μN

[
μI

I

] 〈J ||T (1)||J 〉√
J (J + 1)(2J + 1)

, (12)

where μI and μN are the nuclear dipole moment and nuclear
magneton, respectively, and T (1) = ∑

t
(1)
i . Like t

(2)
i , the

single-particle matrix element of t
(1)
i can be written as

〈κm|t (1)
i |κ ′m′〉 = −〈−κm|C(1)

i |κ ′m′〉(κ + κ ′)

×
∫

r−2[Pκ (r)Qκ ′(r) + Qκ (r)Pκ ′(r)]dr.

(13)

The angular part of Eqs. (11) and (13) can be written as

〈κm|C(k)
i |κ ′m′〉 = (−1)j−m

(
j k j ′
−m i m′

)
〈κ||C(k)|κ ′〉,

(14)

where

〈κ||C(k)||κ ′〉 = (−1)j+1/2
√

(2j + 1)(2j ′ + 1)

×
(

j k j ′
1/2 0 −1/2

)
π (l,k,l′) (15)

with

π (l,k,l′) =
{ 1 if l + k + l′ even

0 otherwise . (16)

III. RESULTS AND DISCUSSION

The calculations for the S− and Cl systems have been
carried out using a 26s20p16d13f 11g7h uncontracted well-
tempered basis set of Huzinaga and Klobukowski [33] of the
form

ζN = α; ζN−k+1 = ζN−k+2β

[
γ +

(
k

N

)δ]
k = 2, . . . ,N.

(17)

The basis set used here for the Cl atom is very similar to
that used by Yakobi et al. [16] except that we have added some
additional h functions. Kinetically balanced single-particle
DHF orbitals for S2− (Cl−) are generated using α = 0.05804
(0.07536), β = 1.9310 (1.9242), γ = 1.5034 (1.4932), and
δ = 5.7796 (5.6771), respectively. The high-lying virtual
orbitals are discarded at the CC stage of calculations. The s

and p orbitals having orbital energies (ε) greater than 500 a.u.
are kept frozen in the CC calculation. Likewise, the cut-off
energies for the d, f , g, h orbitals are set at 100, 50, 50,
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FIG. 1. Plot of error in the computed electron affinity (in kJ/mol)
with respect to experiment [EA = EA(theory) − EA(experiment)]
vs. the number of active orbitals at the CC stage. The figure in the
inset depicts the variation of M1 transition matrix elements against
the number of active orbitals. In the figure, �, �, and � represent the
26s20p16d13f (70 active orbitals), 26s20p16d13f 11g (84 active
orbitals), and 26s20p16d13f 11g7h (96 active orbitals) basis sets,
respectively.
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TABLE I. Comparison of magnetic hyperfine AJ constants (in MHz) and nuclear quadrupole moments Q (mb) for the lowest multiplets
of 33S−, 35Cl, and 37Cl. To illustrate the influence of correlation effects on the NQMs, the zeroth-order (uncorrelated) values are shown in the
parentheses. As per our estimation, the average absolute error bars are about 1% (see text for details).

Magnetic hyperfine constants (AJ )
33S− 35Cl 37Cl

Method A3/2 A1/2 A3/2 A1/2 A3/2 A1/2

MRCIa [17] 92.48 482.30 202.45 1016.46 168.52 846.09
MRCI + RCb [17] 91.43 496.28 201.25 1113.22 167.52 872.05
Present work 91.30 442.50 204.42 965.16 170.16 803.40

(71.17) (369.58) (159.92) (824.90) (133.12) (686.64)
Experiment 91.49 [10] 205.05 [11,12] 170.69 [11,12]

Nuclear quadruple moments (Q)
33S− 35Cl 37Cl

MRCIa [17] −65.5 −82.265 −64.833
MRCI + RCb [17] −65.7 −81.764 −64.438
MCHF −67.8 [18] −81.65 [13] −64.35 [13]
FS MRCC [16] −81.1
Ref. [12] −78.94 −62.13
Present work −65.8 −79.5 −62.7

(−76.3) (−90.5) (−71.3)

aNonrelativistic results.
bMRCI with relativistic corrections.

and 20 a.u., respectively. The overall basis set used in the CC
calculations comprises 12s, 12p, 9d, 8f , 7g, and 6h functions.

Figure 1 depicts the error in our computed electron affinity
of Cl (or ionization energy of Cl−1) with respect to experiment
[34] against the basis function. The variation of magnetic
dipole matrix for the lowest 2P3/2 → 2P1/2 transition with
respect to the number of basis functions is also shown in Fig. 1.
As can be seen in the figure, the accuracy of our computed
electron affinity increases with an increase in basis set size. It
further demonstrates that the inclusion of g and h functions
barely affects the magnetic dipole matrix element value.

