KODAIKÁNAL AND MADRAS OBSERVATORIES

REPORT FOR THE YEAR 1906.

CONTENTS.

KODAIKȦNAL AND MADRAS OBSERVATORIES.

I.-REPORT OF THE KODAIKANAL OBSERVATORY FOR THE YEAR 1906.

1. Staff.-The staff of the Observatory on the 31st December 1906 was as follows:-

Director	...				C. Michie S
Assistant Director					J. Evershed (not yet joined).
First Assistant					K. V. Sivarama Aiyar, m.A.
Second Assistant		S. Sitarama Aiyar, b.a.
Third Assistant			G. Nagaraja Aiyar.
Fourth Assistant	\ldots				S. Balasundaram Aiyar.
Writer					L. N. Krishnaswamy Aiyar.
Photographic Assistant		...	\cdots		R. Krishna Aiyar.

There were no changes in the staff during the year. The Fourth Assistant was absent on privilege leave for three months from January 2. Mr. Evershed is expected to join his appointment in January 1907.*

The subordinate staff of the Observatory consists of a book-binder and bookbinder's boy, a mechanic, four peons and a boy peon for the dark room, and two lascars.
2. Distribution of work.-The Director takes charge of the spectroheliograph and is helped by the Photographic Assistant. The First, Second, and Third Assistants are also trained to use the instrument if necessary. The First, Second, and Third Assistants are in charge of the work with the Cooke equatorial (spectroscopic), the Lerebour and secretan equatorial (visual), the photoheliograph, the transit instrument, and the seismometer. They have also to do the astronomical computing and the preparation of the observations for the press. The Fourth Assistant has charge of the clock comparisons and, with the help of the writer, is responsible for the whole of the meteorological work. The writer is responsible for the accounts, correspondence and all office records.
3. Buildings and grounds-(a) Spectroheliograph building.-Thenew moving roof for covering the siderostat, referred to in last report, is now being erected. The new roof will be much smaller than the old one. It has been constructed at the Public Works Workshops, Madras, and is of an excellent design and thoroughly rigid. The roof of the main building still leaks during heavy rain but not to a serious extent.
(b) Photohelioyraph building.-The new dome for the photoheliograph was received in July 1906, but there has been much delay in its erection, which was not completed by the close of the year.
(c) House for the Ц́ssistant Director.-Work on this was begun in February, but the work has progressed with extraordinary slowness and at the close of the year not more than two-thirds of the masonry was completed.
(d) Only a small part of the usual annual repairs had been completed by the close of the calendar year, but it is hoped that they will all be carried out before the close of the official year. They are all small and the buildings as a whole are in good order.
(e) Grounds.-In the early part of the year the grounds were several times in danger from grass fires, but the fire lines and extensive counterfiring sared them from

[^0]all harm. As the season was a favourable one for planting a large number of young pines and cedars were planted out and are growing well. The roads and paths were maintained in good order.
(f) The well from which the aermotor pumps was dry for only about two months and there was no serious difficulty in obtaining the amount of water required.
4. Instruments.-The following are the principal instruments belonging to the Observatory :-

Six-inch Cooke equatorial.
Six-inch Lereboar and Secretan eqnatorial, remounted by Grabb with a 5 -inch Grubb portrait lens of 36 inches focas attached.
Spectrograph-consisting of an 11 -inch polar siderostat, 6 -inch Grabb lens of 40 -feet focus, and a 4 -inch concave grating of 10 -feet focus, mounted on Rowland's plan. A plane grating with collimator and camera lenses of 8 -feet focus can be substituted for the concave grating.
A rhomb with ends cat at 45° mounted on a graduated circle, can be placed in front of the slit so as to enable any part of the limb to be brought on to the slit.
Six-inch transit instrument and barrel chronograph, formerly the property of the Great Trigonometrical Survey of India.
Six-prism table spectroscope-Hilger.
Photoheliograph-Drallmeyor No. 4.
Theodolite, six-inch-Cooke.
Two phototheodolites by Steinheil for cloud photography.
Sextant.
Spectroheliograph with 18 -inch siderostat and 12 -inoh Cooke triple achromatic lens of 20 feet focus, by the Cambridge Scientific Instrument Company, Linited.
Evershed spectroscope with three prisms for prominence and sanspot work, by Hilger.
Mean time clock, Kallberg 6326.
Sidereal clock, Shelton.
Mean time chronometer, Kallberg 6299.
Sidereal chronometer, Kulliberg 6134.
Tape chronograph, Fuess.
Micrometer for measaring spectrum photographs, Hilger.
Dividing engine, Cambriage Scientific Instrument Company, Limited.
Two Balfour Stewart actinometers.
Buchanan's solar calorimeter.
Induction coil with necessary adjuncts.
Small polar siderostat.
Universal instrument.
Complete set of meteorological instroments, including Richard barograph and therraograph, and wind-recorders.
A high class screw cutting lathe by Messrs. Cooke \& Sons.
The Spectroheliograph.-The spectroheliograph was in constant use throughout the year up to December 17 when the siderostat had to be dismounted to permit of the erection of the new moving roof. This instrument has worked very satisfactorily throughout the year. A new collimating slit and a new setting microscope were ordered in the beginning of the year, but have not yet been received from the makers. To reduce the unsteadiness of the air a tube has now been placed between the lens and the mirror with very satisfactory results. When the new moving roof is erected the siderostat will be brought much closer to the lens, and it is hoped that this will still farther improve matters. The side walls have also been raised to a height of it feet so as to protect the mirror, as far as possible, from the strong winds which blow at certain seasons. All mechanical work is executed very slowly here, but it is confidently hoped that the spectroheliograph will be in full working order again before the end of January. All the other instruments were in good working order at the close of the year.

OBSERVATIONS.

(a) Solar Phybios.
5. The first five months of the year were on the whole favourable for solar observations, but the remainder of the year was decidedly unfarourable. There were 26 days in the year on which no observations were possible ${ }_{\text {. }}$ The following table shows for each day the observations that were made:-
Table A．
Solar Observations in 1906.

		 OヒOOOOOOOOUOOOOO
菷		 $00 こ 0 \mid 0000000000001$ のคロのロロの － 100000 11 1
	$\begin{aligned} & \text { + } \\ & \stackrel{\rightharpoonup}{3} \\ & \stackrel{\rightharpoonup}{u} \\ & \stackrel{4}{4} \end{aligned}$	
$\dot{\text { ¢ }}$	$\stackrel{\rightharpoonup}{\square}$	AAAロARAARAのAA 1000000,00000 a a Aapara｜aR
	兑	
¢	宊	 $00=00000010000000000000000000 \mid 0$
	苞	 $00\|0\| 00000000000000000000 \mid 0000$
هٍ̇		 000000000000000100000000000000
$\begin{aligned} & \text { a } \\ & \text { 中 } \\ & \text { o } \\ & 0 \\ & 0 \\ & H \end{aligned}$		 $000000000 こ 00000000000000000$円ロッロッ｜
	寅	 000010000000000 1000000000＝000 1 ヘ
	$\dot{\$}$	

Solar Observations－Abstract．

			或	苔	宑		$\underset{y}{5}$	宮		宮	宮	产	Totai．
A	30	27	30	30	31	28	27	29	28	26	27	26	389
B	20	23	23	25	25	9	11	6	14	\cdots	9	16	181
C	27	25	29	27	29	17	19	15	22	22	18	19	269
D	29	27	30	30	31	27	27	24	26	23	21	22	317
E	27	27	30	29	29	19	23	20	24	22	17	10	277

6．Photographs of the sun with the Dallmeyer photoheliograph were taken on 317 days against 327 in 1905．During the first five months there were only 4 days on which no photograph could be obtained．During the year it was found possible to send to Greenwich all the solar negatives except one－December 28－ required to fill in the gaps in the Greenwich and Dehra Dun set of daily photographs． From the beginning of the year a copy of each sun photograph has been printed in P．O．P．These when bound in volumes will be very useful for reference and will save much handling of the original negatives．

7．Observations of sunspots．－The sun is examined for spots and faculx every morning when the weather permits．The sun＇s image is projected on an 8 －inch dise，and the positions of the spots and faculæ are marked on it．There were 26 days on which no observation of this class could be made．

8．Sunspot spectra．－Observations of sunspot spectra were made with the Evershed three－prism spectrosoope on 181 days as against 179 days in 1905，but on 14 of these days complete observations were prevented by bad weather．These obser－ vations include a record of the most prominent widened lines and a careful examina－ tion of the behaviour of the hydrogen and helium lines in the neighbourhood of all spots．These observations are still made in the same way as in previous years，but as soon as the Committee of the International Union for Solar Research issues its final proposals they will be adopted as the guide for future work．It seemed best to nake no change in the method of work while the Committee＇s report was still under consideration．

