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Abstract

As neutron stars and black holes are very compact massive objects with possibly high magnetic
fields, their surrounding space-time curvature should be treated important while considering plasma

processes for explaining radiation emission nearby such objects.

In this essay, we make a case for

considering plasma processes on curved geometry (general relativistic framework), through considering
detailed orbits of charged particles in electromagnetic fields on Schwarzschild and Kerr background.

Thanks to modern technology, during the last decade
and a balf, man’s understanding of the universe has taken
a big leap due to the birth of infrared, ultraviolet, X-ray
and Y-ray astronomy getting access to the universe
through the entire electromagnetic spectrum. Starting
with sending small payloads through balloons, rockets and
satellites, man has eventually reached a stage wherein an
entire laboratory can be put into orbit to get the informa-
tion from depths of space and time. With all the informa-
tion that is coming in, astrophysics has now become a
theorist’s paradise wherein every new observation sees
the birth of a new model. Of all the observations, the
most popular amongst theoretical physicists as far as model
building is concerned are the pulsars and compact X-ray
sources. The central stars connected with these objects
are the neutron stars and black holes. In either case,
though the emission mechanism is very little understood,
the consensus is in favour of emission due to plasma
processes. The plasma processes considered so far have
mainly been in the Newtonian framework, and very
recently there have been some attempts to consider special
relativistic effects. The popular model for a pulsar is
that of a rotating neutron star with a co-rotating magneto-
sphere supporting the surrounding p’asma, which gives
out synchrotron radiation. In the case of compact X-ray
sources, the emission is believed to be due to the thermali-
sed plasma accreting onto the compact object (a neutron
star or a black hole). When such accretion ensues
because of the angular momentum of the system, the
inflowing plasma acquires angular momentum and forms a
disc around the compact objects. In this case too the
discussions regarding the stability of discs have been
confined to Newtonian formulation only.

) In thp case of neutron stars, even the most conser-
vative estimate gives a mass of about 1 M 5 confined to a

spheroid of radius ~ 10 km. Thus the gravitational
field nearby the star is very high and hence space-time
curvature would certainly be prominent. We know
that even in the case of the Sun and its surroundings the
" general relativistic effects are quite significant. Hence,
it is desirable to reconsider some of these models in the
framework of general relativity. In the case of black
holes, the treatment should necessarily be general relati-

vistic as the concept itself owes its origin to general
relativity. Considering the plasma itself, the constituent
particles are high energetic moving with relativistic
speeds. With all these in the background, it is only
natural to look for models wherein the plasma processes
are considered on a curved background geometry.

We have started this study and as a basic step before
considering plasma as a whole, we have looked into
orbit theory, wherein we have made a detailed analysis of
the orbits of charged particles in a magnetic field super-
imposed on curved background geometry, confining
mainly to the equatorial plane of the central star which is
responsible for the curvature of space time. 'We know
that in the absence of all external fields even a charged
particle just follows a geodesic in a curved space time as
given by

u*;y UY =0,

wherein U™ is the velocity-four-vector of the particle.
If an electromagnetic field is also present, then the motion
will no longer be along the geodesic, as it experiences
Lorentz force and its motion will be described by the
equation

utiy UY = (—e,‘Mo)Fl"’v UV,

wherein e/M,, is its charge to mass (proper) ratio and

Fp'\J is the electromagnetic field tensor, derived from the
vector potential Ap'as,

Foy =(A, - A,

In general, if one wants to consider the charged particle
motion in general relativity, in principle one should
consider the background space-time curvature produced
by both the sources, gravitational as well as electro-
magnetic. This would involve solving the set of coupled
Einstein-Maxwell equations in a self-consistent way.
But this in general is a formidable task, even if a dipole
magnetic field is to be taken as a source. However,



there is a solution given by Bonnor (1966) for a dipole
magnetic field, but this is not suitable if one wants to
consider either a neutron star or a black hole for the
source. In any case, for the purpose we have in mind,
that is, studying the dynamics of a charged particle, we
would not need a complete exact solution, as the contri-
bution from the electromagnetic field to curvature is
negligible compared to that of the gravitational field.
Even the most intense magnetic field considered ~ 1012
gauss, has negligiby small energy compared to the gravita-
tional potential energy of 1 M (; onthe surface of a neutron

star. Thus it is sufficient if we start with a specified
background like Schwarzschild or Kerr spacetime, then
super-impose either a dipole magnetic field or an uniform
magnetic field, and consider the effect of background
curvature in the electromagnetic field by solving the co-
variant Maxwell’s equations on the curved background.
This procedure has been followed and some solutions are
obtained by Ginzburg and Osernoi (1965), for dipole
magnetic field on Schwarzschild background, by Chitre
and Vishveshwara (1975), Petterson (1975), and King
et, al (1975) for a multipole field on Kerr backgrouixd and
by Wald (1974) for an uniform magnetic field on Kerr
background.