The magnetic dipole hyperfine constants of 33S−, 35Cl,
and 37Cl computed3 using the FS MRCC method with
26s20p16d13f 11g7h basis functions are compared with
experiment and earlier theoretical calculations in Table I. The
NQMs estimated at the FS MRCC level of theory are also listed
in Table I. The results presented in the table can be summarized
as follows: (a) The FS MRCC estimates of hyperfine constants
(A) for Cl are in better agreement with experiment (off by
0.5 MHz) than those resulting from the MRCI method (off by
3–4 MHz). (b) The MRCI estimate of A for 33S− is slightly
better (off by 0.06 MHz) than the FS MRCC value (off by
0.2 MHz). (c) The nuclear quadrupole moment of S− obtained
from FS MRCC is almost identical to that reported by Caratte
and Godefroid (MCHF CI with relativistic corrections) [17].
(d) The present estimate of the nuclear quadrupole moment of
35Cl is 1.5 mb (2%) less than that obtained by Yakobi et al. from
the finite-field FS MRCC scheme. It also differs by 2 mb from

3The states for which A’s (A1/2 and A3/2) have been computed
here can be written explicitly as [Ne]3s23p1/23p4

3/2 (2P1/2, I = 3/2,
J = 1/2, F = 2, mF = 0) and [Ne]3s23p2

1/23p3
3/2 (2P3/2f , I = 3/2,

J = 3/2, F = 3, mF = 0), respectively.

the MCHF and MRCI estimates. This difference (especially
with respect to the previous FS MRCC value) clearly indicates
that the uncertainty in our computed EFG b is almost 2%.

It is worth noting that the accuracy of the nuclear
quadrupole coupling constant (Bexpt) from which the NQM
value has been estimated is quite high. The uncertainty in
the theoretically computed EFG can arise due to the basis
set size and/or level of treatment of electron correlation (a
very important source of error is the neglect of triple and
higher excitations in the CC expansion). This aspect has been
discussed at length by Pyykkö [6,7] and Stralen et al. [35].
Since the basis set and level of theory used by us and also
by Yakobi et al. [16] are almost same, the difference in the
calculated NQM values can be solely attributed to the way
the EFG has been estimated in these two calculations. It is
pertinent to note that the numerator and the denominator of
Eq. (6) (from which b has been estimated) are, by construction,
nonterminating and, hence, can invite uncertainty or error in
the computed EFG value. The truncation error, in principle, can
be minimized by incorporating more terms in the numerator
and the denominator which, however, is a nontrivial task.
This problem can be alleviated or at least attenuated by
invoking the analytical gradient approach for the computation
of EFG and other related properties. The present calculation
has more room for further improvement in accuracy. More
extensive applications are underway and will be reported in
our forthcoming articles.

At this juncture, it is worthwhile to mention the error
bars of our computed values. As a matter of fact, the error
bars (uncertainty estimates) of the atomic data are difficult
to establish. We reiterate that they should combine both the
inaccuracies in the determination of the EFG (from the method
of calculation of the electron correlation) and B constants
(from the atomic spectra) and the inaccuracies emerging from
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the incompleteness of the basis sets. Moreover, the source
of error may also arise due to the exclusion of high-lying
virtual orbitals all occupied orbitals are active in our CCSD
calculations). To illustrate the uncertainty due to the omission
of high-lying virtual orbitals, we have carried out the CCSD
calculations for Cl atom with 16s15p15d13f 11g7h (virtual
orbitals with orbitals energy 5000 a.u. are kept frozen, which
effectively means that all the orbitals remain active in the
post Dirac-Fock treatment). The CCSD calculation with this
138 active orbitals yields the NQM values of 35Cl and 37Cl to be
−78.8 mb and −62.1 mb, respectively. These results indicate
that the uncertainty in our calculations with 12s12p9d8f 7g6h

active orbitals is ∼1%, which is quite small and can be taken
into account by adding 1 mb to the error bar. Similar deviations
have also been found for the magnetic hyperfine constants and
ionization potential of Cl atom. We emphasize that from the
computational point of view, CCSD calculations with this high
cutoff (5000 a.u.) are extremely cost-effective for heavy atoms
and that is why the low-lying occupied and high-lying virtual
orbitals are generally kept frozen in the CCSD treatments.

IV. CONCLUSION

In this work, the state-of-the-art FS MRCC method with
single and double excitations within the DHF framework has
been used to study the properties of 35,37Cl and 33S− systems
of spectroscopic interest. A closer inspection of the results
presented here reveals that the magnetic hyperfine constants
(AJ ) obtained using the FS MRCC method are in acceptably
good agreement with the available experiment and current

generation theoretical estimates. The electron affinity provided
by the relativistic FS MRCC is also in good agreement with
experiment.

A closer look at the results shows that our estimated
Q(35Cl) show good overall agreement with the latest reference
values [7]. Our computed value is off by 2% from the
earlier FS MRCC estimate of Kaldor and coworkers [16],
where the EFG value had been calculated via a finite-field
approach (numerical gradient scheme). We reiterate that, in
our opinion, this difference arises due to the uncertainty in our
computed EFG value (via expectation value technique). The
deviation of our computed values with respect to the accepted
reference value can be removed or at least attenuated via a
better treatment of relativity and electron correlation which
may decrease the computed EFG and, therefore, increase
the derived NQM toward the current generation standard
value.

We end this paper by quoting Pyykkö, who, in a recent
review, wrote [7]: “The study of nuclear quadrupole moments
of the elements is in a sense a tiny science, having about
hundred objects, each characterized by a single number,
usually known with less than three-figure accuracy.” These
wise words can perfectly serve as a motivation and summary
of our present work. We could not say it better.
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