Report on the Kodaikanal and Madras Observatories from 1st April to 31st December 1901.

Kodaikanal Observatory.

In accordance with the wish of the Observatories Committee of the Royal Society the annual report is hereafter to be for the calendar and not the official year, and hence the present report is for the nine months ist April to 3rst December 190 I.
2. Staff.-The only change amongst the assistants was the transfer of Mr . C. Theodore, the fourth assistant, to the new post of Magnetic Observer, and the appointment of Mr. M. G. Subrahmania Aiyar, B.A., in his place. Mr. Theodore since his transfer has been at Dehra Dun undergoing special training in Magnetic work.
3. Buildings and Grounds.-The work on the main buildings was practically completed during the year, with the exception of the supply of water to the dark room. Porches, not included in the original design, have also been erected to protect the east and west doors, as it was found impossible without them to keep the laboratory and spectrograph room dry during the monsoon. These porches have greatly improved matters, but it may be necessary to take further steps to protect the parts of the buildings exposed to the strongest winds, for in gales accompanied by rain the moisture is driven through the walls in several places and the rooms become so damp that it is difficult to keep the instruments in good order. The transit room was nearly completed by the close of the year and the anemometer tower was about half built.

Work on the Magnetic buildings was begun in February, but the excavation for the underground room took much more time than was expected owing to the difficulty of blasting away a mass of very hard rock in a position not far from other buildings. The building is now ready to be roofed in and all materials for this are on the spot.

Considerable progress has been made in planting and laying out the grounds, but it will be a good many years before this will have much effect in modifying the strength of the winds to which the Observatory is exposed. The chief difficulty at present lies in the selection of suitable trees, since the ground is largely covered with gravel (where it is not rocky) and dries up very quickly, even after heavy rain.
4. Instruments.-The chief instruments in use in the Observatory are the following:-
(a) The Cooke Equatorial.-This is an old instrument originally bought by the Government of India for observations on the transit of Venus and afterwards used for some years at South Kensington and Poona. It is mounted in the south dome. It is of 6 -inch aperture and about 7 feet focus. It is mounted on Messrs. Cooke's usual plan which is hardly suitable for such a low latitude as this. It has been fitted with a projection apparatus for roughly determining the position of sunspots and faculæ.
(b) The Lerebour and Secretan Equatorial.-This is also an old instrument from the Madras Observatory, but before setting it up here it was reconstructed by Sir Howard Grubb and provided with a new driving clock with electrical control. It is mounted in the north dome, on the English plan, which is specially suitable for this latitude, but the mounting is not quite so rigid as might be desired. The object glass has an aperture of 6 inches and the focal length is about 8 feet. It is mounted side by side with a Grubb portrait lens of 5 inches aperture and 36 inches focus.
(c) Spectrograph.-This consists of a polar siderostat with an in-inch mirror, a 6 -inch lens of 40 feet focus by Grubb and a concave

Rowland grating of 10 feet focus mounted on Rowland's plan by Hilger. The slit can be replaced by a camera so that direct photographs of the sun of about $4 \frac{1}{2}$ inches diameter can be obtained at any time.
(d) Table Spectroscope.-An automatic 6.prism spectroscope (Hilger) which can be used either for eye-observations or for photographing the spectrum. It is usually employed in connection with the 40 -foot lens and a right-angled prism.
(e) Small grating Spectroscope, by Hilger, is used chiefly with the Lerebour and Secretan equatorial.
(f) Photo-heliograph, similar to that used at Greenwich and Dehra Dun, giving an enlarged image of the sun 8 inches in diameter.
(g) Mean time clock, Kuhlberg, No. 6326.
(h) Sidereal clock, Shelton.
(i) Mean time Chronometer, Kuhlberg, No. 6299.
(j) Sidereal Chronometer, Kuhlberg, No. 6134.
(k) Transit Instrument.-This is one of the instruments formerly used by the G. T. Survey of India for longitude work.
(l) Chronograph.-This also belonged to the Survey of India and is of a very heavy pattern. A new tape chronograph has now been indented for.
(m) Micrometer, for measuring photographs of the spectrum, by Hilger.
(n) Theodolite.
(o) A pair of Photo-Theodolites for work on clouds.
(p) Sextant.
(q) Seismometer.-Milne's horizontal pendulum.
(r) Actinometer.-Balfour Stewart's form.
(s) Solar Calorimeter.-Buchanan's.
(t) Induction coil and vacuum tubes.
(u) Small heliostat, and a complete set of meteorological instruments, which will be referred to in detail below.
Plans and specifications have been sent home for a spectro-heliograph and for a plane grating spectroscope to be used with the 40 -foot lens.
5. Astronomical Observations.-Instructions having been received from the Government of India to draw up a programme of observations, the following was submitted as a tentative scheme, it being recognized that some experience with the instruments was necessary before a final satisfactory plan of operations could be fixed on:-
I,-Sun spots.
(a) A daily examination of the sun's surface for spots.
(b) When a spot of sufficient size is present, one or more photographs of the spectrum with the necessary comparison spectra will be taken. It is intended to take photographs of as large a part of the spectrum as possible, so that the taking of the photographs will occupy a considerable time ; only a small part of the spectrum can be taken at a time.
(c) If it be found impracticable to photograph the whole of the visible spectrum, the photographs will be supplemented by eye-observations.
(d) The photographs will be at once developed.
(e) The measurement and reduction of the negatives will, as far as possible, be kept up to date, but as there will always be plenty of cloudy days on which this work can be done, the first duty on bright days will always be the making of observations.

