Will Avatar's Pandora be a reality?

ASTRONOMY Hundreds of exoplanets have been discovered so far, but only a few of them have been classified as being within the habitable zone of their host star. Much like our own Jupiter and Saturn, they are not suitable for life. But, could the moons of these planets be fit for life? Detecting them could be the first step, writes C Sivaram

R
ecent discoveries of water rich exoplanets, especially GJ1214b, which has a total water mass several thouand times that of earth, has caused excitement among astrobiologists as water a crucial substance for sustenance of life.
In our solar system, only the earth is in uch a zone, Mars being too cold, and Venus being too hot. The earth is at the right disance from the sun for vast quantities of wa ter to be found on the surface. It is not sur prising that astronomers always look for traces of water on any planet or other celes tial body, while looking for exohabitats.
However, out of the over 400-odd exoplanets discovered so far, only about 35 of them are classified as being within the hab table zone of their host star, that is, their equilibrium temperatures lie between the reezing and boiling points of water. Al though these exoplanets lie within the habitable zone of their stars, they are not hab table as they are huge gas giants like upiter and Saturn, not regarded as suitable habitats for complex advanced life. GJ1212b is too close to its host star so its surface tem perature would be torrid!

Europa has more water than earth? But in our solar system, we know that moons of giant planets could have more suitable habitats for life. Jupiter's moon, Europa and more recently, Saturn's moon, Enceladus are believed to have vast reser voirs of water beneath their surface. Eu ropa could have a subterranean ocean conaining more water than the earth. Indeed, a future space probe has been planned ex lusively to explore Europa.
Jupiter and Saturn have over 60 moons each. Uranus has around 30 and Neptune over a dozen. There are more than 170 moons in our solar system. As most of the exoplanets found so far are gas giants, they are also likely to be accompanied by retnues of moons orbiting them. So even if the hot exo-Jupiters are inhabitable their moons could lie within a habitable zone round them Just as in the hasitable zone Encedalus, Titan etc considered possible abodes for primitive life forms, it is quite conceivable that there could be moons of hese exo-Jupiters, which could have hab table conditions.
So, if the exoplanets (within the habitable zone of their host stars) had large moons around them, then these worlds would be good candidates for supporting life. Again, he presence of a relatively large moon or biting the earth is supposedly crucial for the planet's habitability as it acts to stabilise the axial tilt and precession of the earth, unlike Mars where dramatic changes in the tilt extreme climatic variations ove ong-time scales.

Could such exomoons be detected? James Cameron's movie Avatar featured a beautiful exomoon called Pandora. Will we get to see a moon such as Pandora at some point? The first step would be to de ect a Pandora, in the first place.
The angular size of the earth as seen from ten light years is hardly half a micro arc second. Current interferometric precision with the best technology is more like twenty micro arc seconds. Looking for exomoons is beyond present technology. The bulk of the exoplanets have been detected by the so called radial velocity method, that is, a glant planet like Jupiter causes a wob ble in the sun's motion dragging it around

Deccan Herald, Spectrum Science, Tuesday, December 14, 2010, pp. 3