At the request of the Direetor of the Solar Physics Observatory，South Kensing－ ton，lists are made out of the 1»＂most widened lines＂between D and F and are forwarded to him．

9．Prominences．－Prominences were recorded visually on 269 days against 297 in 1905．On 53 of these days the observations were either not complete or not satis－ factory on account of the weather．The record of the prominences is made round the dise on which the spots and facula have been projected．This record is compared next day with the photographs taken with the spectroheliograph and all prominences shown in the photograph but not in the drawing are added in blue pencil．Where there is much difference between the photograph and the drawing the differences are noted．In the case of the eruptive prominences the spectra are studied but，owing to lack of time，only the most conspicuous bright lines are recorded．All conspicuous displacements of the C line are also noted and their amounts estimated．

10．Spectroheliograms．－Photographs with the spectroheliograph were taken on only 277 days againgt 317 in 1905 ．This falling off was due partly to the large number of unfavourable days in the second－half of the year and partly to the fact that work with this instrument was stopped on December 17 when the siderostat had to be dismantled．Up to that date photographs were taken on every day on which it was possible to obtain them．in no less than 52 of these days，however，the results were not satisfactory owing to the state of the weather．Attempts are always made to obtain spectroheliograms even if the conditions seem very unfavourable，and sur－ prisingly good photographs are at times obtained through clouds so thick that the
exposure required is as much as six to eight times as great as with a clear sky．The great difficulty in such cases is to get a good setting，but：this difficulty will be removed when the observatory is provided with an electric installation．In all， 1,163 photographs were taken and the average quality of the negatives was distinctly better than in the previous year．On the whole the photographs of prominences seem to be rather better than those of flocculi when the sky is quite clear，but on the other hand good flocculi photographs are often obtained when the glare from thin cirrus clouds is strong enough to seriously intertere with prominence photography．The great difficulty in spectroheliograph work is to get sufficiently steady images of the sun on which to work．So far as this observatory is concerned the time during which photographs of the highest quality can be obtaiued is confined to a comparatively short time in the morning，and the finer the day the shorter is this time．Something has been done and more can probably still be done to lengthen this favourable period， but from the nature of the case it must always be short．Spectroheliograms taken at other times are good enough for many purposes，but cannot be expected＇to show the same sharpness of definition．Fortunately it is possible，under favourable conditions， to obtain the necessary photographs in a very short time．On the whole，the results for the year，though by no means porfect，are such as to show that very valuable results can be obtained here on a large number of days even in a year when the weather has been much less favourable than it is on the average．

A slightly enlarged copy of the best flocouli negative for each day is made on bromide paper．This is useful as an index and saves too much handling of the ori－ ginal negative．The Directur of the Solar Physics Observatory，South Kensington， having asked for spectroheliograms，floceuli photographs，mostly negatives，for 245 days were sent to him and in exchange 58 positives from his prominence photographs were received．

Summary of Resulls．

11．Sunspots．－The following table shows the monthly number of new groups observed，the mean daily number of spots risible，and the distribution between the northers and southern hemisphcres ：－

－		穴	莍	乓	辰	家	$\stackrel{\dot{\otimes}}{\underset{\sim}{g}}$	\％	容		\％			Year．
New groaps	．	22	18	38	30	20	27	25	26	28	19	15	29	297
Daily number		$4 \cdot 3$	2.9	6.0	48	$4 \cdot 1$	47	$7 \cdot 2$	$3 \cdot 6$	47	1.8	$2 \cdot 9$	$5 \cdot 3$	$4 \cdot 4$
North		16	12	20	$2!$	15	18	16	15	20	12	9	18	191
Soath	．．	6	6	18	9	5	9	10	11	8	7	6	11	106

The total number of new groups seen during the year was 297 against 295 last year．There were two days，（Cetober 13 and 17，when the visible dise was free from spots．On the latter date the weather was poor and it is possible that a small spot might have been overlooked．There were 25 days on which only one group was visible and 15 of these days were in October and November．There were eleven groups visible on March 27，April 2，and July 11．Ten groups were visible on four other days．

The distribution of the groups between the two hemispheres was again very unequal，for nearly two－thirds of the whole number of new groups appeared in the northern hemisphere．The mean daily number of groups visible varied from 1.8 in October to 7.2 in July and the average for the year was $4 \cdot 4$ ．The mean latitude of the spots was $12^{\circ} .2$ in the northern bemisphere and $13^{\circ} \%$ in the southern． There were two groups within 1° and five groups within 2° of the equator．There was a great falling．off in spot activity during October and November，but in December there was a marked recrudescence of activity．

The most important groaps seen during the year were the following:-

No. $\left\{\begin{array}{l}719 \\ 739 \\ 755\end{array}\right.$
No. $\left\{\begin{array}{l}745 \\ 764\end{array}\right.$ was formed on the visible surface on January 21 as a group of small spots which soon developed into a doble sponsiderable size and activits. This was seen during two rotations. During its second round it consisted only of the leader which traversed the disc almost unchanged as a regular-shaped quiet spot.
appeared as a small dot on January 22 and soon developed into a moderate-sized spot. This also was seen during two rotations.
No. 750 was an irregular group of large spots that was seen from January 26 to February 7.
No. 786 was first seen on March 16 as a small streak nut far distant from the eastern limb. In a few days it had changed into a large spot of regular outline. It was a very active spot.
No. $\{788$ came round the limb on March 18 and 19 as two separate spots and in two days they had coalesced into a single large spot with a double umbra. Thereafter it underwent little change and disappeared round the limb on March 30. It again returned on April 15 as two separate spots, close together, and traversed the dise almost unchanged.
No. 801 was first seen close to the east limb on March 27 as a group of very small spots but soon developed into a conspicuous group of irregular outline with a number of detached umbre.
No, 806 came round the limb on Mareh 51 . This was a large but quiet spot.
No. 813 first appeared on the east limb on April 5. It was a group of moderately large and very active spots.
No, 846 was seen as a single dot not far from the east limb on May 10. By the 15 th it had formed into a regular double-spot group with a number of small spots between the main ones. During its development the group was very disturbed.
No, 849 came round the east limb on May 19 as a train of 3 spots, the largest leading. The rear spot which was the smallest broke into small dots on the 24th and the middle one similarly broke up 2 dars later. The leader alone completed its course across the dise.
was formed on the visible dise as a group of smail dots on June 8. On June 28 when it came round again it was one of largest seen during the year. It was a single round spot of regular outline. The spectrum was undisturbed in hydrogen but there were some brilliant calcium eruptions in its neighbourhood during its second rotation. This spot went round four times and lasted for 11 weeks. During the last two rounds it had undergone very little change except a slight diminution in size.
No. 907 first appeared on July 27 as three small faint dots not far from the east limb and on the next day it was reduced to a single small dot. By the 30th it had developed into a large group. On that day the spectrum showed great disturbance. This was also one of the great spots of the year.
No. 926 was first seen on August 26 near the central meridian. It might have been formed on the 25 th, which was overcast. When first seen it was already a large scattered group extending over 20° of longitude.

No. 944 came round the east limb on September 11 as a single spot of regular outline. A few days later, when near the central meridian, the group consisted of 3 moderate-sized spots with a number of small spots between them, forming a train which extended over 14° of longitude.
No. 981 was a spot of moderate size that came round the limb on Novemker ε. It was a round and regular spot with one small companion in front and several in the rear. On the 10th the spectrum indicated considerable disturbance, in the region occupied by the group.
Nos. 987, 989, 990 were also moderate-sized spots that appeared in November.
No. 1010 was a large regular spot with a divided umbra and a few small oompanions which came round the limb on December 12. The spectrum showed considerable disturbance, especially on December 15 .
No. 1014 was seen first on December 19 as two small dots near the central meridian. It developed very rapidly into a large group.
12. Prominences.-As a full list of the prominences observed is being pablished in the Bulletins of the observatory it is only necessary to give here a few notes on the more important prominences of the year.

