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The electric dipole moment (EDM) enhancement factor of atomic Tl is of considerable interest as it has

been used in determining the most accurate limit on the electron EDM to date. However, its value varies

from�179 to�1041 in different approximations. In view of the large uncertainties associated with many

of these calculations, we perform an accurate calculation employing the relativistic coupled-cluster theory

and obtain�466, which in combination with the most accurate measurement of Tl EDM [Phys. Rev. Lett.

88, 071805 (2002)] yields a new limit for the electron EDM: jdej< 2:0� 10�27e cm.

DOI: 10.1103/PhysRevLett.106.200403 PACS numbers: 32.10.Dk, 11.30.Er, 14.60.Cd, 31.15.bw

The EDM of a nondegenerate physical system arises
from the simultaneous violations of parity (P ) and time-
reversal (T ) symmetries [1,2]. The invariance of the latter
symmetry is associated with the invariance of the CP
(combined charge conjugation (C) and P symmetries)
symmetry on the basis of the CPT theorem [3]. Thus,
EDMs of atoms can shed light on CP violations originating
in the leptonic, semileptonic and hadronic sectors [4,5].
The knowledge of EDMs provide valuable insights into
some profound questions such as the existence of new
physics beyond the standard model (SM) and the matter-
antimatter asymmetry in the universe [4–6]. Given the
current interest in understanding different types of CP
violations originating from the elementary particles both
by accelerator and nonaccelerator based approaches, EDM
searches are of invaluable significance.

The EDMs of paramagnetic atoms are sensitive to the
EDM of the electron [7]. The most accurate limit for the
latter has been obtained by combining the results of the Tl
EDM measurement [8] and the EDM enhancement factor
(EF) [9], defined as the ratio of the EDM of the atom to that
of the electron, of this atom. Liu and Kelly have computed
its value using a linearized version of the relativistic
coupled-cluster (RCC) theory and report it to be �585,
with an error bar of 5%–10% [9]. A more recent calcula-
tion of this quantity for Tl by Dzuba and Flambaum uses a
hybrid approach combining the configuration interaction
(CI) method and many-body perturbation theory (MBPT)
and reports �582 with an estimated accuracy of 3% [10].
Both these results, coincidentally, are in good agreement
with each other. Nevertheless, considering the fact that the
values of the Tl EDM EF reported in the literature range
from �179 to �1041 [11–13], there is clearly a need for
high precision calculations of this quantity. Thus, the pri-
mary focus of this Letter is to determine the EDM EF of Tl
by proceeding beyond [9,10]. An accurate treatment of the
unusually strong electron correlation effects in the ground

state Tl EDM EF warrants the use of an all-order relativ-
istic many-body method like the RCC theory.
The open-shell RCC theory with single, double and a

subset of leading triple excitations employed in the calcu-
lation of the EDM EFs is discussed in detail in [14–16].
However, we briefly present below the salient features of
this method for the sake of completeness. The effective one
electron form of the interaction Hamiltonian due to the
electron EDM is given by [16],

Heff
EDM ¼ 2ic

X
j

��5 ~p2
j ; (1)

where � and �5 are the usual Dirac matrices, ~pj is the

momentum vector of the electron j. As the strength of
the EDM interaction is sufficiently weak, we consider the
wave function expansion only up to first order in perturba-
tion. Thus, the modified atomic wave function for a valence
electron ‘‘v’’ is given by,

j�0
vi ¼ j�ð0Þ

v i þ dej�ð1Þ
v i: (2)

In the RCC theory, the unperturbed and perturbed wave
functions can be expressed as [14–16],

j�ð0Þ
v i ¼ eT

ð0Þ f1þ Sð0Þv gj�vi; (3)

and

j�ð1Þ
v i ¼ eT

ð0Þ fTð1Þð1þ Sð0Þv Þ þ Sð1Þv gj�vi; (4)

where j�vi is the Dirac-Fock (DF) wave function obtained
by appending the valence electron ‘v’ to the closed-shell

(½5d10�6s2) reference state, Tð0Þ and Sð0Þv are the excitation
operators for core and valence electrons in an unperturbed

case, and Tð1Þ and Sð1Þv are their first-order corrections.
The atomic wave functions are calculated using the
Dirac-Coulomb Hamiltonian given by
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H0 ¼
X
i

fc�pi þ ð�� 1Þc2 þ VnðriÞg þ
X
i<j

1

rij
; (5)

where � and � are the Dirac matrices, VnðriÞ is the nuclear
potential at the site of electron i and 1=rij is the Coulomb

potential experienced by electron i due to electron j. We
have used atomic units throughout this Letter unless other-
wise specified explicitly.