II.-Prominences.

A similar programme to that for sun spots, but this cannot be fully carried out till some additional apparatus has been obtained,
III.-Photography of the Sun in monochromatic light.

The instrument for this has not yet been obtained.

IV.-Actinometry.

Systematic observations with Balfour Stewart's Actinometer have been carried on for a year and will be continued. Additional observations will be made with another form of instrument which bas been lent by Dr. J. Y. Buchanan.

V.-Meteorological observations.

These have been carried on for nearly two years and will be continued. VI.-Earthquake records.

This has been in progress since the beginning of 1900 and will be continued.

> VII.-Cloud photography.
> VIII.-Special observations.

In addition to these routine observations an observatory; must always be ready to make special observations when the need for them arises. To make the best use of the solar observations much laboratory work will be required, but for this no programme can be laid down. Its nature and extent will depend entirely on the problems which suggest themselves during the progress of the work.

It is hardly likely that the whole of the above programme can be carried out by the existing staff, but I, IV, V, and VI will be carried out in full and as much as possible will be done in connection with the others.

This was submitted by the Government of India to the Observatories Committee of the Royal Society, but was not accepted by them. They instead laid down the following plan of work:-

Solar physics work:

I. That the most widened lines in the sun spots should be visually observed daily, six of such lines being observed between F and b and six between b and D.
2. That other widened lines should be noted.
3. That visual observations should be made of the prominences and chromosphere.
4. That photographs should be taken by the Hale-Deslandres method.

After the above requirements are fulfilled, it is desirable that if possible-
5. Photographs should be taken of sun spot spectra, for which, it is to be noted, comparison spectra, other than the solar spectrum, are unnecessary.

Meteorological observations.

6. As at present.

Other observations.

7. Actinometry.
8. Earthquake records.
9. Cloud photography.

The observations under the heads 7,8 and 9 should only be undertaken if the resources of the Observatory admit of the complete fulfilment of the earlier part of the programme.

The work of the Observatory is consequently now conducted according to this plan so far as it is possible to do so with instruments designed specially for photographic work. The daily routine of work on the sun is as follows : Early in the morning the sun's surface is carefully examined with the Cooke equatorial. If any spots or prominent faculæ are present, their positions are approximately determined by projecting the sun's image on a graduated dise 8 inches in diameter. Drawings are made of the details. of the spot and notes of any special features. The spectrum of the spot is then examined either with the small
grating spectroscope attached to the Lerebour and Secretan equatorial, or with the table spectroscope used in connection with the 40 -foot lens. If the spot be of considerable size, or if it seems probable that the weather at Dehra Dun will be cloudy, photographs of the spot are also taken. In the case of large spots photographs of the spectrum will also be taken with the spectrograph. Daily observations of the bright lines visible in the chromosphere and prominences are made with the small grating spectroscope and with the table spectroscope.

From March 14th, when regular observations were begun, to December 3 1st the sun's surface was examined on 248 days, and on 62 of these, spots were recorded, but most of them were very small. Drawings were made on 48 days, and 21 photographs were taken. Eighty photographs of spectra have been taken, and diagrams have been prepared both for the grating spectrograph and the table spectroscope to facilitate the identification of lines. The work with the spectrograph was seriously interfered with by the building operations during a considerable part of the time, but this is now past and the instrument is in excellent working order. To facilitate work on the prominences an instrument for bringing any part of the limb on to the slit has been indented for. Two small electromotors for actuating the slow motions of the siderostat in right ascension and declination have also been asked for.

During the total eclipse of May 18th observations were made of the times of contact, some photographs were taken, and observations were made with the solar calorimeter. Clouds, however, rendered the last of these valueless. Preparations were made for fully observing the annular eclipse of November Ioth-1 ith, but the day was cloudy throughout with very high wind and a thick drifting mist. Slight glimpses of the sun lasting for a few seconds, and even then only through clouds, were all that could be obtained. The only interesting observations that could be made were those on the barometer which behaved as in total eclipses.

The great comet (1901α), though looked for in the morning after the receipt of the telegram announcing its discovery, was first seen on the evening of May 8th. It was then a very brilliant object, though close to the horizon. Several photographs of it were taken with the Grubb portrait lens, but the possible exposures were short and were much interfered with by clouds near the horizon and by lightning, so that the results were not very satisfactory.