January.-Prominences of $100^{\prime \prime}$ and upwards were seen on 8 days. One prominence on the 8 th covered 25° of the south-west limb and culminated in a peak 2 minutes high. A very striking prominence was seen on the 20 th at the east limb. As observed in C light at $9^{\mathrm{h}} 15^{\mathrm{m}}$ it was $120^{\prime \prime}$ high and showed motion in the line of sight. It was photographed in H light at $\delta^{\mathrm{h}} 45^{\mathrm{m}}$ and was then $150^{\prime \prime}$ high and totally different in shape from the form sketched halt an hour later. The most striking feature of this month's observations was the enormous area round the spot group 750 which seemed to be sending out prominences. There were prominences seen in this region from the 25th to the 31st. On the 30th one of them appeared in this region as a great cloud floating at a height of $70^{\prime \prime}$ above the chromosphere, but the photograph showed that it was connected by thin filaments with a large prominence nearly 20° nearer the equator. Metallic prominences were observed on the 6th, 8th, and lith.

February.-Large prominences appeared on the west limb at the same latitude from the 9 th to the 15th. Un the 10th a series of prominences, more or less connected with each other by streamers, covered nearly 4.5° of the west limb. On the 14th a prominence reaching to a height of at least 6 minutes (the limit of the photograph) was photographed in caleium light. Only three eruptive prominences, showing displacement of the lines in the spectrum, were observed.

March.-This month there were only 4 prominences that could be called "very large". The largest was photographed on the 2 1st. It was $3 \frac{1}{2}$ minintes high and covered 25° of the sun's limb. There were seven eruptive prominences recorded and all were associated with spots.

April. - There were 11 prominences of $100^{\prime \prime}$ and upwards but the tallest was only $150^{\prime \prime}$ high. Between the 11 th and 23 rd a number of prominences were seen near the west end of the equator indicative of a long active region near the equator.

May.-This month there were 44 prominences of upwards of 1 minute in height. The tallest of the month was one photographed on the 19 th in calcium light. It was 108,000 miles high and was a narrow straight jet showing fine details in its structure. Only a trace of the base was seen in Hydrogen light. It was within 10° of the sun's north pole. Four metallic prominences and 6 otiner prominences in which C was displaced were observed.

June.-The unfavourable weather rendered the prominence record very incomplete but 26 prominences were recorded of upwards of 1 minute in height of which two were $2 \frac{1}{2}$ minutes high.

July.-This month also the poor weather that prevailed rendered prominence observations very imperfect. Nineteen large prominences were recorded but the tallest was ouly $90^{\prime \prime}$. On the 12 th two prominences showing displacement of the C line were observed. One of these, at position angle 113° was metallic and had Na and Mg lines reversed. It was close to a brilliant facular region. The other was near a spot which was just disappearing round the west limb.

August.-On the 15 days on which observations were possible 24 prominences of 1 minute and upwards were observed. The tallest was a tree-like prominence 2 minutes high, seen on the 12 th at position angle 65°.

Septerber.--Thirty-tbree prominences of one minute and upwards were recorded on the 22 days on which observations were possible. The tallest of these was two minutes high. It was photographed on the 6th at position angle 155°.

October.-Prominences were fairly abundant during the month and 27 were recorded haring a height of one minute and upwards. The tallest of these was seen on the 4 th at position angle 158°. It was $140^{\prime \prime}$ high and was quite detached from the limb.

November.-Owing to unfavourable weather prominence observations wree very incomplete. Fourteen prominences of or over one minute in height were observed. The tallest of these was $80^{\prime \prime}$ high and was seen on the lst at position angle 349°.

December.-Thirty-one large prominences, one minute and upwards in height, were recorded, and six of these were two minutes in height. The two tallest were about $150^{\prime \prime}$ high. One of these was seen on the 5th at position angle 132^{*}; the other was photographed on the 13 th at position angle 186°.

(b) Other Obsbryations.

13. Time. Time is determined with the transit instrument when 山ecessary. The standard clock and chronometers of the observatory are compared and rated daily. The standard clock is also compared daily with the Madras standard clock by means of the signal sent at 4 P.M. over all telegraphic lines in India. A time signal is given daily from this observatory by means of a flag at 10 A.m.
14. Meteorology.- Meteorological observations have been carried on exactly as in former years. The instruments are read at $8^{h}, 10^{h}$ and 16^{h}, local mean time. Temperature and pressure are recorded by a Richard thermograph and barograph and the mean daily teniperature and pressures are obtained from the traces, corrected by reference to the eye observations. The wind direction and velocity are got from a Beckley anemograph placed on a tower some little distance from the observatory. The cups and wind vane are at a higher level than the tops of the domes.

Temperature.-The mean temperature of the year was slightly above normal. With the exception of March, which was normal, the monthly mean was in excess for the first seven months. The excess amounted to $2^{\circ} 3$ in February, $2^{\circ} \cdot 7$ in April and $2^{\circ \cdot 0}$ in May, which are large amounts for this station. For the last fire months the mean temperature was below average, but the largest amount was $0^{n} 6$, in Scptember. The highest shade maximum recorded was $77^{\circ} \cdot 3$ on April 17, and the lowest shado minimum was $41^{\circ \cdot 9}$ on January 13. The highest termperature in the sun was $145^{\circ} \cdot 6$ on June 12 and the lowest grass minimum $22^{\circ} 6$ on Junuary 3.

Humidity.-The relative humidity was largely below normal in April and May and moderately below in June and September. It was above normal during the rest of the year.

Wind.-The daily wind velocity was very largely below normal in July and considerably below in January, February, and March. It was largely above normal in May and considerably above in September and November. The highest daily records were 732 miles on June 16 and 735 miles on July 20.

Rain.-The rainfall for the jear was considerably alove the average, the chief excess being in August. There were 119 days on which one-tenth of an inch and upwards fell. There was no day on which as much as 3 inches fell.

Cloud and sunshine.-The year was decidedly more cloudy than usual and the amount of bright sunshine registered was 100 hours below the average and 219 hours below that for 1905. The only months in which the sunshine was above average were April, May, and September : in all the other months it was below.

The transparency of the lower atmosphere, as shown by the visibility of the Nilgiris, was considerably above the average. This is probably to be accounted for by the larger rainfall.
15. Seismology.-The Milne horizontal pendulum was in use throughout the year and the results are given in Appendix I. The year has been remarkable for the very large number of great earthquakes which have occurred. Most of these, including those of Colombia, San Francisco, and Valparaiso, were well recorded here. Copies of the 'chief seismograms have been supplied as asual to the British Association Committee and all applications for copies of individual records by persons interested have at once been complied with.
16. Library.-The contributions to the library during the year included 204 sheets of the Greenwich Astrographic chart. One handred and forty-three volumes were bound during the year.
17. Publications, $==$ Bulletins Nos. IV to VII were published during the year and No. VIII was in type at the close of the year.

Bulletins Nos. IV and VI give the observations of sunspot spectra made between March 1904 and December 1905. No. VIII will bring the record up to the end of June 1906. Nos. V and VII contain list of prominences observed from January to December 1905.
18. General. - The Director-General of Observatories visited Madras and Kodaikánal in January. The Director inspected the Madras Observatory in November.

The whole of the staff of the Observatory worked well during the year ; those who were responsible for the solar observations are to be congratulated on securing results on a large number of days on which the conditions were very unfavourable.

Kodatífalal, lst February 1907.
C. Michie Shith,
Director, Kodaikánal and Madras Observatories.

II.-REPORT OF THE MADRAS OBSERVATORY FOR THE YEAR 1906.

Staff.-Mr. M. G. Subrahmanyam, the First Assistant, who was on duty at Kodaikánal, returned on the 25 th January 1906 and Mr. C. Chengalvaraya Mudaliar reverted to the Meteorological office.

Mr. S. Solomon Pillai took privilege leave for one month from 13th March 1906 and Mr. M. G. Subrahmanyam for three months from the 20th April, Mr. C. Chengalvaraya Mudaliar again acting as lirst Assistant on both the ocecasions.
2. Time service.-The astronomical observations made during the jear were solely directed to time determinations. Transits of the sum were taken occasionally in order to check the rate of the clock when unfavourahle weather prevented the regular star observations from being made.

The time gun at the Fort was fired correctly at noon and at S pm. on 708 occasions out of 730 , giving a percentage of success of $97 \cdot 0$.

The time ball at the Port office was dropped correcily on all occasions but 3 when it failed at 1 р.м., but was dropped at 2 p.м.
3. Meteorological observations.-Meteorological observations were made as usual at $8,10,16$ and 20 hours, local time. The observations of 10 and 16 hours were reduceil and sent to the India Meteorological office, Alipore, on Form F. The record of movements oit the clouds observed by means of the nephoscope were also sent to that office every month. Besides the ordinary daily weather messages, special storm observations were called for and supplied to (1) Simla on 3 occasions and (2) Calcutta on $1 \lesssim 8$ oceasions.

