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Abstract The solar atmosphere is magnetically structured and highly dynamic. Owing
to the dynamic nature of the regions in which these magnetic structures exist, waves
can be excited in them. Numerical investigations of wave propagation in small-scale
magnetic flux concentrations in the magnetic network on the Sun have shown, that
the nature of the excited modes depends on the value of plasma β (the ratio of gas to
magnetic pressure) where the driving motion occurs. Considering that the properties of
these waves should give rise to observable characteristic signatures, we have attempted
a study of emergent spectra from our numerical simulations. We find that the signatures
of wave propagation in magnetic elements can be detected when the spatial resolution
is sufficiently high to clearly resolve magnetic concentrations, enabling observations in
different regions within the flux concentrations. The possibility to probe various lines-
of-sight around the flux concentration bears the potential to reveal different modes
of the magnetohydrodynamic waves and mode conversion. We highlight the feasibility
of using the Stokes-V asymmetries as a diagnostic tool to study wave propagation in
magnetic structures. These quantities can possibly be compared with existing and new
observations in order to place constraints on different wave excitation mechanisms.

Keywords: Magnetic fields, Photosphere; Magnetic fields, Models; Magnetohydrody-
namics; Spectral Line, Intensity and Diagnostics; Polarization, Optical; Waves, Mag-
netohydrodynamic; Waves, Modes

1. Introduction

Spectral lines inform us on the properties of the atmosphere in which they form. In
addition, any presence of magnetic fields in the atmosphere modifies the polarization
state of the light emerging from the surface. A wealth of information about the structure
and dynamics of the magnetized regions of the Sun is hidden in the polarization state
of spectral lines. In this paper, we study polarization signatures of wave propagation,
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using numerical simulations. The simulation represent magnetic flux concentrations in
the magnetic network on the Sun.

The two dimensional simulations by Steiner et al. (1998) and Grossmann-Doerth,
Schüssler, and Steiner (1998) showed that the Stokes profiles vary strongly in response
to a dynamic magnetic atmosphere. Using a similar forward modelling, the response of
waves on Stokes-V profiles of Ca ii infra-red lines were studied by Pietarila et al. (2006).
They saw a clear time-dependent behaviour of the Stokes-V profiles as a result of wave
propagation and shock formation occuring in the numerically simulated atmosphere.
Even though they were able to reproduce the atmospheric dynamics in the form of
observational signatures in the Stokes profile, their work was limited to the weak field
case. Several authors (Rosenthal et al., 2002; Bogdan et al., 2003; Cranmer and van
Ballegooijen, 2005; Hasan et al., 2005; Hasan and van Ballegooijen, 2008; Khomenko,
Collados, and Felipe, 2008; Vigeesh, Hasan, and Steiner, 2009; Fedun, Erdélyi, and
Shelyag, 2009; Kato et al., 2011) have investigated wave phenomena in magnetically
structured atmospheres. Shelyag et al. (2010) constructed a photospheric bright point
model and studied the observational signatures of wave propagation in them including
the response in Stokes-V . The effect of a direct excitation of a magnetic flux con-
centration by granular buffeting and the corresponding spectral signatures of wave
propagation and mode coupling and mode conversion in these structures have not
been studied so far. Fujimura and Tsuneta (2009) report on the observation of magne-
tohydrodynamic waves propagating along magnetic flux tubes in the solar atmosphere.
Their work is based on observations with the SOT/SP instrument onboard Hinode
space observatory and demonstrates the feasibility of such measurements.

Inspired by the observations and numerical simulations, and driven by the desire
to find possible polarimetric signatures of wave propagation in magnetic network ele-
ments, we have attempted to study the feasibility of using the analysis of the Stokes-V
spectra obtained from our simulation as a diagnostics for magnetohydrodynamic wave
propagation.

The paper is structured as follows: Section 2 gives the construction of the initial equi-
librium model. In Section 3, we treat the numerical method and boundary conditions.
In Section 4, we present three different experiments of wave propagation in magnetic
elements and in Section 5 we discuss the properties of the Stokes profiles emerging
from the simulation box. The summary and conclusion are given in Section 6.

2. Initial Equilibrium Model

We construct a two-dimensional initial atmosphere in Cartesian coordinates containing
a magnetic flux sheet. For the construction we use the numerical methods described
in Steiner, Pneuman, and Stenflo (1986). The magnetic field configuration and the
pressure distribution in the physical domain is specified as in Vigeesh, Hasan, and
Steiner (2009).

The magnetic field can be written in terms of the flux function ψ(x, z) as

Bx = −∂ψ
∂z
, Bz =

∂ψ

∂x
. (1)

Contours of constant flux value, ψ, correspond then to magnetic field lines. We identify
ψ = 0 with the symmetry axis in the center of the flux-sheet and ψ = ±ψmax with

2



Stokes diagnostics of wave propagation

the side boundaries, which also defines the total magnetic flux. The gas pressure is
prescribed as a function of height and field line, p(ψ, z), in the following way,

p(ψ, z) =















































p(0, z)

p0
(p0 + p2ψ

2) if 0 ≤ ψ ≤ ψ1,

p(0, z)

p0
(a(ψ − ψ1)

n + b(ψ − ψ1)
2+

+c(ψ − ψ1) + d) if ψ1 < ψ < ψ2,

p(0, z)

p0
(p0 +

B2
0

8π
) if ψ2 ≤ ψ ≤ ψmax,

(2)

where the constants a, b, c, and d are chosen such that the pressure and its first
derivative with respect to ψ is a continuous function of ψ and where we choose n = 8.
B0 and p0 are the magnetic field strength and the gas pressure, respectively, on the axis
of the flux-sheet at the reference height z = 0. p2, ψ1, and ψ2 are chosen conveniently
so as to obtain the desired cross-sectional profile for the magnetic field, viz., Bz(x) at
z = 0, as shown further below in Fig. 3.