Time observations are made with a sextant twice a week pending the erection of the transit instrument.
6. Actinometer Observations. - These are made only on the finest days and are consequently not very numerous, except in the first three months of the year which are not included in this report. Observations with the Balfour Stewart Actinometer have been made on 29 days, on only 2 of which complete sets (i.e., at 1oh., 12 h, , 14h.,) were obtained. Observations with the Solar Calorimeter have been made on 4 days and extending over 12 hours. To avoid the effect of wind these observations are now made inside one of the domes.
7. Meteorological Observations.-Eye-observations of temperature (wet and dry bulb, maximum and minimum) pressure, wind direction and velocity, cloud, and rainfall are made daily at 8 h ., roh. and $\mathbf{1 6 h}$. local mean time at both Kodaikánal and Periyakulam. Readings are also taken at both stations of sunmaximum and grass minimum thermometers. Continuous records of temperature (wet and dry) and pressure are taken at both stations with Richard recording instruments. These records are at once tabulated and reduced using the eye-observations to give scale corrections. At Kodaikánal wind velocity, rainfall, and bright sunshine are also recorded continuously. No record is as jet got of wind direction owing to the anemometer tower not being completed. As soon as the tower is ready a Beckley anemograph and a Dines "pressure tube" recorder will be set up. It is hoped that this may be done early in March.

All meteorological observations are at once reduced and tabulated. A daily 8 A.M. weather telegram is sent to the Meteorological Reporter to the Government of Madras, and copies of the 8 h , observations and of the 10 h , and 16 h . registers are sent to the Meteorological Reporter to the Government of India. Various attempts have been made to obtain a suitable formula for reducing the

Periyakulam barometer observations to sea-level. The height of the barometer cistern above mean sea-level is 944 feet, and its distance from Madura is about 40 miles. The Madura barometer is 447 feet above mean sea-level, but none of the usual formulæ will give satisfactory sea-level reductions for the Periyakulam readings, as judged by the Madura readings, even when due allowance has been made for the run of the isobars as shown by the Daily Weather Chart. The best results are got by using the maximum temperature of the previous day instead of the actual temperature at the time of observation in the reduction. This gives a good result in the mean of a number of observations, but the errors on individual observations are considerable. Similar difficulties are experienced at other stations situated near large hill masses, and for the present it has been thought best not to attempt any reduction to sea.level.
8. Seismometer Records.-The Milne Horizontal Pendulum is placed in the room below the south dome. The boom is placed north and south and the pier is built on the solid rock. The instrument has been in good working order throughout the whole period. A list of the principal shocks recorded during the year 190 I is given in Appendix I.
9. Litrary.-A book-binder and a book-binder's boy have now been added to the establishment, and 70 volumes have been bound. 'Iwo hundred and fifty books and pamphlets have been presented to the Observatory during the year and 12 volumes have been purchased. Two hundred and twenty-nine sheets of L'Atlas de la Carte Photograpnique du Ciel have also been received.
10. General.-The past year has been one of distinct progress but, of course, a great part of the work done has been more or less experimental. Much time has had to be devoted to the adjustment of instruments, the supervision of workmen, and the training of assistants. At the same time the paucity of sun spots has made it impossible to train the assistants in the special work of the spectroscopic observations of sun spots. Meteorologically the year has been an abnormal one so far as can be judged by existing statistics. The rainfall in January, February, June, and September was much above the average, and the total number of days on which rain tell was also much above the average. The period October to December is probably always the most trying period of the year, but in the past year it was very much worse than in either 1899 or 1900 , and the health of the assistants and servants suffered considerably. High winds are experienced in all months of the year, and, though they are at all times trying in such an exposed situation, they are peculiarly so when accompanied by mist or rain as is usually the case during the North.East monsoon. It is interesting to note that the highest wind velocity for any one day was 882 miles on April 26th, when a cyclone was passing up the Arabian Sea at some considerable distance from the coast. The highest velocity recorded at a coast station on the same day was 360 miles at Minicoy. The lowest dry bulb reading in the shed was $39^{\circ} \mathrm{I}$ on November 2fth but the lowest reading on the grass was $23^{\circ} 4$ on December 6th. The temperature of the air 4 feet above the ground probably never falls below freezing point in a fairly exposed situation, but, especially in damp places, hoar frost is of frequent occurrence, when the air is dry and evaporation is going on rapidly.

The Madras Observatory.

The following report has been submitted by Professor R. Ll. Jones, Deputy Director of the Madras Observatory.

This report refers to the period ist April to 31st December 1901.

1. Staff.-There has been no change in the staff since the last report.
2. Astronomical observations and reductions.-The observations for the time determination were carried on as usual with the transit instrument by Troughton and Simms and the sidereal clock, No. 1408, by Dent. The observing weather was not very favourable during the period.

The following is a summary of the work :-

3. Meteorological observations.-Meteorological observations were carried on as before and the registers brought up to date. An attempt was made to get a series of the temperatures of the air film in contact with the ground during the hot weather by means of a platinum thermometer and a Calendar Recorder. The series obtained was satisfactory but was not so complete as is desirable. They show that there is a very large difference between the temperature at the ground and the temperature at 4 feet above during the day hours when the dry westerly winds are blowing, and that this difference is smaller when the sea breeze sets in.

These observations will be continued during the year; later on an attempt will be made to determine the intervening temperature gradient.
4. Time Service.-The time service was continued as usual. The Fort Time Signal Gun failed on 19 occasions out of 550 , giving a percentage of success of 96.5 . The Time Ball at the Port Office failed at 1 P.m. on 3 days, but on two occasions it was dropped at 2 P.M. and the 4 P.M. signal was received at the Central Telegraph Office every day except on December 29, when there was an interruption on the line.

