KODAIKÁNAL AND MADRAS OBSERVATORIES.

REPORT FOR THE YEAR 1909.

CONTENTS

KODAIKANAL AND MADRAS OBSERVATORIES.

I.-REPORT OF THE KODAIKÁNAL OBSERVATORY FOR THE YEAR 1909.

1. Staff.-The staff of the observatory on the 31st December 1909 was as follows:-

The first assistant, M.R.Ry. K. V. Sivarama Aiyar Avargal, m.A., B.L., retired from the service on medical certificate on February 12. He had done much valuable work during his service of 15 years in the Madras and Kodaikánal Observatories and it was with great regret that the decision of the medical authorities that he could not again return to work was accepted. Mr. S. Sitarama Aiyar, Mr. G. Nagaraja Aiyar, and Mr. A. Y. Subrahmanya Aiyar were respectively conifirmed as first, second, and third assistants. The first assistant was on privilege leave for 40 days from July 26, the second assistant for 1 month and 2 days from October 18, and the fourth assistant for 17 days from March 4, and for 41 days from November 12.

The subordinate staff consists of a book-binder, a book-binder's boy, a mechanic, five peons, a boy peon for the dark room, and two lascars.
2. Distribution of work.-The Director is in charge of the 40 -foot spectrograph and the pyrheliometer; the Assistant Director is in charge of the spectroheliograph and associated instruments. The first, second, and third assistants are in charge of the work with the Cooke equatorial (spectroscopic), the Lerebour and Secretan equatorial (visual), the photoheliograph, the transit instrument, and the seismometer. They have also to do the astronomical computing and the preparation of the observations for the press. The fourth assistant has charge of the clock nomparisous and, with the help of the writer, is responsible for the whole of the meteorojogical work. The writer is responsible for the accounts, correspondence, and all office records. The photographic assistant has charge of most of the photographic developing, printing, etc.
3. Buildings and grounds.-From April 1 the responsibility for all the minor repairs to the buildings, fences, etc., was transferred from the Public Works Department to the Director and an annual grant will be made for the purpose. This, while involving a considerable amount of extra work, renders it much easier to keep all the buildings in good repair and is certainly an economical arrangement.
(a) Spectroheliograph building.-The roof of the main building has been covered with ruberoid and is now in a satisfactory condition. Two new piers have been built in it for carrying a new spectrograph (No. III.j.
(b) Grounds.-A large number of pine and cypress trees have been planted to the east of the spectrobeliograph building where the ground is at present very bare, and it is hoped that enough of seedlings will be available during the ourrent year to complete the planting of this area.

The trees formerly' planted in various parts of the compound are making good progress and are already exercising a most valuable influence on the observing conditions. The plantation surrounding the ()bservatory compound on the west and north-west was burned down on January 26, for the second time, und the Observatory compound was protected from the flames only by che strenuous exertions of the staff. A beginning has been mado in planting a screen of wattle round the part of the compound most exposed to fire and it is boped that when this grows up it will greately reduce the risk.
4. Instruments.-The following are the principal instruments belonging to the Observatory, or in use, at the present time :-