We have used in our analysis the solutions of
Ginzburgand Ozernoi for the Schwarzschild case and that
of Petterson (dipole magnetic field) and Wald (uniform
magnetic field) for the Kerr-case. . In both the cases,
our approach is similar and is as follows. The gravita-
tional field as well as the electromagnetic field in either
case is both axisymmetric and stationary (in fact in the
Schwarzschild case, there is even a higher degree of
symmetry than axisymmetry) and this fact leads to the
existence of two XKilling vectors, one time-like and one
space-like.  These in turn gives us two constants of
motion, the time-like Killing vector corresponding to the
energy of the particle and the space-like one correspond-
ing to the canonical angular momentum of the particle.
As the background geometry is assumed to be unaltered
by the fields, the space-time metric provides one integral of
motion, and thus using these two constants of motion in
the metric, we can extract the third integral. By restrict-
ing the discussion to the motion in the equatorial plane
(6 = w/3, dg/ds = 0), all the first integrals can
be explicitly written. Then by solving for dr /4 = 0,

which gives the turning points of the orbits, we can get
an expression for the effective potential for the r-motion
of the particle. It is well-known that a study of effective
potential curves ( Vegf, r) gives one all the necessary

information regarding the nature of the orbits. To -

obtain the actual orbits, we integrate the complete second
order differential equation. for r specifying the two con-
stants of motion and the metric for the initial values.
For fuller details we refer the reader to the papers
concerned (Prasanna and Varma 1977 Prasanna and
Vishveshwara 1978). The main conclusions regarding
the orbits are as follows :

(i) Dipole Magnetic Field on Schwarzschild Back-
ground :

The presence of a magnetic field on the Schwarzschild
geometry alters the character of the motion considerably.
The orbits which are spiralling in the purely gravitational
case are now turned around by the magnetic field (as in
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the mon-realativistic case) and are thus stopped from
spiralling in or out and are trapped in a region of the
r-space determined by the radius of gyration. In this
sense, the magnetic field stabilises the orbits. The
effective potential curves display a minimum very near
to the stellar surface, bound by two maxima (one due to
the magnetic field and the other due to the centrifugal
barrier) and in this potential well the particles are trapped
wherein they execute Larmor motion. Dependlng on
the energy, angular momentum and the magnetic field
strength, the particles can be in stable gyrating orbits even
very close to the event horizon. However, the weak
field analysis is valid only outside the event horizon.
since at the event horizon there isa logarithmic singularity
inthe magnetic field components, and. thus the discussions
are limited to the case wherein the source of the magnetic
field should be cutside the event horizon. One could in:
fact have current loops just outside the event horizon but
arbitrarily close to it as the source of such dipole magnetic
fields as considered in this work.

(ii) Dipole Field on the Kerr Background

As almost all the celestrial bodies have a non-zero
angular momentum, Kerr geometry is more suitable for
discussions concerning neutron stars or black holes.
Kerr space-time as given in Boyer-Lindquist co-ordinates
read as

2mr
ds? = - (1"‘")c dt* - (d4amr/=) Sin® §dtde

+ (= /o) di®+ =d6° + (B/=)Sin®9d ¢°
with

= (1“2 +a* Cosza) VAN =(r2—2mr + a%)

B = (i° + 2%’ - A2’ Sin’§, m = MG / C~.

Petterson’s solution for a stationary electromagnetic
field on this background when restricted to dipole magne-
1c field and an induced quadrupole electric field is given

(3

){[r(r m) +(a —mr)Cos 61

__1__ r-m-+7
2 r-m-1 J-(r- m Cos’ § )
3|.;, Sin® 6
A<9=( T )’L(r -m)a’Cos’§ +r
(r2+mr+2a2)—[r(r3—2ma2+a2r)+A

r—m-l—-T
T-m-1
where B is the magnetic dipole moment. The constants

of motion obtained through the symmetry of the system
are expressed as

o 1
a“Cos2o] 2_71
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(U{p+€A(p)=l (Ut+eAt)=—E

which may be written with U¢ and Ut as

( 2mr\ (/-eAg)
U¢=H=A—1<(l_,_ Urehe)
S L Sin" ¢

2mar
E A¢)
5 (E+e t}

Ut= %:— =(z a)” {[(rg +2°) - aa’Sin®g]

1
(E-+eA) - 2mra (l'eAcp)j

Restricting oursevles to the study o_f motion in the equa-
torial plane, we get, on using these in the metric