The following table gives a list of failures:-

Daily weather telegrams and special storm observations.-Daily weather messages were sent to Simla, Bombay, and Calcutta. The $1 \mathrm{I}^{\mathrm{h}}$ and $\mathrm{r} 6^{\mathrm{h}}$ observations of Madras were reduced and sent to Calcutta every month. Special storm observations were supplied to the Bengal Reporter on the following occasions:-

May 5 and 6 and 22 to 24 ; June 6; September 19 to 22; November 13 and 14 and 24 to 26 ; December 8 and 9 .
6. Instruments. -The working of all the instruments except the "wet bulb" of the thermograph has been satisfactory. The electric clock by Shephard and Sons was cleaned and has been working very satisfactorily since.
7. The following weather summary of Madras for the year 1901 was published in the Fort Saint George Gazette.

Pressure. - Was above the average for March, May, June, September and December, and below the average for the remaining months. The mean pressure for the day was lowest on the 7 th June, $29^{\circ} 5^{29}$ inches, and highest on the 23 rd January, $30^{\circ} 168$ inches.

Temperature.-Was above the average for every month except December when it was $0^{\circ} \cdot{ }_{2} \mathrm{~F}$. below. The highest shade temperature was $108^{\circ}{ }_{5} \mathrm{~F}$. on the 4 th June and the lowest $59^{\circ} 5 \mathrm{~F}$. on the 26 th November. The excess of the mean temperature was greatest in February and it averaged $3^{\circ} \% \mathrm{~F}$.

Humidity.-Was below the average for March, equal to the average for May and June, and above the average for all the other months. Humidity was lowest on the 23 rd May when it averaged 31.

Rainfall.-Was below the average for January, March, April, May, June, September, and October and above the average for the remaining months. The deficiency was greatest for May, 2.06 inches, and the excess was greatest for December for which month it was 8.87 inches. The rainfall for the year was 10.82 inches above the average, the total fall being 59.84 inches.

Wind.-Was most abnormal in February when it was one point more southerly than usual, with a daily velocity 38 miles higher than the average. The highest daily velocity was 415 miles on the 9 th December; the lowest daily velocity was 42 miles on the 3rd October.

Sunshine.-Was below normal for all months.
Storms.-A storm formed in the south of the Bay at the end of the first week in December which crossed the Coromandel Coast near Madras. It was a depression of but slight intensity, but gave somewhat stormy weather over the centre of the Bay and on the Madras Coast. The chief feature of the storm was the exceptionally heavy rain it gave at Madras and in the neighbourhood. The amount that fell at the Observatory on the 9 th was 10.62 inches and this has been exceeded only on one occasion during the last 41 years, viz., on the 18 th May 1877, when the fall was $13^{\circ}{ }^{\circ}$ inches.

C. MICHIE SMITH,
Director, Kodaikánal and Madras Observatories.

Kodaikânal,

Appendix I.
Kodaikánal Observatory Seismological Records.

10

Appendix II．

Extreme monthly meteorological records at the Kodaikánal Observatory in igoi．

家		言＝－	
$\stackrel{\dot{2}}{\frac{2}{3}}$	\％		
		㔯 운	
		㐫	
		商	
	$\begin{aligned} & \dot{8} \\ & \stackrel{\rightharpoonup}{8} \\ & \stackrel{3}{3} \end{aligned}$	㐫	
		－	
曾 沓			
$\begin{aligned} & \dot{4} \\ & \text { 品 } \\ & \text { ! } \\ & \vdots \end{aligned}$	$\begin{gathered} \text { 菏 } \\ \stackrel{y}{\mid c} \end{gathered}$		
		－monnoytinooo 	
	夢容		
	崽		
	$\begin{aligned} & \dot{\overline{3}} \\ & \text { 蕃 } \end{aligned}$		
		育	
	－䓂		

Appendix III.

Hours.	I	2	3	4	5	6	7	8	9	ı	II	12	${ }^{13}$	14	15	16	17	18	19	20	${ }^{21}$	22	${ }^{23}$	24	Totas
January	15	15	15	${ }^{15}$	15	15	14	14	14	14	15	16	15	15	13	11	10	10	11	13	13	14	15	15	332
February	11	10	${ }_{10}$	11	10	${ }^{10}$	${ }_{10}$	10	11	13	${ }^{13}$	13	12	1	11	ı0	10	9	8	9	9	10	11	10	252
March .	18	19	18	18	18	17	18	18	20	19	19	18	16	15	14	13	1	11	10	10	10	12	17	18	377
April	${ }^{13}$	13.	13	13	${ }^{13}$	12	${ }^{13}$	${ }^{13}$	14	15	14	14	13	11	11	11	11	10	9	10	10	10	11	12	289
May	12	12	11	11	10	10	10	${ }_{11}$	13	13	13	13	13	${ }^{13}$	13	13	12	10	11	11	12	12	12	12	283
June	15	15	15	16	${ }^{17}$	16	16	14	14	14	15	14	14	14	14	14	13	15	15	15	15	15	14	15	354
July .	${ }_{17}$	17	16	17	16	16	15	16	16	16	16	15	15	15	16	16	17	17	16	16	16	16	16	17	3^{86}
August .	13	15	15	14	${ }^{13}$	${ }^{13}$	${ }^{14}$	12	11	12	12	${ }^{3}$	12	12	12	14	13	12	11	11	12	12	12	If	301
September	${ }_{11}$	12	11	1	10	11	11	11	11	12	11	11	11	10	เo	10	9	8	8	9	9	9	10	so	246
October	13	12	12	12	12	10	11	11	11	11	12	\pm	11	1	9	9	9	9	1	11	10	12	13	13	266
November	10	11	11	${ }^{11}$	11	11	11	11	11	12	12	11	11	ı0	9	9	9	8	9	10	10	11	11	10	250
December	14	14	4	13	14	${ }_{5}$	14	15	16	16	16	16	16	14	13	12	II	12	12	13	14	${ }^{1}$	14	14	336
Sums	162	165	161	162	159	15^{6}	157	156	162	167	163	165	159	${ }^{151}$	145	142	135	${ }^{131}$	${ }^{131}$	${ }_{13}{ }^{8}$	140	147	156	157	3,672
Means	14	14	13	14	13	13	13	13	14	14	14	14	13	13	12	12	11	1	1	12	12	12	13	13	306