The tabulation of the traces of the Barograph, Thermograph, and Anemograpk at Madras and of the Anemograph at Dodabetta are up to date.
4. Buildings.-No repairs to the buildings have been made during the year. The dome of the s-inch equatorial leaks badly. A new dome is required to replace it, and plans and estimates for this have been submitted to the local Gurernment in the Yublic Works.Department for sanction.
5. Instruments.-A new sidereal clock by S. Riefler, Munich, was erected on the north side of the transit instrument and has been used for the transit observations from the 24th July. It has been working very satisfactorily, the rate being very constant. On one occasion, the 29th October, there was a sudden and large, disturbance in the rate the cause of which has not yet been found out. Since the recovery from this its rate has been very satisfactory. . The tape chronograph received during the previous year has not been brought into use as a relay, which has been ordered, is required in the clock circuit. The following is the list of instruments at the Madras Observatory on the 31st December 1906:-
(a) Astronomical.

Eight-inch Equatorial Telescope-Troughton \& Simms. Sidereal Clock-Haswall.
$\begin{array}{ll}" & \text { Dent No. } 1408 . \\ " & \text { S. Riefler No. } 61 .\end{array}$
Mean Time Clock with galvanometer-Shepherd \& Sons. Meridian Circle-'lroughton \& Simms.
Mean Time Clock-J. Monk.
Mean Time Chronometer-V. Kullberg 5394.
" \quad P 6544.
Pr Paikinson \& Frodsham 2352.
Portable Transit Instrument-Dolland.
Portable Telescope with stand.
Tape Chronograph-R. Feuss.
(b) Meteorological.

Richard's Barograph-No. 10 L. Casella.
Richard's Thermograph-No. 3618 L . Casella.
Beckley's Anemograph-Adie.

Sunshine Recorder-No. 149 L. Casella.
Anemoscope-P. Orr \& Sons.
Nephoscope-Mons. Jules Daboseq \& Ph, Pellin.
Barometer, Fortins- 1771 L. Casella.
Barometer, Fortins-725 L. Casella (spare).
Barometer, Fortins-1420 L. Casella (spare).
Dry buib thermometer-No. 94221 L. Casella.
Dry bulb thermometer-No. 98037 Negretti \& Zambra (spare).
Wet balb thermometer-No. 94219 L. Casella.
Wet bulb thermometer-No. 38037 Negretti \& Zambra (spare).
Dry maximum thermometer-No. 8581 Negretti \& Zambra.
Dry minimum thermometer-No. 69047 L. Cesella.
Wet minimum thermometer-No. 91753 Negretti \& Zambra.
Sun maximum thermometer-No. 10479 Negretti \& Zambra.
Grass minimum thermometer-No. 3377 Negretti \& Zambra.
Raingauge ($8^{\prime \prime}$ diameter)-No. 1042 Negretti \& Zambra.
Measure glass for above.
Raingauge ($5^{\prime \prime}$ diameter).
Measare glass for above.
6. Weather summary.-The following is a summary of the meveorological conditions at Madras during the year 1906:-

Pressure.-The mean atmospheric pressure was normal in June and August, above normal in March, October, and November and below normal during the other months. The excess in March reached the value of 0.037 inch. The highest pressure recorded was $30 \cdot 116$ inches on January 4 and the lowest $29 \cdot 477$ inches on July 19.

Temperature.-The mean temperature of the air was above normal throughout the year, the excess amounting to $3^{\circ} \cdot 0$ in February. The highest shade temperature recorded was $111^{\circ} 5$ on May 27 and the lowest $63^{\circ} \cdot 4$ on December 3. The mean maximum in May was $100^{\circ} 8$ which was $3^{\circ} 0$ abova the average. The highest temperature in the sun ($149^{\circ} 6$) was recorded on May 18 and the lowest on grass was $58^{\circ} \cdot 2$ on December 2.

Humidity. -The humidity was above normal throughout the year, the lowest percentage being 33 on October 30 .

Wind.-The wind direction was normal in July and August. It was more easterly in January, March, November and December, more westerly in September and more southerly during the other months. The wind velocity was below normal in all other months except February, April and December. The highest wind velocity on any day was 398 miles on December 26 and the lowest 56 on August 21 and September 19. The average daily defect was 40 miles in August.

Cloud.-The percentage of cloud was normal in June and November, above normal in January, February and December and below normal in all the other months.

Sunshine.-The percentage of bright sunshine was normal in July and August, and much below the average during the remaining months. There were $2,080 \cdot 3$. hours of bright sunshine during the year.

Rainfall.-The rainfall was in excess in January, February, June, July, September, and December, and in defect in the other six months, the greatest defects being 6.85 inches and 6.74 inches in October and November respectively. The greatest excess was $11 \cdot 15$ inches in December, when $16 \cdot 43$ inches were receired. The north-east monsoon rainfall from October 15 to the end of the year was 27.05 inches which is very near the average ($27 \cdot 6$ inches). The total fall for the year was 49.81 inches.

Storm.-A storm of moderate severity passed inland in a north-westerly direction a little to the south of Madras on the morning of December 27. This storm determined heavy rain over the north of the Presidency and the Deccan during the remaining days of the month.

[^1]
Appendix I.

Kodatíńnal Observatory Seismological Records in 1906.

No.	Date.	$\begin{gathered} \text { P.T. } \\ \text { Commesee } \\ \text { G.M.T. } \end{gathered}$	$\begin{gathered} \text { L.W. } \\ \text { Commence } \\ \text { G.M.T. } \end{gathered}$	Maxima G.M.I'	End	Max. Amp.	Daration.	Remaihs.
	1906.	H. M.	H. M.	H. M.	H. m.	мM.	н. м.	
1	Jan. 6	$\begin{array}{ll}22 & 15.8\end{array}$.	\cdots	$22 \quad 36$	\cdots	020	Wridening of line.
2	15	$18 \quad 32.0$	19 41.2	$19 \quad 42 \cdot 4$	$19 \quad 54$	$0.8 \quad 0.4$	$0 \quad 22$	
3	21.	$13 \quad 58.7$	$14 \quad 06.9$	$14 \quad 08.0$	1509	2.0111	110	
4	27 .	$10 \quad 050$	$\begin{array}{ll}10 & 25.6\end{array}$	$10 \quad 28.7$	1118	1.1805	113	
5	31 ..	$\begin{array}{ll}15 & 56.7\end{array}$	$\begin{array}{ll}16 & 57.7\end{array}$	$17 \quad 11.0$ 20.7	\cdots	> $22>10$	\cdots	
				254	$19 \quad 20$	$\begin{array}{ll}15 & 7 \cdot 2\end{array}$	323	
6	Feb. 1	248.3	248.3	$2 \quad 483$	354	$\begin{array}{ll}0.6 & 0.3\end{array}$	106	
7	10	$9 \quad 13 \cdot 8$.	*	928	\cdots	015	Widening of line.
8	18 ..	$2 \quad 25 \cdot 6$.	-	230	.	004	Do.
9	19 ..	$222 \cdot 9$	3 01\%	30205	-	1.00 .5	\cdots	
				19.8	万 20	1.810 .7	$2 \quad 37$	
10	27 ..	$19 \quad 50 \cdot 1$	$19 \quad 52 \cdot 6$	13 52.6	-	$\begin{array}{lll}3.8 & 16\end{array}$	-	
				54.6	$20 \quad 47$	3.61 .5	$\begin{array}{ll}0 & 57\end{array}$	Bashahr E.LQ.
11	Mar. 2	$6 \quad 28.0$	$635 \cdot 3$	$637 \cdot 2$	708	$\begin{array}{ll}1.4 & 0.8\end{array}$	040	
12	3 ..	$\begin{array}{ll}9 & 21 \cdot 3\end{array}$	-•	.	$10 \quad 25$	-	104	Wideniug of line.
13	10 ..	$\begin{array}{lll}6 & 597\end{array}$	-	-	740	-	040	Do.
14	10	$16 \quad 39 \cdot 2$	\cdots	-	$17 \quad 44$	-	100	Do.
15	13	14 02.0	$14 \quad 06.2$	$14 \quad 07 \cdot 0$	1421	0.40 .2	018	
16	16	22 56-7	$23 \quad 10.0$	$23 \quad 12.1$	$23 \quad 38$	$\begin{array}{ll}1.5 & 0.8\end{array}$	041	Formose E.Q.
17	19	$8 \quad 16.0$	-	\cdots	901	.	045	Widening of line.
18	20 ..	3 53.6?	$4 \quad 060$	$4 \quad 00.8$	421	0.50 .3	027	
19	21-22.	23 57.7	-	-	013	-	015	Widening of line.
21	28 ..	$18 \quad 60.6$	$18 \quad 54 \cdot 7$	$18 \quad 59.9$	\cdots	0.40 .2	\cdots	
				$19 \quad 11.2$	1941	$\begin{array}{ll}0.4 & 0.2\end{array}$	050	
22	Apr. 5 ..	$\begin{array}{ll}22 & 38 \cdot 2\end{array}$	22 48.5	$22 \quad 493$	2303	$\begin{array}{ll}0.4 & 0.2\end{array}$	025	
23	3 ..	$\begin{array}{ll}18 & 15.8\end{array}$	-	-	$18 \quad 39$	\cdots	023	Widening of line.
24	13.	19 34.9	$19 \quad 38 \cdot 2$	19 40.3	-	0.50 .2		
				$42 \cdot 3$	$20 \quad 13$	$\begin{array}{ll}0.5 & 0.2\end{array}$	038	Bormosa.
25	14 ..	0 09.4	$\begin{array}{ll}0 & 19.7\end{array}$	$0 \quad 24.3$	(48	$\begin{array}{lll}0.6 & 0.3\end{array}$	0 -2	
26	14	-	4215	423.0	433	$\begin{array}{ll}0.5 & 0.2\end{array}$?	
27	18 ..	$13 \quad 31.6$	$14 \quad 24 \cdot 6$	$14 \quad 28.8$	"	$2 \cdot 2 \quad 1.2$	-	
				$33 \cdot 1$	1602	$\begin{array}{ll}2.5 & 1.4\end{array}$	230	Sen Franciboo.
. 28	19 ..	$7 \quad 17 \cdot 4$	\cdots	\cdots	726	-	009	Widening of line.
29	25 ..	?	150.7	150.9	210	$\begin{array}{ll}0.4 & 0.3\end{array}$?	
30	29	$116 \quad 44.0$	16 49.6	$16 \quad 50.3$	$17 \quad 46$	1.91 .0	102	- Possibly 2nd
31	May 2 ..	1 44-6	\cdots	\cdots	148	\cdots	003	phase. Widening of line.
82	3 ..	$8 \quad 31.5$	$8 \quad 32 \cdot 1$	$8 \quad 34 \cdot 1$	842	$\begin{array}{ll}0.5 & 0.2\end{array}$	010	
33	12 .	$5 \quad 53.4$	$602 \cdot 3$	$6 \quad 02 \cdot 5$	624	$\begin{array}{ll}0.8 & 0.4\end{array}$	031	Time slightly uneertain.