Six-inch Cooke equatorial.
Six-inch Lerebour and Secretan equatorial remounted by Grubb with a fivewinch Grubb portrait lens of 36 inches focus attached.
Spectograph I-consisting of slit, collimator lens of 4 or 7 feet focus, 2-inch parabolic grating, and camera tube withoat lens. Used in connection with an 11-inch polar siderostat and 6 -inch Grubb lens of 40 feet focus.
A rhomb with ends cut at 45° mounted on a graduated circle can be placed in front of the slit so as to enable any part of the limb to be brought on to the slit.
Spectrograph II.-consisting of alit, collimator lens of 3 feet foous, 3 -ineh plane grating and camera lens of 7 feet focus. Used in connection with the 12 -inch photo-visual lens of the spectroheliograph.
Spectroheliograph-with 18-inch siderostat and 12 -inch Coote photo-visual lens of 20 feet focus, by the Cambridge Scientific Instrument Company.
An auxiliary spectroheliograph attached to the above, made in the Observatory workshop.
Six-inch transit instrument and barrel chronograph, formerly the property of the Survey of India.
Six-prism table spectroscope-Hilger.
Photoheliggraph Dallmeyer No. 4.
Theodolite, six-inch-Cooke.
Two phototheodolites by Steinheil, for cloud photography.
Sextant.
Evershed spectroscope with thrte prisms for prominence and sunspot work, by Hilger.
Mean time clock, Kullberg 6326.
Do. Shelton.
Mean time Chronometer, Kallberg 6299.
Sidereal chronometer, Kallberg 6134.
Tape chronograph, Fuess.
Micrometer for measuring spectrum photographs, Hilger.
Dividing engine, Cambridge Scientific Instrument Company, Limited
Two Balfour Stewart actinometers.
Buchanan's solar calorimeter
Induotion coil with necessary edjuncts.
Small polar siderostat.
Universal instrament.
Complete set of meteorological instruments, including Riohard barograph and thermograph, and wind recorders.
A high class screw cutting turning lathe by Messrs. Cooke \& Sons.
Ångström Pyrheliometer.
Single meniscus lens $5^{\prime \prime}$ aperture, 15 -feet focus.
An 18 -inch concave mirror by Henry of Paris belonging to the Assistant Director has been mounted in the spectrobeliograph room for general spectrum work and for large soale photographs of sunspots.
Spectrograph IIL.-consistiog of slit provided with vertical aud horizontal millimetre soales for measuring position angles and a reflecting device for rotating the sun's image, collimator lens of 210 c.m foons, 6 inch Miohelson grating, and camera lens of about 4 metres focus. The spectrograph is used with the 18 -inch concare mirror.
The Observatory was struck by lightning twice during the year, on March 29 and in May and considerable damage was done to the electrical instruments. (nn the first occasion the flash apparently entered by the telegraph line and, though part of it went to earth through the lightning discharger, enough remained to splasi on to the internal circuits. It stopped the standard clock through the fusing of the seconds contacts, fused the coils of one of the relays and several bells, and injured the telephones. The wire leading to the spectroheliograph house was fused where it came near the branch of a tree.

On the second occasion the only damage done was to a bell circuit. New and more sensitive lightning dischargors have now been placed on the main circuits.

OBSERVATIONS.

(a) Solar Physics.
5. The following table shows for each day the solar observations that were made:-

Table A．

Solar Observations in 1909.

		 0000000100001000000000000000110 			
	$\begin{aligned} & \dot{0} \\ & \text { H. } \\ & \text { B0 } \\ & \dot{4} \end{aligned}$	 $000100000000000000 \approx 50001000100$ 			
$\begin{gathered} \stackrel{\rightharpoonup}{\circ} \\ \stackrel{0}{\Omega} \\ \\| \\ \\|={ }_{\\|}^{2} \end{gathered}$		 0010000000000000110100000000000 			
		 111000100000000010000000000010 1！ 1			
	$\begin{aligned} & \text { 思 } \\ & \text { 品 } \\ & \text { 荙 } \end{aligned}$	 $10000000000010,0=00001001001001$ 			
	咅	 $1100001110011110100001011 \mid 10000$ 1			
$\begin{aligned} & \text { E } \\ & \text { E0 } \\ & \text { H } \\ & \text { R } \\ & 0 \end{aligned}$	$\stackrel{\text { ® }}{\stackrel{\circ}{5}}$	 001111100000000100000000100000 $\left.\frac{1}{4} \frac{1}{4} \right\rvert\,$			
容	'華				
	淢	 000000000000000000000021000000 			
－	＇흘	 $00000001000000=0000=0000000000$ 			
	$\begin{aligned} & \text { 灾 } \\ & \text { 岂 } \\ & \text { 葍 } \\ & \end{aligned}$	 $00000000000000=0000000000000$ 			
	菷	 0010000000000000000000000000 			
	$\dot{\Delta}$				

Solar Observations－Abstract．

1909.													
－	寄	䧺	$\begin{aligned} & \text { 咅 } \\ & \frac{E}{4} \end{aligned}$	葠	宝		容	嵱	彦		产	宮	Total．
d	28	28	31	30	28	29	29	30	28	30	29	29	349
B	18	13	10	6	7	5	1		5	5	7	12	89
0	27	28	30	29	27	23	16	24	24	27	27	27	309
D	27	28	31	30	27	25	25	27	26	30	27	29	332
E	28	28	31	30	27	26	20	25	27	29	28	28	324

There was a general resemblance between the observing conditions in 1908 and 1909．July was the worst month in the year and the conditions were good in November．Sunspot observations were possible on five days more than in the previous year，but there was a slight fall in the number of days on which other solar observa－ tions and photographs were made．

6．Photographs of the sun with the Dallmeyer photoheliograph were taken on 332 days as against 338 in 190s．The greatest defect was in July when they were obtained on only 16 days．At the request of Greenwich，double exposures are taken twice a month for determining the error of orientation of the photographs． Out of 91 solar negatives asked for by Greenwich Observatory it has been possible to supply 85.