Appendix IV.
Kodaikánal Observatory.-Mean hourly bright sunshine for the year 1901.

момтн.	Mean bright hours of month.													
	5.6.	6.70	7 -8.	89.	9-10	10-11.	1-12.	12.13.	13.14.	14.15.	15-16.	16.17.	17-18.	18-19.
January	$0^{\prime} 2$	0.8	-'9	-'9	${ }^{\circ} 9$	0.8	0.8	O'7	$0 \cdot 7$	$0 \cdot 6$	$0 \cdot 4$	$0 \cdot 1$...
February	...	$0 \cdot 2$	0.8	$\bigcirc \cdot 9$	$\bigcirc \cdot 9$	$\bigcirc \cdot 8$	${ }^{\circ} 7$	$0 \cdot 5$	$0 \cdot 5$	$\bigcirc \cdot 4$	$0 \cdot 3$	$0 \cdot 2$	$\bigcirc \circ$...
March	...	$\bigcirc{ }^{\circ} 3$	0.8	$\bigcirc \cdot 9$	${ }^{\circ} 9$	${ }^{\circ} 9$	0.8	0.8	0.7	0.7	$0 \cdot 6$	0.5	- 3	...
April	...	$\bigcirc \cdot 3$	$0 \cdot 7$	$0 \cdot 7$	0.8	$0 \cdot 8$	0.8	0.8	$0 \cdot 5$	$\bigcirc{ }^{\circ} 5$	${ }^{\circ} 4$	0.3	${ }^{\circ} \mathrm{I}$..
May	...	$\bigcirc \cdot 3$	${ }^{\circ} 6$	0.8	0.8	0.8	0.8	0.6	0.5	$0 \cdot 5$	$0 \cdot 3$	${ }^{\circ} 3$	$0 \cdot 1$...
June	...	$0 \cdot 2$	0.5	0.7	0.7	$0 \cdot 6$	0.7	0.5	$0 \cdot 4$	0.3	0.2	0.2	$0 \cdot \mathrm{I}$...
July	...	$0 \cdot 1$	$0^{\circ} 4$	$0 \cdot 6$	$0 \cdot 5$	$0 \cdot 5$	$0 \cdot 5$	$0 \cdot 4$	$\bigcirc \cdot 3$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 1$..
August	...	$0 \cdot 2$	$\bigcirc \cdot 4$	0.6	0.6	$\bigcirc \cdot 6$	$\bigcirc{ }^{\circ} 5$	$\bigcirc \cdot 3$	$0 \cdot 2$	$0 \cdot 2$	${ }^{0} 2$	$0 \cdot 1$	00	...
September	\ldots	$0 \cdot 1$	O'4	$0 \cdot 7$	0.6	0.5	0.5	0.3	$0 \cdot 2$	$0 \cdot 1$	$0 \cdot 1$	0.0	$0 \cdot 0$...
October	-0	0.5	0.7	$0 \cdot 7$	0.7	$0 \cdot 5$	$0 \cdot 4$	0°	0.2	0^{2}	$0 \cdot 1$	$0 \cdot 0$...
November	**	\bigcirc	$0 \cdot 3$	0.5	$0 \cdot 5$.094	0.4	$0 \cdot 4$	${ }^{\circ} \mathrm{3}$	$0^{\circ} 2$	${ }^{\circ} 2$	$0 \cdot 1$	0 -0	...
December	...	$0 \cdot 1$	$0 \cdot 6$	0.7	$0 \cdot 7$	$\bigcirc \times 7$	$0 \cdot 7$	0.6	${ }^{\circ} 6$	$0 \cdot 5$	$0^{\circ} 4$	0.4	$0 \cdot 0$...
Mean	...	$0 \cdot 2$	- 6	- ${ }^{\prime}$	$0 \cdot 7$	$\bigcirc \cdot 7$	$\bigcirc \cdot 6$	$0 \cdot 5$	$0 \cdot 4$	$0 \cdot 4$	${ }^{\circ} 3$	$0^{\prime} 2$	$0 \cdot 1$...

Appendix V.