Kodaikánal Observatory Seismological Records in 1906-cont.

Kodaikanal Observatory Seismologioal Records in 1906-cont.

No	Date.	$\begin{aligned} & \text { P.T. } \\ & \text { Commenot } \\ & \text { G.M.'. } \end{aligned}$	$\begin{aligned} & \text { L.W. } \\ & \text { Commonee } \\ & \text { G.M.T. } \end{aligned}$	$\frac{\text { Maxima }}{\text { G.M.T. }}$	$\begin{aligned} & \text { End } \\ & \text { G.M.'f. } \end{aligned}$	Max. Amp.	Duration.	Remarks.
	1808.	н. m.	E. M.	н. и.	н. \mathbf{x}.	mim. ${ }^{\text {m }}$	н. m.	Widening of line. 'Iranseau cakia.
58	Sept. 17	$8 \quad 59.9$	-		954		054	
59	28 ..	$15 \quad 65.4$	$\begin{array}{ll}16 & 07.6\end{array}$	$16 \quad 08.7$	$16 \quad 25$	0.40 .2	0 30	
60	Oot. 2	205.0	$2 \begin{array}{ll}2 & 41.8\end{array}$	$\begin{array}{lll}3 & 11 \cdot 2\end{array}$	459	$\begin{array}{ll}2.8 & 1.1\end{array}$	$2 \quad 54$	
61	2	$14 \quad 63 \cdot 4$	$15 \quad 23 \cdot 8$	$\begin{array}{ll}15 & 34 \cdot 1\end{array}$	$16 \quad 25$	$\begin{array}{ll}0.4 & 0.2\end{array}$	133	
62		$12 \quad 49 \cdot 0$	$12 \quad 51 \cdot 5$	$12 \quad 52 \cdot 6$	1829	$\begin{array}{ll}0.6 & 0.3\end{array}$	$0 \quad 40$	
68		$1 \quad 47 \cdot 6$	151.7	$152 \cdot 6$	203	$\begin{array}{ll}0.5 & 0.8\end{array}$	$0 \quad 15$	
64		18 04-1	$13 \quad 23 \cdot 8$	13 25.3	..	$\begin{array}{lll}0.6 & 0.4\end{array}$	100	
				28.9	1404	$\begin{array}{ll}0.5 & 0.3\end{array}$		
85	10, 11.	23837	$28 \quad 38 \cdot 2$	$\begin{array}{rr}23 & 41.0 \\ & 46.5\end{array}$	-	$\begin{array}{lll}0.6 & 0.4\end{array}$	-	
					013	$\begin{array}{ll}0.5 & 0.3\end{array}$	045	
68	17 ..	$9 \quad 56 \cdot 8$?	$\begin{array}{ll}10 & 30.5\end{array}$	1048	$\begin{array}{ll}0.6 & 0.4\end{array}$	051	
87	24 ..	$14 \quad 58 \cdot 1$	$14 \quad 67.4$	$15 \quad 01 \cdot 6$	1805	$21 \quad 10 \cdot 1$	$1 \quad 12$	
68	Nov. 12	$17 \quad 45 \cdot 6$	-	-	1759	.	013	Widening of line.
69	18 ..	$7 \quad 26.4$	$7 \quad 32 \cdot 6$	7 44•0	933	$4 \cdot 2$ 2.6	208	
70	Dec. 19	$1 \quad 40 \cdot 2$	-	$144 \cdot 3$.	$\begin{array}{lll}05 & 0.3\end{array}$.	Kopal E.Q.
				$223 \cdot 1$	246	$\begin{array}{ll}0.6 & 0.3\end{array}$	106	
71	22 ..	$18 \quad 27.0$	$18 \quad 37 \cdot 1$	$\begin{array}{ll}18 & 42.2\end{array}$	2015	$5.0 \quad 2.7$	148	
72	23 ..	$\begin{array}{ll}17 & 45 \cdot 2\end{array}$	$18 \quad 10 \cdot 8$	$18 \quad 24 \cdot 4$	1848	$\begin{array}{ll}1.4 & 0.8\end{array}$	$10{ }^{1}$	
73	26	$6 \quad 12.7$	-	-•	668	.	045	Widening of line.

15
Latitude $10^{\circ} 13^{\prime} 50^{\prime \prime} \mathrm{N}$.
Longitude $5 \mathrm{~h} 09^{\mathrm{m}} 52^{\mathrm{s} \mathrm{E}} \mathrm{E}$.
Mean monthly and annual Meteorological Results at the Kodaikánal Observatory in 1906.