7．Observations of sunspots．－The sun is examined for spots and faculae every morning when the weather permits．The sun＇s image is projected on an 8 －inoh dise and the positions of spots and faculae are marked on it．The disos are prepared by the cyanotype process from the large scale drawings of Father R．de Beaurepaire，as mentioned in last report．

8．Sunspot spectra．－（a）Visual．－－This work is done in accordance with the suggestions issued by the committee of the International Union for Solar Research．It includes the comparison of the spot spectrum with a standard map for the region $5210 \AA$ to F ．，a detailed study of C and D_{3} ，and observations of varia－ tions in intensity of the following iron lines：－ $5383 \cdot 585397 \cdot 34,5404 \cdot 36,5405 \cdot 99$ ， $5424 \cdot 29,5429 \cdot 91,5445 \cdot 26,5447 \cdot 13,4924 \cdot 11,5234 \cdot 79,5316 \cdot 79$ and $5535 \cdot 06$ ．Till April 30，1909，the standard map mentioned above was the Mount Wilson provisional photographic map but since that date the map prepared in this Observatory in 1907 has been used．
（b，Photographic．－Speetrograph II．was employed early in the year in photo－ graphing spot spectra with high dispersion for the purpose of detecting relative displacements of the lines most and least affected by pressure．All the best plates of the series have been measured and the results published in the Observatory ＂Memoirs＂（Part I．）．

In the same series of photographs systematic line displacements due to radial movement of the penumbral gases were detected．The results of a preliminary investigation of this phenomenon have been published in bulletin No．15，and in the Monthly Votices of the Royal Astronomical Society，Volume LXIX．

A new and very powerful spectrograph，No．III．，has been constructed during the year．In this a parabolic silver－on－glass mirror forms the solar image on the slit plate，and a 6 －inch plane grating by Michelson is used．Work with this instrument has been concentrated on problems connected with radial movement in sunspots，and a considerable proportion of the photographs secured with it have been measured．

The results indicate an accelerating outward movement of the gases at the base of the chromosphere in all spots，and an inward motion of calcium vapour at high levels in most spots．Particular attention was also given，in the case of large spots，
favourably situated on the disc to line displacements indicating a rotational movement, and strong evidence has been obtained in many instances of a relatively slow rotation, which is opposite in direction in the two hemispheres.
9. General spectroscopic work.-A series of limb and centre comparison plates of selected regions of the spectrum has been obtained with spectrograph III. These are on a scale of $1 \mathrm{~mm} .=0.3 \AA$ and form excellent material for measurements of the displacements towards the red of the lines at the sun's limb. They will be studied with especial reference to (a) the lines most and least affected by pressure, and (b) the enhanced lines. They are also available for a study of the relative intensities of the lines at the sun's limb compared with the centre of the disc.

A spectrograph has been designed and partly constructed in the observatory workshop for photographing the spectrum of Halley's comet. It is intended to employ the 18 -inch parabolic mirror for this work, and a reflecting slit made of silvered glass will be used.
10. Prominences.-Prominences were recorded visually on 309 days as against 310 in 1908, but on as many as 65 days the combined visual and photographic record was imperfect owing to unfavourable weather conditions. The weather was most unfavourable in July when the prominence record was complete on only 9 days. The record of the prominences is made round the disc on. Which spots and faculæ have been projected and with the discs now in use the apparent positions of prominences are easily read off directly. The visual record is compared with the spectroheliograms and all prominences shown in the photographs but not in the drawing as well as conspicuous extensions of Ca prominences inside the disc of the sun are added in blue pencil. Where there is much difference between the photograph and the drawing the differences are noted. In the case of eruptive or metallic prominences the spectra are examined, the most conspicuous bright lines are recorded, and all large displacements of the C line are also noted and their amounts estimated.
11. Work with the spectroheliograph.-This instrument was in use throughout the year. The camera slit of fixed width and fitted with windows at the two ends with automatic shutters has continued to work well. This slit, which was fitted in 1908 , greatly simplifies the working of the instrument and the number of failures from imperfect adjustinents has been negligible.