The gas pressure along the axis is defined as,

p(0, z) = p0 exp

{

−
∫ z

0

µg

RT (z)
dz

}

. (3)

µ is the mean molecular weight, taken to be µ = 1.297, and T (z), the temperature as
a function of height, is described by an analytical function of the form

T (z) = T0 + α tanh(γz + c). (4)

It is constant on levels of constant z. With appropriate choice of T0, α, γ, and c, we
construct a photospheric temperature run as shown in Fig. 1. Initially, the temperature
drops rapidly from 10500 K at the bottom boundary to 6 300 K at z = 0 km, then
asymptotically decreases to 4 000 K. This temperature profile should approximately re-
flect the real temperature profile of the photosphere and enable us to compute spectral
lines in absorption. We do not include a chromospheric temperature rise because we
intend to compute the spectral lines in local thermodynamic equilibrium (LTE) only.

Having defined the gas pressure and the temperature distribution through Eqs. (2)-
(4), we obtain the density distribution. From force balance perpendicular to the direc-
tion of the field lines, one obtains the electric current density,

jy =
∂p

∂Ψ

∣

∣

∣

∣

z

. (5)

The new magnetic field configuration can be calculated from the current density using
the Grad-Shafranov equation,

∂2ψ

∂x2
+
∂2ψ

∂z2
= 4πjy. (6)

A detailed derivation of these equations is given in Steiner (2007).
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Figure 1. Temperature as a function of height of the model atmosphere, according to Eq. (4) using
T0 = 9000 K, α = −5000 K, γ = 3 × 10−8 cm−1, and c = 0.6. z = 0 corresponds approximately to
continuum optical depth unity, τc = 1, for ψ = ψmax.
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a) 1000 G b) 1600 G

Figure 2. Magnetic field strength as a function of height on the axis (solid curve) and in the ambient
medium (dashed curve) of photospheric magnetic flux sheets with field strengths of (a) 1000 G and
(b) 1600 G at the axis at z = 0.

Due to the symmetry of the problem, we solve Eq. (6) on a computational domain
that consists of only half of the flux-sheet of horizontal and vertical extensions of 640 km
and 1 600 km, respectively. The bottom boundary is at a depth of z = −300 km. The
domain is discretized on an equidistant rectangular mesh with a spacing of 5 km.
The left side of the domain corresponds to the axis of the flux-sheet. The value of
ψ is prescribed at the left and the at right side boundaries. At the top and bottom
boundaries, we use the Neumann condition ∂ψ/∂z = 0, assuming that the horizontal
field component vanishes at these two boundaries. Starting from a reasonable initial
field configurations, e.g., as derived from the thin flux-tube approximation, one obtains
by iteration of Eqs. (1)-(6), a final, self-consistent, hydrostatic model.

We calculate cases corresponding to different field strengths (at z = 0) ranging
between 1000 G and 1600 G, on the axis of the sheet. For the case with weaker field
strength, the β = 1 layer lies well above the bottom boundary dropping to a minimum
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Figure 3. Bx (top row) and Bz (bottom row) components of the magnetic field as a function of
horizontal distance at the following heights: z = 0 km (solid curve), z = 500 km (dotted curve), and
z = 1000 km (dashed curve). The plots refer to photospheric magnetic flux sheets with field strengths
of (a) 1000 G and (b) 1600 G at the axis at z = 0.

height of 370 km only. β is the ratio of the gas pressure to the magnetic pressure.
Any field line originating from the bottom eventually crosses this layer, dividing the
flux-sheet into two regions: a lower region with β > 1 and the upper region with the
β < 1. We say that the flux-sheet is rooted in a high β region. In the case of a stronger
field, e.g., when B0 = 1600 G, the β = 1 layer traces the boundary of the flux-sheet.
The entire flux-sheet is in a region of β < 1, and only the ambient medium has a high
β plasma value.

The variation of the magnetic field strength with height on the axis and in the
ambient medium is shown in Fig. 2. In both cases, the magnetic field drops to a uniform
value within the flux-sheet. In the ambient medium, the field strength in the lower part
is negligible, but with increasing height, it settles down to the same uniform value as
that of the flux-sheet. Figure 3 shows the horizontal variation of the horizontal and
vertical components of the magnetic field at three different heights, z = 0 km (solid
curve), z = 500 km (dotted curve), and z = 1000 km (dashed curve). The horizontal
component of the field at z = 0 km is close to zero, hence the field is almost vertical
at this level. The flux-sheet at this height has a vertical component of the magnetic
field that drops sharply to the ambient value in horizontal direction, confining it to
a narrow region with a width of about 320 km. The flux-sheet expands with height
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Table 1. Equilibrium model characteristics for the 1000 G and 1600 G flux-sheets.
The numbers in the first row of each physical quantity correspond to the top boundary
(z = 1300 km) and the numbers in the second row correspond to the height z = 0 km.

Physical quantity
1000 G 1600 G

Sheet axis Ambient medium Sheet axis Ambient medium

Temperature [K]
4001 4001 4001 4001

6342 6342 6342 6342

Density [g cm−3]
7.4× 10−13 1.1× 10−12 1.7× 10−13 1.1× 10−12

2.0× 10−7 3.0× 10−7 4.5× 10−8 3.0× 10−7

Pressure [dyn cm−2]
0.2 0.3 0.04 0.29

8.2× 104 1.2× 105 1.8× 104 12.2× 104

Sound speed [km s−1]
6.5 6.5 6.5 6.5

8.2 8.2 8.2 8.2

Alfvén speed [km s−1]
504 394 1672 620

6.3 0.1 21 0.08

Magnetic field [G]
154 147 243 232

1003 16 1604 16

Plasma β [–]
2.0× 10−4 3.4× 10−4 1.9× 10−5 1.4× 10−4

2.1 1.3× 104 0.2 1.2× 104

to cover the entire horizontal extent with a homogeneous vertical field at a height of
z = 500 km and above.