Month．	Barometer．		Dry balb thermometer．				Wet bulb．		$\left[\begin{array}{c\|c}\begin{array}{c}\text { Tension } \\ \text { of vapour．}\end{array} & \begin{array}{c}\text { Relative } \\ \text { humidity．}\end{array} \\ \hline \text { By Blanford＇s tables．}\end{array}\right.$		Sun Max． in \＃ao．	$\begin{gathered} \text { Min. } \\ \text { on } \\ \text { grase. } \end{gathered}$	Wind．			Rain．		Clear 8ky．	Bright sun－ shine．	
	Reduoed to 32° ．	Daily range．	Mean．	Max．	Min．	Range．	Mean．	Min．			$\underset{\text { velocity }}{\text { Daily }}$			Medn ction．	Amount．	Days．				
	inchre．	INOR\＆s．	－	。	－	。	－	。	inches．	cents．		。	－	milirs．	points．	points．	inches．	No．	CENTY．	Hours．
January ．．	22．852	0.069	$54 \cdot 4$	$64 \cdot 8$	$48 \cdot 1$	16.7	$48 \cdot 9$	41.9	0.296	70	$120 \cdot 3$	$39 \cdot 6$	291	7	E．by N．	$4 \cdot 10$	4	66	$217 \cdot 2$	
February ．．	$\cdot 850$	－070	$57 \cdot 2$	$67 \cdot 3$	$50 \cdot 7$	16.6	$51 \cdot 2$	$44 \cdot 0$	－321	68	$127 \cdot 2$	$38 \cdot 6$	222	22	W．S．W．	$3 \cdot 37$	4	60	$202 \cdot 5$	
March ．．	$\cdot 878$	$\cdot 071$	$57 \cdot 9$	69.0	$50 \cdot 7$	$18 \cdot 3$	50.2	$43 \cdot 0$	－289	60	1309	$40 \cdot 7$	286	7	E．by N ．	$2 \cdot 79$	4	67	$242 \cdot 9$	
April ．．	－854	－065	$62 \cdot 1$	73.8	$54 \cdot 8$	$19 \cdot 0$	$52 \cdot 6$	45.8	－306	55	$136 \cdot 2$	$42 \cdot 8$	292	10	E．S．E．	$2 \cdot 73$	5	66	$233 \cdot 2$	
May	$\cdot 821$	． 071	$62 \cdot 1$	$71 \cdot 1$	56.4	14.7	$55 \cdot 5$	50.1	376	67	138.0	$49 \cdot 3$	286	4	N．E．	4．10	9	56	$238 \cdot 1$	
June	$\cdot 768$	． 057	58.4	$65 \cdot 6$	$53 \cdot 8$	11.8	$5 \pm .0$	$49 \cdot 8$	$\cdot 375$	77	125.3	$48 \cdot 8$	357	26	W．N．W，	2.06	10	22	90． 5	
July	－739	－056	$56 \cdot 9$	$63 \cdot 6$	53.3	10.3	53.8	$50 \cdot 1$	－386	83	$121 \cdot 2$	50.0	407	29	N．W．by N．	6.89	13	23	94．5	
August ．	－761	－069	$56 \cdot 3$	62.5	52.5	$10 \cdot 0$	$54 \cdot 4$	50.8	$\cdot 406$	89	$118 \cdot 5$	$49 \cdot 2$	331	31	N．by W．	12.44	19	21	$90 \cdot 1$	
Septermber ．	$\cdot 781$	－069	$65 \cdot 9$	$62 \cdot 8$	$51 \cdot 4$	$11 \cdot 4$	$52 \cdot 5$	48.0	－363	81	124－2	465	342	30	N．N．W．	4.93	8	37	134．4	
Ootober ．．	$\cdot 813$	－078	$55 \cdot 5$	$62 \cdot 6$	$51 \cdot 6$	$11 \cdot 0$	53.6	49.8	－398	89	$115 \cdot 1$	46.9	268	7	E．by N．	$7 \cdot 00$	17	29	$111 \cdot 7$	
November ．．	－845	$\cdot 073$	53.8	$60 \cdot 8$	$49 \cdot 5$	$11 \cdot 3$	51.8	$47 \cdot 1$	$\cdot 372$	88	$115 \cdot 5$	$45 \cdot 1$	311	4	N．E．	10.93	15	26	$110 \cdot 3$	
December	－822	$\cdot 071$	53.3	$60 \cdot 4$	$48 \cdot 3$	$12 \cdot 1$	$49 \cdot 9$	$44 \cdot 4$	－330	81	$107 \cdot 9$	$42 \cdot 7$	293	4	N． Hi	6.19	11	34	$129 \cdot 3$	
Annual ．．	22.815	0.068	57.0	$65 \cdot 4$	61.8	13.6	$52 \cdot 4$	$47 \cdot 1$	0.352	76	122．9	$45 \cdot 0$	307	2	N．N．E．	67．53	119	42	1894．7	

Extreme monthly Meteorological Records at the Kodaikanal Observatory in 1906.																							
	Barometer．					Dry bulb thermometer．				Wet bulb．		Humidity．		Sun Th．in vacuo．		Grass therm．		Wind．				Rain．	
nth．	Highest．		Lowest．		Range．	Highest．		Lowest．		Lowest．		Lowest．		Highest．		Lowes		Highest．		Lowest．		Greatest Fall．	
	${ }^{\text {nnching．}}$	\％．	inches．	dat．	inches．	－	day．		dat．				dar．		day．			miles．	day．	miles．		Hrs．	dat．
${ }_{\text {January }}$	$\begin{array}{r}\text { 22：949 } \\ \hline 960\end{array}$	$\begin{array}{r}20 \\ 4 \\ \hline\end{array}$	22．774		0.175 .199	$73 \cdot 3$ $73 \cdot 1$	${ }_{23}^{1}$	$\frac{41 \cdot 9}{47 \cdot 2}$	13	33.9 35.6 3.6	2， 4	${ }_{2}^{2}$	$1{ }^{4}$	137.3 14.8	${ }_{13}^{29}$	22.6	3	686 357	18	161	2	$2 \cdot 83$	18
Mebruary	.960 .982 98	${ }_{10}^{4}$.761 .792	15 19	${ }_{-190} \cdot 1$	$73 \cdot 1$ $74 \cdot 2$	${ }_{26}^{23}$	47.2 46.9	3	$35 \cdot 6$ 33	8 3	25 14 14	${ }_{3}^{11}$	141.8 141.7	14	${ }^{29 \cdot 7}$	11	357 543	1	118 172	${ }_{20}^{13}$	$2 \cdot 46$ 0.99	${ }_{21}^{28}$
April ．．	．942	11	$\cdot 786$	29	－156	77.3	17	50.8	1	$41 \cdot 4$	12	20	16， 25	1450	2	30.9	6	480	25	194	4	1.82	${ }_{28}^{21}$
May ．．．	－907	13	$\cdot{ }^{7} 563$	31	－ 154	$76 \cdot 1$	25	52.7	21	$42 \cdot 9$	${ }^{31}$	${ }_{31}^{31}$	7， 26	$142 \cdot 2$	13	39.3	6	440	9	129	28	$1 \cdot 25$	${ }^{28}$
${ }^{\text {June }}$ July ${ }^{\text {a }}$	－ 888	${ }_{31}^{10}$	－662	178	${ }_{-235} \cdot 2$	$74 \cdot 6$ $69 \cdot 2$	1	50.7 50.6	16 21	$44 \cdot 7$ 44.1	${ }_{2}^{1}$	36 50 50	${ }_{2}^{1}$		${ }_{4}^{12}$	${ }_{4}^{39 \cdot 2}$	${ }_{27}^{1}$	732	16	126	9	0．44	18
August	－883	5	． 661	22	－222	$67 \cdot 1$	16	$50 \cdot 3$	14	$42 \cdot 5$	13	70	13	$140 \cdot 4$	11	$42 \cdot 5$	13	701	23	145	13	1.27	11
September	－874	15	－703	5	－171	67.1	30	47.6	29	41.5	${ }_{31}^{27}$	${ }^{32}$	27	141.2	${ }^{30}$	37.2	7	646	25	85	7	0.98	15
Ootober	－910	12	－690	27	－ 220	67.2	10	${ }^{47 \cdot 1}$	31	${ }^{38 \cdot 9}$	31	52	30	144.0	10	38.3	31	679	28	136	11	$1 \cdot 25$	24
Novenuber	．918	5，27	$\stackrel{\cdot 788}{ }{ }^{7} 78$	19 20	${ }^{\cdot} \cdot 130$	$65 \cdot 5$ 67.8	17 4	${ }_{48}^{45 \cdot 6}$	${ }_{12}^{22}$	38．4	19 3	${ }^{39}$	18 14	$126 \cdot 8$ 135.2	19	37.2 30.6	26 4	609 548	${ }_{26}^{23}$	142	15	$\stackrel{1}{2.91}$	15
December	＇901	10	－739	20	－162	67.8	4	$43 \cdot 6$	12	34.2	3	12	14	$135 \cdot 2$	16	$30 \cdot 6$	4	548	26	93	30	$1 \cdot 25$	7

Appendix III.
Kodaikínal mean hourly Wind Velocity for the year 1906.

Appendix IV.

Kodatkánal Mean Hourly Bright Sunshine for the year 1906.