Kodaikánal Observatory.-Number of days in each month on which the Nilgiris were visible.

Appendix VI.

Extreme Monthly Meteorological Records at the Periyakulam Observatory in 1901.

Appendix VII.

Abstract of the Mean Meteorological Condition of Madras in igoi, compared with the average of past years.

Duration and Quantity of the Wind from different points.

From	Hours.	Miles.									
North	196	1,197	East	274	1,707	South	166	1,133	West	269	2,332
N by E	120	891	E by S	557	3,004	S by W	247	1,575	W by N	213	1,983
NNE	239	1,536	ESE	205	1,384	SSW	172	1,163	WNW	100	844
NE by N	48 I	2,826	SE by E	726	4,012	SW by S	227	1,402	NW by W	96	660
NE	233	1,865	SE	330	2,044	SW	150	954	NW	45	236
NE by E	467	3,008	SE by S	801	6,922	SW by W	137	819	NW by \mathbf{N}^{\prime}	114	486
ENE	226	1,339	SSE	277	2,358	WSW	163	1,180	NNW	47	253
E by N	434	2,674	S by E	334	2,654	W by S	284	2,219	N by W	283	1,460

There were 147 calm hours during the year. The resultant corresponding to the above numbers is represented by a S.E. by E. wind, blowing with a uniform daily velocity ot 45 miles.
Appendix VIII.
Madras Observatory.-Number of hours of wind from each point in the year 1901.

	момтн			N	.					s	6		E					12	13	4		s	7	8	19	20	${ }^{1}$	22	23	w	${ }_{2}$	${ }^{6}$	7	28	29	-	3	Calm.
January				..	\pm	2	235		12	111	83	216	70	${ }_{238}$		8		16	24	\pm	2	..	\pm	2	2	.'.	\cdots	\cdots	...	20
February	-							20	43	54	15	7	8 1		ı	42	24	14	I	3	:	2	3	6	2	2		\cdots	16
March				1	120		19	78	30°	45	25	12	20			64	8		\cdots	...			\ldots	13
April .	-			19	2	10				47		68	28	14	28	20	7	1	2		\ldots	...			\ldots	9
May .				..	1				1	3	4	7	5	13	1		I	23	87	5		33	45	30	45	18	11	23	10	5	15	9	2	4		2	2	9
June -				3	:	12	2		1	1	...	\pm	7	7		9		32	72	49		25	43	30	39	16	14	32	8	46	58	22	5	5	3	..	3	...
July				10	1					3	1	3	3	5			4	21	19	7		37	28	31	49	25	38	37	8_{2}	28	64	31	20	7	14	1	13	6
August	-				...							5		25			8	20	18	5	56	37	49	41	49	43	30	44	61	55	46		21	14		3	9	7
September				8	1		111		5	9	1	23	29	70	2			38	24	36		9	47	11	22	29	20	18	28	29	23	5	6	3	15	3	48	16
October	-			27	20	47	745	45	22	59	16	12	16	31	18			56	49	6	6	9	2	3	12	15	15	7	23	6	7	5	12	12	29		74	40
November	-				56	40	- 57	76	63	43	42	44	40	29	9	9	8	1	8	-		1	1	3	1	...	\ldots	...	-••	20	8	11	9
December				40	39		5297		83	47	28	16	17					2				${ }^{23}$	2
		Anm											274							277		166			227	50	137	63	284				96		14	47	83	147

Appendix IX.