We consider only the single and double excitation
operators in the expansion of the RCC wave functions
(termed as the CCSD approximation), by defining,

T ¼ T1 þ T2 and Sv ¼ S1v þ S2v; (6)

for both the perturbed and unperturbed operators. Further,

we construct triple excitation operators for Sð0Þv [17] as,

Spqr;ð0Þvab ¼
d

H0T
ð0Þ
2 þ d

H0S
ð0Þ
2v

�v þ �a þ �b � �p � �q � �r
; (7)

which are used to evaluate the CCSD amplitudes itera-
tively. This is referred to as CCSD(T) method. Here, �l is
the single particle energy of an orbital l.

The final expression for the EDM EF (R ¼ Da

de
) in terms

of the coupled-cluster operators is given by

R ¼ h�vjf1þ Sð0Þ
y

v gDð0ÞfTð1Þð1þ Sð0Þv Þ þ Sð1Þv gj�vi
h�vjeTð0Þy

eT
ð0Þ þ Sð0Þ

y
v eT

ð0Þy
eT

ð0Þ
Sð0Þv j�vi

þ Hermitian conjugate; (8)

where the dressed operatorDð0Þ ¼ eT
ð0Þy
DeT

ð0Þ
andD ¼ r is

the electric dipole moment operator due to the applied
electric field. The procedure for the calculation of the
above expression is discussed elsewhere [14–16].

In Table I, we present the contributions from different
RCC terms along with the lowest order (DF) contributions
to R and compare them with the results reported by

Liu and Kelly [9]. It is evident from this table that the
bulk of the contributions to R comes from the RCC terms

DTð1Þ
1 , DSð1Þ1v and DSð1Þ2v (a dominant term in DXð1Þ

2 ). These

important all-order correlation effects involving the core,
valence and core-valence sectors are shown diagrammati-
cally in Fig. 1. The single largest contribution of about
�378 to R comes from the all-order core correlation

effect, DTð1Þ
1 . The magnitude of higher-order contributions

is much larger than the DF contribution for this term. The

all-order valence correlation contribution from DSð1Þ1v is

�314 while its DF contribution is �269. It is apparent
from the table that the all-order core correlations are quite
strong in the case of Tl. It is important to note that a class of

core-polarization effects represented by the DSð1Þ2v term has

a significant positive contribution of 248. This dramatically
reduces the final result. There is a non-negligible contri-
bution from the other higher-order terms; however, many
of them cancel each other to give an effective value of only
about 13. The normalization of the RCCwave function also
gives a contribution of 4 and the total result for the ground
state EDM EF for Tl amounts to �466.
The Heff

EDM being an odd-parity operator mixes the

atomic states of opposite parities, however, with the same
angular momentum. Therefore, we have investigated the
role of various intermediate states of s symmetry. The RCC

terms such asDTð1Þ
1 ,DSð1Þ1v , S

ð0Þy
1v DSð1Þ1v , and S

ð0Þy
2v DSð1Þ1v , have

got significant contributions from the orbitals, from 5s
through 11s and their combined contributions are shown
in Fig. 2. For comparison, we have also shown the DF
contributions from these individual orbitals. The magni-
tude of correlation effects for the 6s orbital is much larger
than its DF contribution.
We have also investigated the role of different doubly

excited states that contribute to R through DSð1Þ2v . These

contributions are given in Table II. As seen from the table,
the largest contribution comes when the 6s orbital is ex-
cited to the valence orbital, 6p1=2 followed by the 6p3=2

orbital. There are also, however, some non-negligible
contributions from the 5d orbitals when they are excited
to the virtual p3=2 and f5=2;7=2 orbitals.

TABLE I. The contributions from various RCC terms to R. A
new quantity, X ¼ T þ Sv is defined solely for comparing our
results with those of [9].