Photographs of the sun's dise in K_{2} light were obtained on 324 days and limb photographs showing the prominences on 272 days. Most of the dise plates show the prominences also, more or less distinctly, even when the sky is too diffusive for limb photographs. It has been possible therefore to measure position angles and heights of prominences from all available plates on 312 days, the results for both prominences and flocculi were not statisfactory on 11 days owing to unfarourable weather.

The position angles and heights of the prominences photographed have been measured by Mrs. Evershed, who has also made detailed studies of the minute structure and changes of form in some of the more interesting cases.

The best disc plate of each day has been copied on an enlarged scale on bromide paper as heretofore, the prints so obtained being oriented and pasted in order on card sheets for future reference.

Prominence spectroheliograms for 39 days were received from the Solar Observatory, South Kensington, and flocculi plates for 321 days were sent in exchange.
12. Solar radiation.-Observations with the Angström pyrheliometer were made on 5 days. The maximum reading obtained was 1.654 on January 11. The year as a whole has been very unfavourable for this work owing to the abundance of cirrus cloud.

The new method of estimating variations in the solar radiation mentioned in the last report has continued to occupy the attention of the Assistant Director, and a large amount of experimental work has been done.

The practicability of the method of comparing the photographic intensity of moonlight with that of the extra focal images of certain stars has been demonstrated and a form of apparatus which satisfies the required conditions has been worked out． Unfortunately the climate of Kodaikanal appears to be unsuited for this work as may be judged from the statement that throughout the past year there has been no single night near full moon in which the sky was entirely unclouded or free from faint streaks of cirrus．The tendency to heavy dews is also a serious difficulty．It is much to be desired that so promising a method of estimating changes in the sun＇s oatput of energy may be taken up at some more suitable locality．

Summary of Results．

13．Sunspots．－The following table shows the monthly number of new groups observed，the mean daily number of spots visible，and the distribution between the northern and southern hemispheres：－

－				它	安	宝	官	薦	鋯		安	容	㞱	Year．
New groups	．．	19	16	24	22	10	15	12	16	13	23	31	20	221
Daily number	．	$4 \cdot 5$	$\pm \cdot 2$	$4 \cdot 4$	$3 \cdot 1$	2.7	$2 \cdot 2$	2.2	$2 \cdot 3$	$2 \cdot 4$	$4 \cdot 5$	$4 \cdot 9$	$4 \cdot 8$	$3 \cdot 5$
North ．．	－•	8	5	6	4	3	4	7	6	6	13	13	8	83
Sonth	－	11		18		7	11	5	10	7	10	18	12	138

There was a marked revival in spot activity during the last three months of the year but for the year as a whole there was a slight decrease．The total number of new groups for the years 11907，1908，and 1909 were respectively 301,262 ，and $2 \cdot 20$ ，and the mean daily numbers were $4 \cdot 4,4 \cdot 6$ ，and $3 \cdot 9$ ．

Southern spots continued to preponderate greatly over the northern，the proportion being even higher than in 1908．So also the mean latitude of southern spots was slightly higher than that of the northern ones in every month except September and November．The mean latitudes for the whole year were 8.9 for northern spots and 10.8 for the southern．

On five days the sun＇s surface was recorded as free from spots．There was one day，December 25，on which ten groups were observed．A striking feature of the last three months of the year was the comparatively large number of groups which contained fairly large spots．

The following were the most important groups of spots seen during the year：－

January－

Nos．$\left\{\begin{array}{l}1593 \\ 1594 \\ 1595\end{array}\right.$
These spots were large and were changing rapidly．Their spectrum indicated that they were active． C was frequently observed reversed and dark D_{3} was seen near them．In the case of No． 1593 the D_{s} line was seen bright over the whole of the main umbra on the 23rd．

February

March－

Nos．$\left\{\begin{array}{l}1629 \\ 1632\end{array}\right.$

All of these were large and most of them were spectroscopically active．Reversals and displacements of \mathbf{C} as well as darkening of D_{3} were frequently observed near them．

These were scattered trains of spots and were very active as indicated by the behariour of the C and D_{3} lines．
April-
Nos. $\begin{cases}1643 \\ 1649 & \text { were the only groups which contained fairly large spots. }\end{cases}$ No. 1649 developed a large number of companions as it neared the central meridian, and by the time it had reached it, had become a train of three large spots.