* 1 { 2 2
(uPy = a;;) = ;,{[p(p + o) 2 o]

(E4+A Y -pa-4a(Bra))(L-Ay)
—<p—2><L—Aq,)2}
wherein

eA<P
p= l./rns U=5/n-“d =a/m’ L ;l/ms A(P: m

Solving for UP =0, we get the expression for the
effective potential

Veff = = Ay + K/R
K=[2a(L-4y)+al {pg(L—Acp)z-}-pR}&]
R=(p +alp+24)

Plotting Vepr against P we can get the structure of

the potential well wherein the particles are trapped in
bound orbits. Unlike in the Schwarzschild case, here we
have apart from the event horizon at p= 1+ +/T— 22,
the ergosurface which in the equatorial planeisatp = 2.
Thus, depending on the various physical parameters like
a,1, E and . , the potential well lies completely outside or
inside or partly inside and partly outside f = 2. Actual
numerical integration of the orbit equations gave us a
very interesting result that among the bound orbits not
all exhibit gyration of the particle. Detailed analysis
showed thatthe particles gyrate only if they are completely
outside the ergo-surface. This result is just the effect of
inertial frame dragging of the Kerr-geometry. When a
particle gyrates, then during every Larmor circle the
particle’s angular velocity will be prograde for one half
and retrograde for the other half with respect to the
angular velocity of the central star. It is well-known
that in the Kerr space-time the ergo-surface is a limiting
surface for the retrograde motion on and behind which no
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Charged particle orbits in a dipole magnetic
field superposed on the Kerr background
geometry as seen in the equatorial plane of the
Kerr object. The figure shows the gyrations
outside the ergosurface for o =0.99, x = 1000,
L==500, E-=30, £,=3.51763 P, =3.39123 and
p.=3.81977.

Fig.2: Similar to Fig. 1. But here no gyration is seen
as the particle is confined to within the ergo-
surface. Here ¢ =0.99, A =50, L = 500, E=152,

Po==1.36570, p; = 1.35715 and p, ==1.39003.

particle can have retrograde motion. Thus th_c particle
cannot gyrate if it enters the ergosurface. Figures (1)
and (2) show the actual orbits for the two distinct cases



of gyrating and non-gyrating bound orbit. In fact, we

can see analytically this result very clearly as follows :

when a particle gyrates, its (d¢ /do ) has to go through

zero for some P = Pq for which (dp/ds) should be

real. Thus, if we take (deo /do) b =py = 0, and use
g

the ensuing relation in (dp [de)?, we get

(4p/gq) = (A1p2) {(1-2/pg)"

E+ (A P o1
LB+ 1:)P=Pg] r
(dp/do) will be real if and only if (1-2/pg) > 0
which can be true only for pg > 2.

The orbits for the case of the uniform magnetic
field also have similar features. The difference between
the two different fields appears mainly in the effective
potential which reflects in the structure of the potentia
well. In the dipole case, the effective potential goes to
1 as p =+ oo, whereas in the case of the uniform field, it
goes as p2 for large p.  As had been found in the case
of the Schwarzschild background, the essential role that
the magnetic field playsis to stabilise the orbits. The case
of the uniform fields could correspond to the galactic
magnetic field surrounding compact objects. The dipole
field could correspond to the intrinsic field of a compact
object if it is a neutron star, whereas in the case of black
holes it has to result from current rings exterior to the
event horizon but can be very close to it.

Having analysed the motion for the stationary case,
the immediate generalisation that needs looking into is
the case when the particle is radiating, as the encurgy and
angular momentum in that case are no longer constants of
motion. When the plasma as a whole is considered, one
normally resorts to Alfven’s guiding centre approxima-
tion which uses certain adiabatic invariants. Now in the
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curved space-time formulation, the motion of adiabatic
invariants has to be carefully looked into. The guiding
centre motion on curved spacetime needs to be analysed
before we can indulge in using the guiding centre approxi-
mation for studying the dynamical behaviour of plasma.
In fact, a very important question arises in the case of Kerr
black holes. As we have seen, if there is no gyration
possible for the particle on and inside the ergospheie,
then there is nothing like a guiding centre for such
particles. Since there is no analogue of such a situation
in non-relativistic formulation, the treatment for dynami-
cal stability of a plasma disc very close to a Kerr black-hcle
(some part of which is extending into the ergosphere)
would have to be perhaps entirely different than the
one used hitherto. Inany case, itis clear that in analysing
the dynamics of the stability of plasma discs around
neutron stars and black holes the final formulation should
necessarily be general relativistic (at least parametrised
post Newtonian) wherein the contribution from the
magnetic field as well as the space-time curvature are
taken with equal imporance.
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