The equilibrium characteristics of the two models are summarized in Table 1. The
values of the physical quantities are given at the sheet axis and in the ambient medium
for the top boundary (z = 1300 km) and for the bottom boundary (z = 0 km) in the
first and second row of each entry, respectively. Note that the plasma β at the sheet
axis at the base is 2.1 for the 1000 G case and 0.2 for the 1600 G case. The sound
speed (cs) and the Alfvén speed (vA) is defined as,

cs =

√

γp

ρ
, (7)

vA =
B√
µρ
, (8)

where, p, ρ, and B are the equilibrium values of gas pressure, density and magnetic
field strength, respectively.

3. Numerical Simulation: Methods and Boundary Condition

Wave propagation is studied by an impulsive transverse excitation of the lower bound-
ary in the equilibrium model (similar to Hasan et al., 2005 and Vigeesh, Hasan, and
Steiner, 2009). The system of MHD equations, given in conservation-law form for an
inviscid adiabatic fluid, is solved according to the method described in Steiner, Knölker,
and Schüssler (1994).
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The side boundaries are open due to a constant extrapolation of the variables from
the physical domain to the boundary cells. The horizontal component of the momentum
at the top and bottom boundary and the vertical component at the top boundary are
also set by a constant extrapolation. The density in the top and bottom boundary cells
is determined using linear log extrapolation. For the temperature, constant extrapo-
lation is used at the top boundary. The temperature in the bottom boundary cells
is determined using Eq. (4). The horizontal component of the magnetic field at the
top and bottom boundaries are set equal to the corresponding values at the preceding
interior point so that dBx/dz = 0. The vertical component of the magnetic field is
determined by the condition ∇ ·B = 0.

Similar to Vigeesh, Hasan, and Steiner (2009), the transverse velocity Vx at z = 0
is specified as follows:

Vx(x, 0, t) =

{

V0 sin(2πt/P ) for 0 ≤ t ≤ P/2 ,

0 for 0 > t > P/2 ,
(9)

where V0 denotes the amplitude of the horizontal motion and P is the wave period.
This form simulates an impulsive transverse excitation of the flux-sheet at the lower
boundary. For simplicity, we assume that all points of the lower boundary have this
motion: this does not generate any waves in the ambient medium, other than at the
interface with the flux-sheet. In order to achieve significant intensity signals, we use
V0 = 5 kms−1 and P = 24 s. Such short duration motions are expected to be generated
by the turbulent motion in the convectively unstable subsurface layers, where the flux-
sheet is rooted. Cranmer and van Ballegooijen (2005) studied the kinematics of G-band
bright points and suggested that there are two components involved: a “random walk
phase” and a “jump phase”. Our work considers the case with higher velocities, which
represents the “jump phase” component of Cranmer and van Ballegooijen (2005). This
motion generates magnetoacoustic waves in the flux-sheet.

4. Dynamics

We consider a uniform horizontal displacement of the entire bottom region below z =
0 km. The excitation corresponds to the impulsive case discussed in the Section 3 and
given by Eq. (9).

4.1. Moderate Field Case

First we consider the case in which the field strength on the sheet axis is 1000 G (at
z = 0). The β = 1 contour in this case is well above z = 0 and hence all the magnetic
field lines that emerge from the base crosses this layer at some height as is visible from
Fig. 4.

The motion of the entire lower boundary region below z = 0 (“high-β excitation”)
in the direction to the right hand side results in the excitation of waves in the form
of a fast (predominantly acoustic) wave and a slow (predominantly magnetic) wave,
which propagate at the sound speed and the Alfvén speed, respectively. The fast wave
manifests itself as a compression and rarefaction of the gas at the leading and trailing
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Figure 4. Temperature perturbations and velocity field of a flux-sheet in which the field strength
at the axis at z = 0 is 1000 G. The snapshot is taken at time 60 s after initiation of an impulsive
horizontal motion of the entire region below z = 0 km according to Eq. (9). The amplitude of the
motion is 5 km s−1 and the period P = 24 s. The black curves represent magnetic field lines and
the white curve depicts the β = 1 contour. Vertical lines indicate different bundles of lines-of-sight
considered for the Stokes analysis.

edge of the flux-sheet, respectively. It can be clearly discerned in the snapshot of the

temperature perturbation, δT (the temperature difference with respect to the initial

value), shown in Fig. 4 at 60 s after start of the perturbation. The black curves denote

the magnetic field lines and the white curve depicts the β = 1 contour. The pertur-

bations are 180◦ out of phase on opposite sides of the sheet axis, leading to a quasi

anti-symmetric wave pattern. As these fast waves travel upwards they eventually cross

the layer of β = 1, where they change from fast to slow, without changing their acoustic

nature: this corresponds to a “mode transmission” in the sense of Cally (2007). The

transmission coefficient depends (among others) on the “attack angle”, i.e., the angle

between the wave vector and the local direction of the magnetic field (Cally, 2007).

On the β = 1 layer, away from the sheet axis, where the wave vector is not exactly

parallel to the magnetic field, we do not have complete transmission of the fast wave

to a slow wave. Rather, there is a partial conversion of the mode from fast acoustic to

fast magnetic, so that the energy in the acoustic mode is reduced correspondingly. For

more details, the reader is referred to Vigeesh, Hasan, and Steiner (2009).
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Figure 5. Temperature perturbation for a narrow and a wide excitation depth for a flux-sheet in
which the field strength at the axis at z = 0 is 1600 G. Time instances refer to 40, 60, and 80 s
(from bottom to top) after the initiation of an impulsive horizontal motion in the region from (a)
z = −150 km and (b) z = 0 km to the bottom boundary. The duration of the motion is 12 s and
has an amplitude of 750 m s−1. The thin, black, vertically running curves represent field lines and the
white curve corresponds to the contour of β = 1. The arrows indicate velocities of 50 m s−1 and more.
Vertical lines indicate different bundles of lines-of-sight considered for the Stokes analysis.