Appendix \mathbf{X} ．

	\％	\％	\％	：	\％	\％	宮	$\stackrel{\infty}{6}$	$\stackrel{\square}{4}$	5	$\stackrel{\circ}{i}$		＋
$\frac{\text { g }}{6}$	：	：	：	：	：	：	：	：	：	$\%$	$\stackrel{\square}{\circ}$	：	\％
$\stackrel{\square}{2}$	：	；	：	：	：	：	\vdots	：	\％	\％	앙	${ }^{\circ}$	\％
$\stackrel{\text { ® }}{ }$	；	：	：	：	：	：	；	\％	\％	¢	：	：	？
$\stackrel{\square}{\circ}$	：	：	：	：	；	：	$\stackrel{7}{0}$	\％	＋	；	：	：	\％
$\stackrel{\infty}{\circ}$	：	：	：	：	：	\％	：	\％	：	：	：	：	\％
$\stackrel{\square}{4}$	：	：	：	：	：	：	\％	\bigcirc	：	：	：	：	$\stackrel{3}{8}$
$\stackrel{\circ}{\circ}$	：	：	：	：	：	\％	\％	－	号	：	：	：	\％
$\stackrel{8}{8}$	：	：	：	：	：	\％	$\stackrel{8}{3}$	突	\％	：	：	：	$\stackrel{\%}{2}$
3	：	：	：	：	：	\％	：	$\stackrel{\circ}{\circ}$	：	눙	：	：	\％
$\stackrel{\pi}{8}$	：	：	：	：	：	：	\％	\％	：	\％	：	：	\％
a	：	：	：	；	：	？	\％．	$\stackrel{?}{8}$	：	：	：	：	¢
$\stackrel{\square}{1}$	：	：	：	：	：	：	\％	咢	：		；	：	$\stackrel{\square}{\square}$
$\stackrel{\circ}{\circ}$	：	：	：	；	：	：	\％	：	है	：	：	：	8
2	：	：	：	1		：	\％	$\stackrel{\square}{8}$	：	：	：	：	$\stackrel{8}{8}$
$\stackrel{\sim}{\sim}$	：	：	：	：	\％	：	\％	！	：	：	；	：	\％
$=$	：	$\stackrel{8}{8}$	：	：	：	：	\％	\％	；	：	：	：	$\stackrel{8}{8}$
a	：	：	：	：	\％	\％	\％	$\stackrel{\ddagger}{\circ}$	E\％	：	；	：	$\stackrel{\circ}{\circ}$
\square	：	？	：	：	：	$\stackrel{\circ}{\circ}$	\％	$\stackrel{\text { \％}}{\square}$	咢	：	：	：	＋
\pm	：	$\stackrel{7}{2}$	：	：	：	：	！	：	\％	：	：	：	8
2	：	：	：	：	：	：	咢	\％	：	$\stackrel{\square}{\circ}$	\％	：	${ }_{8}^{8}$
ェ	\pm	5	：	：	：	：	亏亏	：	！	：	$\stackrel{\circ}{3}$	\％	$\stackrel{\square}{6}$
$=$	：	\％	：	：	：	：	\％	：	管	－	\％	$\stackrel{7}{3}$	$\stackrel{7}{+}$
$\stackrel{\square}{-}$	：		：	：	：	：	\％ั®	：	\％	：	${ }^{3}$		$\stackrel{\square}{6}$
\bigcirc	\％	：	8	：	：	：	号	：	：	：	！	$\stackrel{\circ}{\square}$	\％
\otimes	\％	：	：	：	：	：	\％	：	：	\vdots	$\stackrel{\text { ® }}{\text { ¢ }}$	？	品
\cdots	$\stackrel{\square}{\circ}$	！	：	：	：	：	：	；	喜	呂	$\stackrel{0}{5}$	\％	$\stackrel{\square}{4}$
\bigcirc	：	\vdots	：	：	：	：	：	：	：	\％	\bigcirc	$\stackrel{\text { \％}}{0}$	$\stackrel{\square}{4}$
n	：	：	：	：	：	：	：	：	：	$\stackrel{5}{3}$	菅	$\stackrel{\text { \％}}{\square}$	$\stackrel{\square}{1 .}$
－	：	：	：	：	：	：	－	ภั	：	：	枈	！	8
\cdots	$\stackrel{3}{0}$	：	：	：	：	：	：	：	：	$\stackrel{9}{8}$	$\stackrel{9}{8}$	$\stackrel{\square}{2}$	$\stackrel{\square}{*}$
\cdots	：	：	：	：	：	：	：	；	：	\％	$\stackrel{\square}{3}$		2
－	¢	：	：	：	：	：	：	：	：	\％	吕	9	$\stackrel{\square}{8}$
z	：	：	：	－	：	：	：	：	\％	\％	\％	\％	$\stackrel{5}{3}$
		$\begin{aligned} & \frac{2}{3} \\ & \frac{3}{3} \\ & \frac{3}{2} \end{aligned}$	息	䆣	妾	$\stackrel{\dot{O}}{\underline{\text { a }}}$	童	总					妾

Appendix XI.

Madras Observatory.-Wind, Cloud, Bright Sunshine, and Evaporation.

Month.	Wind Resultant.		Clouds (0.ro).					Bright sunshine.		Anounty or Average pa day,
	Velocity.	Direction.	8 h .	10 h.	$16 \mathrm{h}$.	20 h .	Mesn.	Average per day.	Greatect No. oi hours iny.	
1901	Miles.	Point.						Hours.	Hours,	Inch.
January	120	E by N	29	$4 \cdot 5$	$3 \cdot 3$	23	$3 ' 3$	8:4	100	${ }^{0} \mathbf{1 7 \%}$
February	128	E by S	36	45	2 '8	$2 \cdot 1$	$3{ }^{\prime}$	87	$10 \cdot 5$	'204
March	113	E by S	$2 \cdot 1$	$3{ }^{11}$	r 6	13	20	9'4	10.6	215
April . :	175	SE by S	52	44	$3 \cdot 5$	2.1	$3^{\prime 8}$	$8 \cdot 3$	n^{12}	'271
May .	130	SSE	$3 \cdot 9$	$3 \cdot 3$	32	3.0	3.4	779	99	'288
June .	115	SW by S	$4^{\prime} 7$	$5 \cdot 2$	$6 \cdot 3$	53	$5 \cdot 4$	54	90	${ }^{3} 36$
July •	156	WSW	77	73	8.2	$8 \cdot 3$	78	$3 \cdot 2$	9.5	
August	81	SW	75	6.8	$7{ }^{\circ}$	57	67	49	20.6	'234
September .	41	SE by S	6.1	59	5:2	38	53	47	100	${ }^{188}$
October	26	NE	54	57	58	51	55	$5 \cdot 6$	10.7	'208
November .	104	NE by N	6.2	72	$7 / 2$	57	6.7	3'5	$3 \cdot 4$	'87
December - :	166	NE by N	44	54	48	35	45	$5 \cdot 4$	8.5	159
Annotl	45	SE by E	$5{ }^{\circ}$	53	4'9	40	48	$6 \cdot 3$	\cdots	"'