Month.	Hours.													Kemarks.
	6-7	7-8	8.9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-18	
Janaary	$0 \cdot 12$	0.67	0.81	0.85	0.86	0.81	0.75	0.76	0.64	0.45	0.27	0.02	-	The total number of hours
February	$\cdot 16$	$\cdot 80$. 90	-89	-89	$\cdot 84$	$\cdot 75$	-68	$\cdot 52$	-46	'30	-04	\cdots	of bright songhine was. $1,894.7$ which is $43 * 3$ per
March	$\because 1$	$\cdot 73$	-89	-94	$\cdot 92$. 88	$\cdot 85$	$\cdot 70$	-63	$\cdot 53$	-50	$\cdot 15$	-	cont. of the possible. amount.
April . .	-02	-68	. 91	$\cdot 94$. 95	-94	$\cdot 78$	$\cdot 67$	59	. 50	$\cdot 35$	$\cdot 11$.	
May ..	-19	-85	. 81	- 85	$\cdot 87$	$\cdot 87$	-85	$\cdot 70$	$\cdot 64$	$\cdot 54$. 50	. 13	.	
June ..	-07	-28	$\cdot 37$	$\cdot 45$	$\cdot 49$	$\cdot 50$	$\cdot 36$	$\cdot 20$	$\cdot 14$	-08	. 06	. 03	.	
July ..	-08	$\cdot 33$	$\cdot 44$	$\cdot 48$	$\cdot 40$	$\cdot 37$	- 28	-20	$\cdot 21$	$\cdot 12$. 08	-05	0.01	
August	.08	$\cdot 36$	$\cdot 44$	40	$\cdot 37$	-31	-26	$\cdot 21$	$\cdot 17$	$\cdot 17$	$\cdot 11$	-04	-	
September	$\cdot 08$	- 0	$\cdot 67$	-67	-63	53	-43	-34	$\cdot 23$	$\cdot 15$	$\cdot 12$. 04	\cdots	
Ootober	-03	$\cdot 42$	- 54	- 55	53	-39	-3B	- 26	$\cdot 17$	$\cdot 18$	$\cdot 13$. 03	..	
Novemher	$\cdot 01$	-30	-42	$\cdot 47$	$\cdot 43$	-39	$\cdot 43$	-45	$\cdot 34$	-23	-20	. 01	-•	
December	-00	-30	$\cdot 49$	-54	-52	$\cdot 44$	-44	$\cdot 42$	$\cdot 44$	-34	$\cdot 22$	-03		
Mean	13.08	0.51	0.64	0.67	0.66	0.61	0.54	$0 \cdot 7$	0.39	0.31	0.24	0.06	0.00	

Appendix V.

Number of days in each month on whinh the Nilgiris were visible in 1906.

1906

Month.			Barometer.		Dry bulb thermometer.				Wet bulb.		Tension of rapour. Relativive humidity. By Blanford's tables.		$\begin{gathered} \text { Sun } \\ \text { Max. } \\ \text { in vac } \end{gathered}$	$\begin{gathered} \text { Min. } \\ \text { Mon. } \\ \text { grass. } \end{gathered}$	Wind.			Rain.		Clearsky.	
			Reduced to 32°.	$\begin{aligned} & \text { Daily } \\ & \text { range. } \end{aligned}$	Mean.	Max.	Min.	Range.	Mean.	Min.			$\begin{gathered} \text { Daily } \\ \text { velocity. } \end{gathered}$		Hean	direction.	Amount.	Days.			
			inchrs.	тмонE							incarb.	centrs.				milese.	romys.	points.	inches.	so.	ents.
January		..	${ }^{29 \cdot 007}$	$0 \cdot 146$	77.4	89.2	669	${ }_{22}^{22.3}$	68.8	$6+6$ 68.9	0.590 .601	62 56	$141 \cdot 3$ $147 \cdot 8$	61.0 64.1	44.4 50.9	13	S.E. hy S	1.95 1.55 1	1	${ }^{64}$	
February			${ }^{28 \cdot 958}$							$66 \cdot 9$ $66 \cdot 0$	-601	56	147.8 1483 18.	${ }_{6}^{64.1}$	50.9 50.1	13 11	S.E. by s.	1.56 4.15	1		
March	29.077	-158	$81 \cdot 3$ 86.4	$\xrightarrow{9+1}$		24.7 28.1	$70 \cdot 3$ 72.3	$66 \cdot 0$ 68.3	. 608	49	1487 157	${ }_{66}{ }_{6}$	${ }_{56.9}^{50.1}$	11	$\xrightarrow{\text { S.E. by E. }}$ E.	4.18 0.18	6	74	
${ }^{\text {April }}$		-	$\begin{array}{r}28.891 \\ \hline 886 \\ \hline 88\end{array}$	- 134	${ }_{83 \cdot 9}$	${ }_{97 \cdot 1}$	73.5	$23 \cdot 6$	$7 \pm \cdot 7$	70.9	-737	63	$154 \cdot 1$	$69 \cdot 7$	733	16		8.21	11	61	
May	..	\because	. 882	. 111	${ }_{82 \cdot 9}$	95.0	$73 \cdot 7$	$21 \cdot 3$	72.0	$88 \cdot 9$	640	57	154.2	69.2.	102.6	16	S.	0.10		36	
July		\because	$\cdot 803$	-104	$81 \cdot 4$	940	72.6	$21 \cdot 4$	$71 \cdot 4$	$68 \cdot 5$. 634	59	154.7	68.8	89.5	18	s.s.w.	0.81	3	39	
Augast		..	$\cdot 845$	- 121	$79 \cdot 6$	90.8	$71 \cdot 9$	18.9	$72 \cdot 5$	${ }^{69.8}$	$\cdot 705$	70	148.3	${ }^{68 \cdot 7}$	51.8	13	S.E. by S.	1083	10	39	
September	.	..	$\cdot 869$	- 131	80.1 78.3	${ }_{8}^{92 \cdot 0}$	70.7 71.3	$21 \cdot 3$ $17 \cdot 2$	${ }_{71}^{71.0}$	68.0 69.5	. ${ }^{.639}$	62 70	150. $1.86 \cdot 6$ 1	66.1	${ }^{67}{ }^{67} 8$	${ }_{15}^{16}$	${ }_{\text {S. by }}^{\text {S. }}$	1.11 5.16	${ }_{11}^{3}$	45 37	
October			-916	- 131	78.3 78.2	88.5	${ }_{69} 9$	${ }_{15 \cdot 6}$	71.2	68.0		77	137.3	${ }_{66} \cdot 1$	${ }_{41} 1.1$			6.50			
November			-989	${ }^{123} 121$	$78 \cdot 2$ 78.1	${ }_{85} 8$	$67 \cdot 8$	$17 \cdot 2$	$69 \cdot 5$	66.0	. 648	74	$131 \cdot 4$	$63 \cdot 5$	$32 \cdot 3$	10	E.B.E.	276	5	${ }_{39}$	
		nnaal	$28 \cdot 916$	0.132	$80 \cdot 3$	$92 \cdot 2$	70.9	21-3	$71 \cdot 4$	68.0	0.652	63	$146 \cdot 8$	66.2	$58 \cdot 4$	14	S.S.E.	43.30	64	52	

Extreme monthly Meteorological Records at the Periyakulam Observatory in 1906.

Appendix VII.

+ means above normal, - belowo

Appendix VIII.

Abstract of the mean meteorological condition of Madras in the joar 1900 compared with theaverage of past years.

Mean values of					1906.	Difterence from	Average.
Reduced qtmospherio pressure	29.855	0.009 below.	29.864
Temperature of air .. .	-	.	.	-	82.2	$1 \cdot 1$ ahove.	81.1
Do. of evaporation ..	-•	.		-•	76.8	23 "	74.5
Percentage of humidity ..	-•	\cdots	.	.	77	5 "	72
Greatest solar heat in vxouo ..	.	\cdots	-•	\cdots	134-2	5.5 below.	$139 \cdot 7$
Maximum in shade -.	-		.	.	91.0	- 0.2 above.	$90 \cdot 8$
Minimum in shade	.	.	.	-•	75.8	$1 \cdot 1$ "	747
Do. on grass .. .-	.	-•	.	.	$73 \cdot 7$	1.8	719
Bainfall since Janaary 1st on 92 days	-	\cdots	-	'•	$49 \cdot 61$	$05 甘$ "	49.02
General direction of wind	\cdots	-•	.	.	S.E. by S.	1 points.	S.E.
Deily velocity in miles	-	.	\cdots	-•	101	10 below.	171
Peircentage of oloudy sky ..	\cdots	.	-	.	46	3 "	49
Do. of bright sunshine ..	'*	-	-•	\cdots	$47 \cdot 2$	11.2 ,	58\%

Duration and quautity of the wind from different points.

From	Hours.	Miles.	From	Hours.	Miles.	From	Hoars.	Miles.	From	Hoars.	Mrles.
North	170	1,280	East	174	810	South	188	1,194	$W_{\text {est }}$	190	1,615
N. by 1. . .	269	1,945	E. by S. ..	315	1,6さ0	S. by W. ..	311	2,001	TV. by N...	1250	1,849
N.N.E.	214	1,349	E.S.E.	338	1,617	S.S.W.	228	1,620	W.N.W.	157	1,203
Mr.E. by N...	230	1,632	S.E. by E.	712	3,929	S.W. by S.	244	1,559	N.W. by W.'	, 158	1,100
N.E.	153	1,345	S.E.	504	3,023	S.W.	137	8.45	N.W.	58	418
N E. by E.	219	1,717	S.E. by S.	1,140	9,466	S.W. by W.	264	1,751	N.W. by N.	83	493
E.N.E. ..	155	836	SSEE.	398	2,963	W.s.W	212	1,533	N.N.W.	81	493
E. by N. .	184	. 990	8. by E.		2,431	W.by S. ..	336	2,376	N. by W...	231	1,490

There were 132 calm hours during the year. The resultant corresponding to the above numbers is represented by a S.E. by S. wind, blowing with a uniform daily velocity of 48 miles.
Appendix IX.
Madras Observatory.-Number of hours of wind from each point in the year 1906.