RCC Term This Work Ref. [9]

ðDTð1Þ
1 Þlowest-order �153:6 �153:2

ðDSð1Þ1v Þlowest-order �268:5 �267:3
ðDTð1Þ

1 Þhigher-order �224:7 �342:1
ðDSð1Þ1v Þhigher-order � 45:5 �102:5
DXð1Þ

2 248.0 240.9

Xð0Þy
1 DXð1Þ

1 22.5 22.4

Xð0Þy
2 DXð1Þ

1 � 78:2 49.3

Xð0Þy
2 DXð1Þ

2 21.5 � 36:9
Xð0Þy
2 DXð1Þ

1 Xð0Þ
2 � 4:3 � 2:2

Higher-order RCC terms 13.0 �
Normalization contribution 3.8 6.5

Total EDM EF (R) �466:0 �585:1

FIG. 1. The leading correlation diagrams: (i) DTð1Þ
1 , (ii) DSð1Þ1v ,

(iii) DSð1Þ2v . The exchange and Hermitian conjugate diagrams are

not shown. Labels v, a, and p refer to valence, core, and virtual
orbitals, respectively.
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The EDM enhancement factors for Tl from different
calculations are compared in Table III. It is quite apparent
that the published results lie in a rather large range. We
discuss below the qualitative differences between the
current work and the two recent ab initio works [9,10].
Although, the overall trends of the majority of the corre-
lation terms in [9] appear similar to ours, as shown in
Table I, there is a significant difference in the magnitude
of many of those correlation contributions which can be
attributed to some of the following approximations made in
the former work. (i) An approximation to only the one
electron part of the EDM Hamiltonian is considered,
thereby neglecting the important contributions partly
from the DF potential and largely from the two electron
Coulomb interaction. (ii) Only the linear terms and a few
selected nonlinear terms have been used in the calcula-
tions. The CC equations have not been fully solved even at
the CCSD level as a coupled-electron pair approximation
has been used to solve for the quadratic terms that have
been taken in the unperturbed doubles equation. (iii) A few
selected triple excitations are included only in the unper-
turbed singles amplitude equations, where as, several
dominant triples terms are completely ignored in the
unperturbed doubles equations. Thus, the contribution of

triples is taken into account in a nonstandard way. (iv) The
inner core is frozen up to the 4s orbital for the calculation
of the unperturbed amplitudes, where as, for solving the
perturbed doubles equations, 4s, 4p and 4d orbitals are
further frozen. Such an inconsistent treatment introduces
uncontrollable errors. In contrast to the above drawbacks,
we consider all the nonlinear terms arising from the single
and double excitations. In addition, we consider the lead-
ing triple excitations in both the unperturbed singles
and doubles cluster equations. We solve the unperturbed
and perturbed, closed- and open-shell equations, self-
consistently in the framework of the relativistic CCSD(T)
approach, taking into account the excitations from all the
core electrons. The active orbitals considered for the
correlation calculation are: 14s, 13p1=2;3=2, 13d3=2;5=2,
9f5=2;7=2, and 8g7=2;9=2, where as, 38s, 34p1=2;3=2,

34d3=2;5=2, 30f5=2;7=2, and 20g7=2;9=2 number of orbitals

are considered for the SCF calculation. However, after
the SCF step, we have truncated the virtual space by
dropping the high-lying virtuals as their contributions
are small.
The comparison between the results of Dzuba and

Flambaum based on a combined CIþMBPT approach
[10] and our all-order CCSD(T) is not straight forward.
The important differences are that, in the former work, the
following occurs. (i) The three outer most electrons
(6s26p1=2) are treated as valence and the rest as core.

(ii) The core, virtual, and valence orbitals are generated
in a VN�3 closed-shell potential. The orbitals, therefore,
are highly contracted. (iii) The valence-valence correla-
tions are evaluated by CI, while the valence-core and the
core-core correlations by MBPT. (iv) The net level of
excitation of the configurations in their CI calculation is
not higher than triples with reference to 6s26p1=2. (v) It

appears from the previous work of Dzuba and Flambaum
that the P&T violating Hamiltonian used in [10], consid-
ers only the internal electric field due to the nucleus and not
the electrons; i.e., the entire two body Coulomb potential is
neglected. The major drawback of their work is that all the
correlations obtained by MBPT are considered only up to
second order (except for s electrons in the one-body corre-
lation operator �1) although the importance of valence-
core correlations is stated in their paper. In contrast, we
have evaluated the core-core and core-valence correlations
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FIG. 2 (color online). The contributions from singly excited
intermediate states, 5s through 11s, in DF and RCC approxima-
tions are compared.