9



Vigeesh et al.

4.2. Strong Field Case

We now consider the case in which the field strength on the sheet axis is 1600 G (at
z = 0). We consider a uniform horizontal displacement of the entire bottom boundary
region of a thickness of 150 km (which we term as narrow) and of a thickness of 300 km
(wide) from the bottom boundary. This is to mimic the buffeting of the flux tubes by
granular eddies of different depths. The excitation corresponds to the impulsive case
as given by Eq. (9). Figure 5 shows the temperature perturbation δT at 40, 60, and
80 s for the two cases of narrow and wide region of excitation.

Here, the contour of β = 1 approximately traces the boundary of the flux-sheet (see
Fig. 5). The transverse motion of the lower boundary generates slow (predominantly
acoustic) and fast (predominantly magnetic) waves. Since the contour of β = 1 runs
along the boundary of the flux-sheet, waves that travel within the flux-sheet along the
magnetic field lines upwards do not encounter this layer and hence do not undergo
mode conversion. On the other hand, the fast wave, which can travel across the field,
encounters the β = 1 contour at the boundary of the flux sheet. As the fast wave
crosses this boundary, it enters a region of negligible field and hence gets converted
into a fast (acoustic) wave as can be seen in the snapshot of temperature perturbations
at an elapsed time of 40 s. At this time, the fast wave in the low-β region, which
is essentially a magnetic wave, undergoes mode conversion and becomes an acoustic
wave, which creates fluctuations in temperature visible as wing like features in the
periphery of the flux-sheet (approximately along the β = 1 contour). The refraction of
the fast wave, due to the gradients in Alfvén speed, and the eventual mode conversion
is prominent in the case of the wide excitation regime. It can be hardly seen in the case
where the flux-sheet is shaken over a narrow region. This is due to the fact that a wide
excitation range in a flux tube embedded in a low-β region creates more magnetic pres-
sure fluctuations relative to gas pressure fluctuations and hence imparts more energy to
the fast (magnetic) wave. Due to the gradients in Alfvén speed, this mode gets refracted
and returns back to a region with high-β, when this energy is transferred to the fast
(acoustic) wave, producing larger temperature fluctuations. This has implications for a
realistic atmosphere, where granular eddies of different sizes are likely to impact deep
rooted flux tubes. An impact over a wide range on a flux tube with strong field will
transfer more energy to the fast (magnetic) mode. The ambient atmosphere regains
part of this energy in the form of a fast (acoustic) wave due to the refraction of the
fast mode and eventual mode conversion. When the excitation range is narrow, there
is relatively weak magnetic pressure fluctuation compared to gas pressure fluctuation
and hence, most of the energy goes into the slow (acoustic) mode, which is channeled
up along the flux tube and eventually dissipates by shock formation.

5. Stokes Diagnostics

Even the largest modern solar telescopes are still not capable of resolving small-
scale magnetic structures completely. Observations of the Stokes parameter I cannot
reveal properties exclusive to the magnetic feature, since contributions to Stokes-I
not only come from the magnetic field but also from the surrounding field-free or
weak-field plasma. Differently from that, Stokes-V gives us the properties exclusive to
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the magnetic structures, because the circularly polarized light is formed only where
the magnetic field is present. So the most sensitive method to study the magnetic
atmosphere is by analysing the Stokes-V spectra emerging from them (see Sigwarth
(2000) for a review).

Table 2. Atomic parameter of the selected lines.

Ion Wavelength
Excitation

log(gf) geff
Lower Upper

Potential Level Level

(Å) (eV)

Fe i 5250.21 0.121 −4.938 3.0 5D0
7D1

Fe i 5247.05 0.087 −4.946 2.0 5D2
7D3

Fe i 6301.50 3.654 −0.718 1.67 5P2
5D2

Fe i 6302.49 3.686 −1.235 2.5 5P1
5D0

Values taken from Nave et al. (1994).

We have computed the emergent Stokes-V profiles from the top of our simulation box
for the case of flux-sheets with field strengths of 1000 G and 1600 G, using the Stokes
radiative transfer code DIAMAG (Grossmann-Doerth, 1994). This code calculates the
normalized Stokes parameters by solving the Unno-Rachkovsky equations of radiative
transfer. At the same time, it computes the line depression contribution function for
each wavelength point. The program requires the temperature, gas pressure, magnetic
field vector, velocity, and micro-turbulence to be specified on every grid point along
the line of sight (LOS). The calculations were done for a set of four Fe i lines, viz., λλ
5250.2, 5247.05, 6301.5, and 6302.5 Å. The atomic parameters of the selected lines are
listed in Table 2.

Table 2 lists the wavelengths of the lines, the excitation potentials of the lower level,
oscillator strengths (log (gf )), and the effective Landé g-factors (geff). The two pairs
of lines were selected because each forms under similar conditions in the atmosphere,
since the lines of each pair have similar excitation potentials and oscillator strengths,
which means similar opacities. But the difference in Landé g-factor for these lines make
them useful for measuring the magnetic field strength, in particular, deviations from
the weak field regime. These lines are commonly used to study solar magnetic fields.
Socas-Navarro et al. (2008) have confirmed the reliability of using these four lines for
the diagnostics of the quiet Sun magnetic field.