Appendix XIL．
Mean Monthly and Annual Meteorological Results at the Madras Observatory in Igor．

		Barometer．		Dry Bulb Thepmoneter				Wet Bulb． Mean．			Sun Max． in Vac．	Min on grass．	Wind．			Rain．		$\begin{gathered} \text { Clear } \\ \text { Sky. } \end{gathered}$	$\begin{gathered} \text { Bright } \\ \text { sun- } \\ \text { shine. } \end{gathered}$	General Weather．
		$\begin{aligned} & \text { Reduced } \\ & \text { to } 32^{\circ} \end{aligned}$	Daily Range．	Mean．	Max．	Min．	Range．		By Blanford＇s Tables．				$\begin{aligned} & \text { Daily } \\ & \text { Velocity. } \end{aligned}$	Mean	Direction．	Amount．	Days．			
		Inches．	Inch．		－	。	。	。	Inch．	Cents．	。	－	Miles．	Points．	Points．	Inches．	Na．	Cents．	Hours．	
lanuary	：：	29．959 ${ }^{\text {a }}$	$\xrightarrow[\substack{\text {－120 } \\ \hline 120}]{ }$	78．4．	$86 \cdot 5$ 876 87	${ }_{7}^{70 \cdot 1}$	16.4	${ }^{73}{ }^{\circ}$	\bigcirc	76	130 1300 130	${ }^{679}$	133 160 160	9	${ }_{\text {E b }}{ }_{\text {by }} \mathrm{N}$		7	67 67	$252 \% 6$ $242 \cdot 6$	
March		．944	－124	88.	89.8.	71.6	18．2	${ }_{74}^{74.6}$	${ }_{771}$	${ }_{73}^{74}$	${ }^{140^{\circ} 9}$	714 69%	$\begin{array}{r}162 \\ 132 \\ \\ \\ \hline\end{array}$	9	Eby	${ }_{0}$	7	${ }_{80} 8$	${ }^{2929} \cdot 3$	
April	：	－820	$\stackrel{123}{122}$	88.6 88.0 88		776 88 80 8	${ }_{15}{ }^{15}$	788.3	：888	75	${ }^{143}{ }^{1 / 1}$	${ }^{760^{\circ}}$		13	SE by	．＇．		${ }_{6}^{62}$	${ }^{2+0.4}$	
May		${ }_{7}^{743}$	$\begin{array}{r}122 \\ \cdot 119 \\ \hline 129\end{array}$	88.0 88.4	100\％	$80 \cdot 6$ $82 \cdot 5$	18.4 18.5	79.3 78.2	－890	67 62	1444．4	79.4 88.4 8	200 227	15 19	$\xrightarrow[\text { S bve }]{\substack{\text { c }}}$			66 46		
fuly ：	：\cdot	$\stackrel{699}{ }$	$\cdot 122$	85.3	${ }^{96} 6^{\prime} 1$	${ }_{780}$	172	${ }_{76}{ }^{\prime 2} 9$	810	67	13315	${ }_{77} 7^{4}$	183	21	Siv by w	${ }^{6} 6.64$	16	22	100.5	
August	：\quad ：	$\stackrel{734}{793}$		83.8 83 83		$77 \cdot 7$ 77.5	16.5 157 157	78.5 78.4	${ }^{-859}$	74		76.4 76.3 8	151 125	$\begin{array}{r}20 \\ 14 \\ \hline\end{array}$	${ }_{\text {STE }}^{\text {SSE }}$	7 ${ }^{7} 28$	20 12	33 47	（152．0	
October		－819	${ }^{127}$	88.9	${ }_{90}{ }^{9} 4$	$75^{5} 3$	${ }_{15}{ }^{15}$	${ }_{774}^{784}$	－881	81		${ }_{73}{ }^{7} 5$	125 97	14 3	NEby N	$\stackrel{4}{9} 1$	${ }_{1}^{12}$	45	1749	
November	－	$\begin{array}{r}883 \\ 30.000 \\ \hline\end{array}$	${ }_{-114}$	779 75 7×3	$84 \cdot 6$ $82 \cdot 3$ 8	72.7 68.9	$\begin{array}{r}119 \\ 134 \\ \hline 14\end{array}$	784 70.6	－8907	84 78 8	＋1308	71.1 66.3	135 179	${ }_{4}^{4}$	NE by ${ }_{\text {NE }}$	1501 14.15	14 7	33 55 5	104.6 166.1	
	Annual	29.841	${ }^{\circ} \cdot 123$	${ }^{82} 4$	9r＇5	$75^{\circ} 5$	160	${ }^{76}{ }^{\text {r }}$	0.819	74	138\％8	73＇9	159	II	SE by E	59＇S4	99	52	2273＊3	＝51．5\％

Extreme Monthly Meteorological Records at the Madras Observatory in 1901.

${ }^{\text {c／}}$		容こッら：	
3	旁		
	嶪	言	
	宸		
	－		
	宮		
	欴	部 ¢	
	亭		
		遃	
	管		

Appendix XIII.