TABLE II. The contributions from the selected doubly excited

states to R through the DSð1Þ2v term.

Core(a) Virtual(p) Result Core(a) Virtual(p) Result

6s 6p1=2 170.88 5d3=2 8f5=2 0.92

6s 7p1=2 3.61 5d3=2 9f5=2 2.06

6s 8p1=2 2.01 5d5=2 6p3=2 5.37

6s 9p1=2 4.50 5d5=2 7p3=2 0.76

6s 6p3=2 31.42 5d5=2 8p3=2 0.59

6s 7p3=2 3.00 5d5=2 9p3=2 1.46

6s 8p3=2 1.95 5d5=2 8f7=2 2.34

6s 9p3=2 5.26 5d5=2 9f7=2 5.36

TABLE III. Comparison of the ground state EDM EF (R) of
Tl from different calculations.

EDM EF (R) Method Reference

�466ð10Þ CCSD(T) This Work

�582ð20Þ CIþMBPT Dzuba 2009 [10]

�585ð30� 60Þ LCCSD(T) Liu 1992 [9]

�179 MBPT(2) Hartley 1990 [11]

�301 MBPT(2) Kraftmakher 1988 [12]

�502, �562, �607, �1041 MBPT(1) Johnson 1986 [13]
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to all-orders in the residual Coulomb interaction in the
framework of the full fledged CCSD(T) theory. From
Table II, it is clear that the correlation effects from p and
d orbitals are also important and they should not be
ignored. The valence-valence correlation of [10] is a subset
of our core-valence correlation. Thus, the valence-valence,
valence-core and core-core correlation effects included in
our work contain substantially more higher-order effects
than those taken into account either in [10] or in [9]. The
configuration space spanned by the active orbitals in our
calculation is also larger than those considered in the latter
two calculations. The apparent agreement in the EDM
enhancement factors between them seems to be fortuitous.

We have also compared our result with a few ab initio
finite-order MBPT results [11–13] in Table III. As the
correlation effects are very strong in the case of Tl, even
a seemingly small approximation can drastically affect
the final result which is evident from the two MBPT
calculations, [11,12] with similar approximations. The
even-parity channel (EPC) approximation, which consid-
ers only a set of multipoles allowed by the Coulomb
selection rules, within the CCSD(T) approach has yielded
R ¼ �425 [18] for the same basis set used in the
current work and this further corroborates the sensitivity
of the Tl EDM EF to electron correlation. The correlation
trends observed in this work are in qualitative agreement
with those observed in [14] for the Tl scalar-pseudoscalar
EDM EF, as expected for two EDM operators with the
same rank and parity.

The results of a few relevant physical quantities for the
EDM EF such as the electric dipole (E1) matrix element
for 7S ! 6P1=2 transition and the magnetic dipole hyper-

fine structure constants of the ground state 6P1=2 and the

lowest singly excited state 7S have been presented in
Table IV. It is clear that our results are in better agreement
with the experiments than those reported in [10].

The error estimates quoted in [9,10] for Tl EDM EF do
not seem to be convincing in view of the approximations
they have made in their calculations. Clearly an all-order
correlation calculation is needed for a reliable error esti-
mation. Considering the error due to the use of a different
basis set and the error due to the neglected triples,
we obtain the final result for the EDM EF of Tl to be
�466ð10Þ. By combining the experimental result for the
EDM of Tl, �ð4:0� 4:3Þ � 10�25e cm, given by Regan

et al. [8] and our accurate theoretical EDM EF, we obtain a
new limit for the electron EDM to be ð8:7� 9:3Þ �
10�28e cm which translates into an upper limit, jdej<
2:0� 10�27e cm at 90% confidence level.
In conclusion, we have obtained the most accurate limit

for the electron EDM to date by improving the value of the
EDM EF for the ground state of atomic Tl by treating the
unusually strong electron correlation effects to all-order
using the relativistic CCSD(T) method.
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