Here we study the spectral signature of wave propagation in magnetically structured
atmospheres with dynamically varying magnetic field. The effects of wave propagation
in the four Fe i lines, listed in Tab. 2 are assessed, using the numerical simulations
described in Section 4. The Stokes spectra for vertical lines-of-sight, separated by a
horizontal distance of 10 km, were computed for each time step. These correspond to
real observations at disk center. Here, we present the analysis of the Stokes-V spectra
for the two cases of moderate and strong magnetic field.

The Stokes-V profiles were computed along vertical lines-of-sight by integration of
the radiative transfer equation for polarized light. If the profiles emerging from the top
boundary are spatially averaged over the entire width of the box, the profiles do not
show significant variation with time revealing no sign of wave propagation inside the
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box. This is due to the fact that the antisymmetric flow pattern within the flux-sheet
will average out to give zero net contribution to the Stokes-V variation. This is different
in the case when the horizontal integration is carried out over only a narrow spatial
window on either side of the flux-sheet axis. In this case, profiles show signatures of
wave propagation. Therefore, it is necessary to observe at very high spatial resolution
in order to study the effect of wave propagation in individual flux concentrations.
Lines-of-sight that cover only one half of the flux-sheet or a small part of it give more
information about the wave activity in the domain. In order to quantitatively study the
signatures of wave propagation, we study the evolution of the wavelength shift of the
central zero crossing of Stokes-V (δλzc) and the area and amplitude asymmetries, δA
and δa, respectively, according to Eqs. (10)-(12). The zero-crossing shift of Stokes-V is
defined as,

δλzc = λzc − λ0, (10)

where λzc is the wavelength of the central zero-crossing of the Stokes-V profile and
λ0 a reference wavelength, which for the present purpose is the rest wavelength of the
spectral line. The asymmetries between the blue and red lobe areas of the Stokes-V
profiles, Ab and Ar and the amplitudes of the blue and the red lobe, ab and ar are
defined as,

δA =
|Ab| − |Ar|
|Ab|+ |Ar|

, (11)

and

δa =
|ab| − |ar|
|ab|+ |ar|

. (12)

5.1. Moderate Field Case

Figures 6 and 7 show snapshots of Stokes-V profiles of Fe i λλ 5250.2, 5247.06, 6301.5,
and 6302.5 Å, at time t = 40 s after the start of the simulation of the moderate
field case (see Fig. 4 for reference). Figure 6 shows the Stokes-V profiles averaged
over a horizontal distance from x = 410 km to x = 610 km (left of the symmetry
axis) and Fig. 7 shows the profiles averaged over x = 670 km to x = 870 km (right
of the symmetry axis). The lines Fe i λ 5250.2 Å and Fe i λ 5247.06 Å belong to
the same multiplet of iron, differing only in the effective Landé g-factor, which are 3
and 2, respectively. Hence, the Stokes-V amplitudes are different for the two lines and
scale approximately according to the ratio given by the Landé g-factor as 3:2. This
can be seen in the plots shown in Fig. 6, where the amplitude of Fe i λ 5247.06 Å is
lower than that of Fe i λ 5250.2 Å. Similarly, the amplitudes of Fe i λ 6301.5 Å and
Fe i λ 6302.5 Å scale according to the Landé g-factors of 1.67 and 2.5, respectively.
However, the amplitude ratios are not strictly according to the Landé g-factor ratios
in the strong-field regime because of saturation effects (Stenflo, 1994).

The height of formation of the spectral lines depends on the line strength, which
in turn depends on the excitation potential and the log (gf ). The region of formation
spans a wide range and is affected by the presence and the height variation of the
magnetic field—the latter matters in particular for Stokes parameters Q, U , and V .
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Figure 6. Stokes-V profiles of Fe i (a) λ 5250.2 Å, (b) λ 5247.06 Å, (c) λ 6301.5 Å, and (d) λ 6302.5 Å
at an elapsed time of 40 s from vertical lines-of-sight in a slice ranging from x = 410 km to x = 610 km
(left of the axis). The magnetic flux sheet has a field strength of 1000 G on the axis at z = 0. The
solid vertical line marks the unshifted central wave-length position, the dotted line the zero-crossing
position of Stokes-V .

The line depression contribution functions for the four Fe i lines are plotted in Fig. 8 for
the initial model with moderate field strength and for the line of sight at x = 520 km,
i.e., in the center of the bundle of lines-of-sight that was considered in Fig. 6. Figure 8a
shows the Stokes-I line depression contribution functions in the line cores and Fig. 8b
shows the Stokes-V line depression contribution functions at the wavelength position of
minimal V signals at λVmin

. For the definition of the Stokes line depression contribution
function we refer to Grossmann-Doerth, Larsson, and Solanki (1988a). Clearly, the
maximum contribution to both Stokes-I and Stokes-V comes for the doublet Fe i

5250.22 Å and Fe i 5247.05 Å from higher layers in the atmosphere compared to Fe i

6301.50 Å and Fe i 6302.50 Å.
The asymmetry in the Stokes-V profiles after 40 s can be clearly seen in the Fe i

6301.5 and 6302.5 Å lines plotted in Figs. 6 and 7. The effect of the wave propagation
is first sensed by these lines as they are formed lower in the atmosphere than the other
two lines. The Stokes-V asymmetries as a function of time for the above four lines
give a clearer picture. Figure 9 shows (a) the Stokes-V amplitude asymmetry and (b)
the Stokes-V area asymmetry for the four Fe i lines as a function of time. The red
and blue colours represent the narrow bundles of lines-of-sight on the two sides of the
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Figure 7. Stokes-V profiles of Fe i (a) λ 5250.2 Å, (b) λ 5247.06 Å, (c) λ 6301.5 Å, and (d) λ 6302.5 Å
at an elapsed time of 40 s from vertical lines-of-sight in a slice ranging from x = 670 km to x = 870 km
(right of the axis). The magnetic flux sheet has a field strength of 1000 G on the axis at z = 0. The
solid and dotted vertical lines are as in Fig. 6.
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Figure 8. The line depression contribution function for the four Fe i lines of Table 2, evaluated for
a line of sight located at x = 520 km, in the initial model with 1000 G field strength at z = 0 km.
(a) Line depression contribution function for Stokes-I in the line core. (b) Corresponding contribution
functions for Stokes-V at λ = λVmin