Appendix X.
Madras Observatory.-Number of miles of wind from each point in the year 1906.

Appendix XI.

Appendix XII.

$M_{\text {adras }}$ Observatory.-Wind, oloud and bright sunshine, $1906 . ~_{\text {- }}$

Appendix XIII．

Mean monthly and annual Meteorological results at the Madras Observatory in 1906.

\begin{tabular}{|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{2}{|l|}{Barometer．} \& \multicolumn{4}{|l|}{Dry bulb thermometer．} \& \multicolumn{2}{|l|}{Wet balb．} \& \multicolumn{2}{|l|}{\begin{tabular}{c|c}
Tension \\
of vapour． \& \begin{tabular}{c}
Relative \\
humidity．
\end{tabular} \\
\hline
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { San } \\
\text { Max. } \\
\text { in vaco. }
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\text { Min. } \\
\text { on } \\
\text { grass. }
\end{array}
\]} \& \multicolumn{3}{|l|}{Wind．} \& \multicolumn{2}{|l|}{Rain．} \& \multirow[t]{2}{*}{Cloudy
sky．} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Bright } \\
\text { sun- } \\
\text { shine. }
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { low } \\
\& \text { point. }
\end{aligned}
\]} \\
\hline \& \& Reduced to \(32^{\circ}\) ． \& Daily
range． \& Mean． \& Max． \& Min． \& Range． \& Mean． \& Min． \& By Blan \& \[
\begin{aligned}
\& \text { nford's } \\
\& \text { les. }
\end{aligned}
\] \& \& \& \[
\left.\begin{gathered}
\text { Daily } \\
\text { velo- } \\
\text { city. }
\end{gathered} \right\rvert\,
\] \& Mean \& direction． \& Amount \& Days． \& \& \& \\
\hline \& \& inches． \& inches． \& － \& － \& 。 \& 。 \& 。 \& 。 \& inches． \& CENTE． \& \& \& miles． \& Prs． \& роиттs． \& inches． \& No． \& cextrs． \& Hovrs． \& \\
\hline January \& \& 29．979 \& 0.103 \& 76.5 \& \(83 \cdot 9\) \& 69•5 \& 14.4 \& \(72 \cdot 1\) \& 68.6 \& 0.733 \& 80 \& \(130 \cdot 2\) \& \({ }_{6}^{66 \cdot 6}\) \& \begin{tabular}{l}
127 \\
136 \\
\hline
\end{tabular} \& 11 \& S． E ． \& 4.05
0.94 \& 3 \& \begin{tabular}{l}
48 \\
32 \\
\hline
\end{tabular} \& 182.3
226.0 \& 69.0
71.0 \\
\hline Febraary \& \& \(\cdot 916\) \& \(\cdot 130\) \& 79.7 \& 87.9 \& \(72 \cdot 6\) \& \(15 \cdot 3\) \& 74.5 \& 71.6 \& \(\cdot 789\) \& 77 \& \({ }_{1357}^{136 \cdot 2}\) \& \({ }_{68.3}^{69.6}\) \& \({ }_{133}^{136}\) \& 11 \& \& \& \& \& \(248 \cdot 4\) \& 70.9 \\
\hline March \& \& －942 \& － 122 \& 80.2 \& 88．\({ }^{\text {8 }}\) \& \(71 \cdot 6\) \& 16.9
16
16 \& 74．8 \& 70.7
76.8
7 \& ． 9951 \& 78 \& \({ }_{140}^{135}\) \& \(76 \cdot 0\) \& 210 \& 14 \& S．S．E． \& ．． \& \& 19 \& \(239 \cdot 7\) \& \(76 \cdot 4\) \\
\hline April ．． \& ．． \& － 812 \& － 132 \& 880．2 \& \(\xrightarrow{94.8}\) \& 781
830 \& \begin{tabular}{l}
16.7 \\
17 \\
\hline 1
\end{tabular} \& 81．5 \& 77.8 \& \({ }_{971}\) \& 71 \& \(142 \cdot 0\) \& \(81 \cdot 5\) \& 224 \& 16 \& s． \& \& \& 29 \& \(214 \cdot 1\) \& 76.5 \\
\hline May ．． \& \(\cdot\) \& －722 \& －\(\cdot 121\) \& \(89 \cdot 4\)
86.9 \& \({ }_{\text {100．}}^{10 \cdot 8}\) \& \({ }_{80 \cdot 8}^{83}\) \& \begin{tabular}{l}
\(17 \cdot 8\) \\
16.5 \\
\hline
\end{tabular} \& 81－5 \& \({ }_{75}^{7} 8\) \& \(\cdot 886\) \& 69 \& \(13+3\) \& 79.3 \& 196 \& 18 \& S．S．w． \& 240 \& \& 64 \& 105.7 \& \(73 \cdot 9\) \\
\hline June \& \& －685 \& －11，3 \& \({ }_{80}^{80.8}\) \& \({ }_{97} 1\) \& \({ }_{79 \cdot 1}\) \& 180 \& \(78 \cdot 7\) \& 74.9 \& 887 \& 72 \& 1338 \& 78.1 \& 193 \& 20 \& S．W． \& 445 \& 15 \& \(\begin{array}{r}62 \\ 52 \\ \hline\end{array}\) \& 131.5 \& \({ }_{7}^{74.1}\) \\
\hline \({ }_{\text {August }}\) \& \& \(\cdot 749\) \& －128 \& 83.5 \& 92.0 \& \(77^{13}\) \& 14.7 \& 78．5 \& \(75 \cdot 2\) \& －911 \& 80 \& 134.2 \& 75.8 \& 134 \& 19 \& S．W．by S． \& \(4 \cdot 46\) \& \& \& 161.0
129 \& \(75 \cdot 2\) \\
\hline Soptember ．． \& \(\ldots\) \& －764 \& －122 \& 83.6 \& \(92 \cdot 9\) \& 775 \& 1．5 4 \& 78.2 \& 74.9 \& －892 \& 78 \& 132.9 \& \(7{ }^{7} 8\) \& 130 \& \({ }_{10}\) \& \({ }_{\text {E }}{ }^{\text {S }}\) S \({ }_{\text {E }}\) \& \({ }_{4} 15\) \& \({ }_{9}^{14}\) \& \({ }_{47}\) \& \(186 \cdot 5\) \& 73.6

73

\hline Oetober ．． \& \& －848 \& －119 \& ${ }^{81.8}$ \& 88．7 \& 75.8 \& 13.9 \& 76.7 \& ${ }_{71.5}^{74.1}$ \& －803 \& ${ }_{83}^{79}$ \& ${ }_{132 \cdot 8}^{135}$ \& ${ }_{70.5}$ \& 143 \& 4 \& E． N ． E ． \& ${ }_{6.47}^{4}$ \& 15 \& 59 \& 131.1 \& 71.9

\hline November ．． \& ． \& －954 \& －107 \& 78.3
76.0 \& $85 \cdot 7$
81.6 \& \& $13 \cdot 2$
$10 \cdot 2$ \& $7+5$
72.8 \& ${ }_{70 \cdot 2}$ \& 768 \& 85 \& $122 \cdot 3$ \& 69.2 \& 191 \& 4 \& N．E． \& $16 \cdot 43$ \& 13 \& 63 \& 124：3 \& 70.6

\hline December ．． \& \& 29.834 \& 0.120 \& 82.2 \& 91.0 \& 75.8 \& 10.2 \& $76 \cdot 8$ \& 73.5 \& 0.853 \& 77 \& 134．2 \& 73.7 \& 161 \& 13 \& S．E．by S． \& 49.61 \& 92 \& 46 \& 2，080－3 \& $73 \cdot 1$

\hline \& Anmaal \&

\hline
\end{tabular}

Extreme monthly Meteorological records at the Madras Observatory in 1906.

[^0]: * Mr. Evershed reaohod Kodsikanal on the 21st January 1907.

[^1]: Madras,
 28th January 1907.
 R. Ll. Jones,
 Deputy Director.