, i.e., the wavelength of the blue Stokes-V peak.
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flux-sheet axis. The blue solid curves correspond to lines-of-sight spanning x = 410 km
to x = 610 km (left) and the blue dashed curves for x = 120 km to x = 320 km (far
left). Similarly on the right side, the red solid curves are for x = 670 km to x = 870 km
(right) and the red dashed curves are for x = 960 km to x = 1160 km (far right). In
order to explain Fig. 9, it is essential to look at the velocity field of the simulation, which
is shown in Fig. 4. There, the vertical lines mark the boundaries of the line-of-sight
bundles.

5.1.1. Amplitude Asymmetry

Initially, there are no velocities inside the domain and hence the Stokes profiles are
antisymmetric and therefore δa is zero. After the start of the simulation, velocities
start building up in the domain, consequently giving rise to asymmetries in the Stokes
profiles. Let us now consider the bundle of lines-of-sight on the left side of the axis
and the response in δa for the lines Fe i 6301.5 or 6302.5 Å as shown in Fig. 9a. After
20 s, there develops a small down-draft within the (blue) bundle of lines-of-sight in the
magnetic region. This leads to a red shift of the Stokes-V profile that forms in this
region, viz., in the lines Fe i 6301.5 or 6302.5 Å. The spectral line emerging from the
quasi static, partially field free layer further below is less effected by Doppler shifts. It
causes an asymmetric illumination of the two flanks of the red shifted line contribution
formed further above. This results in the blue lobe of the emerging Stokes-V profile
be suppressed and consequently the amplitude asymmetry tends to become negative.
The amplitude asymmetry starts decreasing and reaches a minimum at around 50 s,
after which time the down-flow moves out of the line formation region and a following
up-draft starts to dominate (see Fig. 4), making the blue lobe strong again and the
amplitude asymmetry to rise.

On the other hand, the line of sight on the right side of the axis shows an inverse
time dependence, which is expression of the fact that the waves are 180◦ out of phase
on opposite sides of the flux-sheet axis (Section 4.1). There develops a strong up-draft
within the LOS after ≈ 30 s into the simulation. It shifts the Zeeman effected line
contribution to the blue relative to the line emerging from the quasi static layer below,
which suppresses the red lobe of the emerging Stokes-V profile, making the amplitude
asymmetry to rise towards positive values. This trend is seen until slightly after 40 s
when the down-draft of a following wave phase replaces the up-draft in these regions.
The maximum value is reached before the time of minimum value of δa(t) on the left
hand side because the wave on the right hand sides of the flux-sheet axis is preceding
the wave on the left hand side. However, we notice that the two curves for δa(t) are not
symmetric (relative to the time axis)—the (red) curve for the right side shows initially
even a slight trend towards negative values like the (blue) curve for the left side and
its amplitude is smaller than that for the left side. This asymmetry is due to the fact
that the excitation of the flux-sheet is asymmetric too. The flux-sheet continuously
moves to the right side until it comes to a halt after 12 s and 38.2 km to the right of
the initial symmetry axis (from Eq. 9). This can be seen from Fig. 4, where the blue
solid and the red solid lines-of-sight sample more peripheral and more central parts of
the flux-sheet, respectively. We found that the opposite temperature perturbations on
opposite sides of the flux-sheet axis has only a minor effect on the behaviour of δa(t).
This is also true for the transversal magnetic field component.
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In the case of lines formed higher in the atmosphere, like the lines Fe i 5250.2 Å
and 5247.06 Å, we see a similar behaviour like described above but with a time lag,
depending on the arrival time of the perturbations. We see a delay of 9 s between
the two pairs of lines corresponding to roughly a distance of 58 km, since the sound
speed at these height is around 6.5 km s−1 (see Tab. 1). This distance corresponds to
approximately the distance in log τ from −1.8 to −2.1 of the maximum peaks of the
Stokes-V contribution functions for the two line pairs as can be seen from Fig. 8b.

We now consider the LOSs further away from the flux-sheet axis. These are de-
picted as dashed vertical lines in Fig. 4 and the dashed curves in Fig. 9a show the
corresponding response in δa. The perturbations become significant in this region after
50 s only when the first front arrives. On the right side of the flux-sheet, we see that
the velocities are directed upward. This suppresses the red lobe making the amplitude
asymmetry positive. On the left side of the flux-sheet, the downward velocities shifts
the amplitude asymmetry towards negative values. We notice, however, that initially
there exists the opposite tendency: especially the right side showing negative δa. This
behaviour is even more pronounced for the inner bundles of lines-of-sight on the right
hand side and corresponding red solid curves of Fig. 9a. It indicates that the above
provided explanation for the origin of the asymmetries is not complete even though it
can serve as a rough guideline. The origin of this tendency to opposite asymmetries is,
that prior to the wave affecting the formation of Stokes-V , it affects the field-free layers
below, where Stokes-I is already forming. In particular, the updraft in the leading wave
on the right hand side first causes Stokes-I to be blue shifted, which suppresses the
blue lobe of Stokes-V formed higher up in the magnetic region, which is not yet affected
by the wave. This causes δa to become negative. Since the velocities are still moderate
at this stage, the asymmetry remains moderate as well. As the wave moves further
up it grows in amplitude and enters the magnetic region in the stripe of lines-of-sight
on the far right side. This leads to a blue shift of the Stokes-V contribution, while
the velocities in the field-free layer below are decreasing as the wave moves out of this
region. Hence, the red lobe of Stokes-V gets suppressed. Not until then, δa rises to the
expected positive values and these values become substantial because the velocities are
growing rapidly.

5.1.2. Area Asymmetry

The gradients in velocity and magnetic field cause the asymmetry. A rule to calculate
the sign of the area asymmetry, δA, for a purely longitudinal component has been
provided by Solanki and Pahlke (1988) (see also Steiner, 1999):

d|B(τ)|
dτ

· dv(τ)
dτ

{

< 0 ⇒ δA > 0,
> 0 ⇒ δA < 0.

(13)

By convention, v(τ) is taken to be positive for flows in direction of increasing optical
depth and vice versa, where v is the line-of-sight velocity. In case of a flux tube ex-
panding with height, a LOS along the tube axis will have d|B(τ)|/dτ > 0. Given this
information, together with Eq. (13), the correct interpretation of the time dependence
of δA would be relatively straightforward, except that for a propagating wave the
term dv(τ)/dτ changes sign for each half wave. If the line of sight is eccentric, it may
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Figure 9. The Stokes-V (a) amplitude asymmetry and (b) area asymmetry for the four Fe i lines
listed in Tab. 1 as a function of time for the moderate field case with 1000 G. The red solid curves
represent the bundle of lines-of-sight on the right side of the the axis. The red dashed curves represent
the bundle of lines-of-sight on the far right. The blue solid curves are for the left slice and blue dashed
curves are for the far left bundle.
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traverse the flux-sheet boundary, where the field drops suddenly with increasing optical
depth, so that d|B(τ)|/dτ < 0. In this case, a positive δA is realized if dv(τ)/dτ > 0,
i.e., if there is a accelerating down-flow. This is for instance the case when there is
no velocity inside the flux-sheet but a down-flow in the field-free surrounding region,
or in case with an up-flow within the flux-sheet and no flow in the outside field-free
region (Grossmann-Doerth, Schüssler, and Solanki, 1988b). Thus, δA(t) in Fig. 9b has
contributions from gradients in magnetic field and velocity that stem from inside the
magnetic flux sheet as well as from the boundary of the flux-sheet. These contributions
may have opposite sign. This is also true for contributions from different phases of the
wave. In addition, δA is an integral quantity with contributions over all wavelength
of the spectral line. Hence, δA forms over a wide height range and therefore includes
more than a single wave crest or wave trough. This renders the correct interpretation
of δA(t) in this case more intricate than it is for δa(t). This is in particular true for
the inner bundles of lines-of-sight. The outer bundles show a behaviour very similar to
that of δa(t).

5.2. Strong Field Case

The emergent Stokes-V profiles were also computed for a flux-sheet with a magnetic
field strength of 1600 G on the axis at z = 0 km. Of the two cases shown in Fig. 5, we
consider in the following only the case with the wide excitation region. When spatially
averaging these profiles over the entire width of the box, they do not show significant
variation with time, revealing no sign of wave propagation inside the box, similar to the
case with a field strength of 1000 G. Profiles averaged over smaller slices on either side
of the axis show signs of wave propagation, once again emphasizing that lines-of-sight
that are placed away from the symmetry axis of the flux-sheet yield more information
about the wave activity. Here, we carry out a similar study of the evolution of the
Stokes-V asymmetries for the 1600 G case as was done for the moderate field case.
Figs. 10 and 11 show the Stokes-V profiles at time t = 50 s of the four Fe i lines under
study. Figure 10 shows the Stokes-V profiles averaged over a horizontal range from
x = 120 km to x = 320 km (far left bundle of lines-of-sight) and Fig. 11 shows the
profiles averaged over a range from x = 960 km to x = 1160 km (far right bundle of
lines-of-sight).

The Stokes-V amplitude asymmetry and area asymmetry as a function of time for
these lines are shown in Fig. 12. The colour coding is the same as in Fig. 9. The
temperature perturbation and the velocity field for different time instances is shown in
Fig. 5b. There, the colours represent the value of ∆T and the arrows show the velocity
vectors at times t = 20, 30, 40, and 50 s.

Unlike the case with 1000 G, here we have significant fast, predominantly magnetic
waves, which get refracted within the flux-sheet and convert to fast acoustic waves when
they encounter the flux-sheet boundary, where they leave the flux-sheet and enter the
field-free domain. This causes the wing-like feature in the temperature perturbations
of Fig. 5b that extends from z = 300 km to z = 700 km on both sides of the flux-sheet
(approximately along the β = 1 contour) at time t = 40 s. The velocities associated
with both the fast and the slow wave results in the shift and the asymmetries of the
Stokes-V profiles.

In the following, we consider a bundle of lines-of-sight on the far right side of the flux-
sheet axis. Here, the front of the fast, predominantly magnetic wave starts to become
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Figure 10. Stokes-V profiles of Fe i (a) λ 5250.2 Å, (b) λ 5247.06 Å, (c) λ 6301.5 Å, and (d) λ 6302.5 Å
at an elapsed time of 50 s from vertical lines-of-sight in a slice ranging from x = 120 km to x = 320 km
(far left of the axis). The magnetic flux sheet has a field strength of 1600 G on the axis at z = 0. The
solid and dotted vertical lines are as in Fig. 6.

effective at a t ≈ 40 s. The velocities are directed downwards in the magnetic region,
resulting in a red shifted Stokes-V contribution illuminated by light from the unshifted
absorption formed in the static layer below, which suppresses the blue lobe, leading
to a negative asymmetry (dashed red curve in Fig. 12a). At t = 60 s, this down-flow
has moved out of the LOS bundle into the field-free region while within the magnetic
region a up-flow evolves. This up-flow, which is due to the following slow mode, gives
rise to a positive asymmetry leading to a strong positive bump of the red dashed curve
around t = 70 s. This behaviour is different from the 1000 G case shown in Fig. 9a
wherein the first negative bump due to the fast converting mode is less pronounced or
missing because of the relatively weak magnetic field. The LOS on the left hand side
of the flux-sheet axis shows a similar behaviour but of opposite sign. This behaviour
can also be seen in the area asymmetry of the outer bundles of lines-of-sight. Thus, δa
and δA show a clear signature of both the fast and the slow mode.

5.2.1. Zero-Crossing Shift

The flows within the magnetic elements can be estimated by the Stokes-V zero-crossing
shift, given by Eq. (10). The 180◦ out of phase flow pattern formed on the two sides of
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Figure 11. Stokes-V profiles of Fe i (a) λ 5250.2 Å, (b) λ 5247.06 Å, (c) λ 6301.5 Å, and (d)
λ 6302.5 Å at an elapsed time of 50 s from vertical lines-of-sight in a slice ranging from x = 960 km
to x = 1160 km (far right of the axis). The magnetic flux sheet has a field strength of 1600 G on the
axis at z = 0. The solid and dotted vertical lines are as in Fig. 6.

the flux-sheet axis creates phase shifted, opposite zero-crossing shifts in both magnetic

field models. Figure 13 shows the Stokes-V zero-crossing shift as a function of time for

the moderate and the strong field cases. In case of moderate field LOS bundles close

to the sheet axis, the up-flow on the right side and the down-flow on the left side of

the axis, which stem from the respective compressional and rarefactional front of the

slow (acoustic) wave, results in a net zero-crossing shift of opposite behaviour on either

side. The curves are shifted in time for the four lines and the two LOS bundles due

to the difference in the formation heights of the lines and due to the time lag of the

waves to the left and to the right of the flux-sheet axis, respectively. A similar trend

in the zero-crossing shift can be seen in the outer LOS bundles, where the wave fronts

arrive later. The flow pattern associated with the fast (magnetic) wave is a prominent

feature in the case with the strong field. It creates the significant bump of opposite

sign on either side of the flux-sheet for the outer LOS bundles around t ≈ 40 s, visible

in the dashed curves of Fig. 13b.
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Figure 12. The Stokes-V (a) amplitude asymmetry and (b) area asymmetry for the four Fe i lines as
a function of time for the strong field case with 1600 G. The red solid curves represent the right side
of the flux-sheet axis. The red dashed curves represent the bundle on the far right. Blue solid curves
are for the left bundle and the blue dashed curves are for the far left bundle.
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Figure 13. Stokes-V zero-crossing shift for the four Fe i lines as a function of time for (a) the moderate
field case with 1000 G and (b) the strong field case with 1600 G. The red solid curves represent the
slice on the right side of the axis. The red dashed curves represent the slice on the far right. Blue solid
curves are for the left slice and the blue dashed curves are for the far left slice.
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6. Summary and Conclusion

This work is an extension of a previous work by Vigeesh, Hasan, and Steiner (2009),
which focussed on the dynamics and the energy transport that occur in intense flux
tubes. In the present work, we have constructed flux tubes embedded in the photosphere
and used the results of our simulation to compute the Stokes profiles that emerge
from the top of the simulation box in order to study observational signatures of wave
propagation inside the tubes.

The nature of the excited modes depends on the value of plasma β at the place
where the driving motion occurs. Depending upon the extent of the region of excitation,
energy imparted to the different modes vary. When the excitation occurs in a high-β
plasma, we observe that the excited modes are a slow acoustic wave and a fast magnetic
wave that undergo mode conversion and transmission across the β = 1 layer. In the case
of excitation of a low-β flux-sheet over a large enough impact area, most of the energy
will go to the fast (magnetic) mode. If the area of impact is smaller, then most of the
energy goes into the slow (acoustic) wave, which is channeled up along the flux tube and
eventually dissipates by shock formation. Hence, the impact of a large granules may
impart more energy to the fast (magnetic) mode, but the non-magnetic atmosphere
gains back this energy in the form of a fast (acoustic) wave due to refraction of the
fast mode and mode conversion.

The antisymmetry in the wave pattern with respect to the flux-sheet axis gives
rise to observational signatures. While the average Stokes-V profile over the whole
domain does not show any significant variation with time, clear evidence of the wave
phenomena can be detected when looking at higher resolved lines-of-sight on either side
of the flux-sheet. Stokes-V profiles become asymmetric, showing opposite temporal
behaviour on the two sides of the flux-sheet axis. Furthermore, effects of refraction
of the fast, predominantly magnetic wave in the case of a strong magnetic field are
clearly visible in the Stokes asymmetry and zero-crossing shift as a function of time.
Our results show a clear signature of the fast, predominantly magnetic wave in these
profiles. We come to the conclusion that polarimetric signatures of wave propagation in
magnetic elements can be observed, provided that the spatial resolution is high enough
so that magnetic concentrations can be resolved into different regions within the flux
concentration. Although, the simulated Stokes asymmetries would be detectable with
current polarimetric instruments, observations of considerably higher spatial resolu-
tion, capable of resolving individual flux concentrations, are needed in order to reveal
the propagation of waves in individual flux concentrations and to detect the different
modes of the MHD waves. We have highlighted the importance of using the Stokes-
V asymmetries as a possible diagnostic tool to study wave propagation in magnetic
elemets at disk center. Observations off disk center would possibly slightly relax the
high requirements of spatial resolution because the wave pattern can be expected to be
less antisymmetric in this case. However, the interpretation of the polarimetric signals
as a function of time would become more intricate. The analysis in this work is based on
photospheric lines under the assumption of local thermodynamic equilibrium (LTE).
Hence our conclusions are not valid for lines formed in the chromosphere, since LTE
approximation is no longer valid in this region. A more realistic modelling should be
carried out in three spatial dimensions and include NLTE effects.
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