May- | Nos. $\left\{\begin{array}{l}1659 \\ 1662 \\ 1663 \\ 1667\end{array}\right)$ |
| :--- |

All of these were large. No. 1663 was the only one in which disturbances in C and D_{3} were frequently observed. It was first seen as a double-spot group with the two spots nearly equal in size, but the leader gradually diminished and the following spot increased in size till on the 15th the former had almost disappeared while the latter was a large spot but of irregular outline.
June-
Nos. $\left\{\begin{array}{l}1671 \\ 1673 \\ 1678 \\ 1681 \\ 1683\end{array}\right.$
All of these contained large spots. Nos. 1671, 1678 and 1681 first appeared on the sun as small spots and grew in size as they advanced westwards. Nos. 1673 and 1683 came round the east limb as large spots but the former dwindled away and disappeared before it reached the west limb.
July-
Nos. $\left\{\begin{array}{l}1690 \\ 1693\end{array}\right.$ were the only large spots. No. 1690, when traversing the eastern half of the sun, developed a large number of companions which began to ranish after it had crossed the central meridian. No. 1693 developed on the side of the sun turned towards us and was visible to the naked eye. The smaller companions of this spot also began to vanish when traversing the western balf of the sun.

August-

No large spot appeared on the sun during the month.
were the large spots of the month. Nos. 1725 and 1726 were 1715 returns of Nos. 1714 and 1715 respectively. The latter two Nos. $\{1719$ after crossing the central meridian developed suddenly into 1725 trains of large spots. No. 1715, when it reached the west 1726 limb, was associated with a metallic and highly eruptive prominence. No. 1719 was a large spot when it came round the east limb on the lyth and for several days afterwards the C line was observed reversed on or near it. On the "8th at or a little before $10^{\mathrm{h}} 30^{\mathrm{m}}$ there was a sudden and very violent out-burst of bright gases on or near the spot. The whole area was seen as a bright prominence projected on the sun's dise though the observing conditions were poor. The prominence showed displacements of the hydrogen lines but the direction and the amount of motion indicated as well as the form of the prominence were rapidly changing. A Ca flocculus photograph taken at $10^{\mathrm{h}} 39^{\mathrm{m}}$ showed the spot region to be completely filled with bright matter and the spot itself was not visible. About the time of the outburst there was a sudden and large rise in the Horizontal Force record of the magnetograph.

October -

Nos. $\begin{cases}1729 & \text { These were the most important of the large spots seen during } \\ 1734 \mathrm{a} & \text { the month. Nos. } 1729 \text { and } 1734 \mathrm{a} \text { suddenly developed } \\ 1731 & \text { into trains of large spots when about } 25^{\circ} \text { west of the central }\end{cases}$ into trains of large spots when about 25° west of the central
meridian. No. : 731 was a very large group covering nearly 15^{c} of longitude. It was found to drift steadily westwards and its position in longitude had changed considerably before it retarned as No. 1748 . It underwent inuch change of form from day to day, C was frequently reversed in it, and D_{3} was often seen dark. On October 15 when the group was within

2 days of the west limb C was brightly reversed over an. extensive area near the group and it was seen as a changing prominence projected on the sun's disc. It was first observed at $9^{\mathrm{b}} 13^{\mathrm{m}}$ and there was nothing left of it by $10^{\mathrm{b}} 30^{\mathrm{m}}$.

November-
(1762
1766
Nos. $\left\{\begin{array}{l}1769 \\ 1770\end{array}\right.$
1770
1772
December-
1782
1786
1787
1788
Nos. $\left\{\begin{array}{l}1788 \\ 1790\end{array}\right.$
1793
1797

All these contained large spots. No. 1766 formed near the central meridian and showed disturbances in C. No. 1772 also formed on the visible disc and after it had crossed the central meridian became a fine and active train of large spots.

All these lay between longitudes 57° and 253°. The other half of the sun was comparatively inactive. But even of these groups No. 1782 was the only one which showed any striking features, spectroscopically or otherwise.
14. Prominences.-The activity as estimated by profile areas bas been well maintained throughout the jear, but the numbers obtained show a reduction of 23 per cent. compared with the previous year.

The general activity of the two hemispheres compared with 1908 is given in the following table:-

Mean daily profile areas of prominences.

North South	\cdots				$\begin{gathered} 1908 . \\ \text { Equare minates. } \\ 2 \cdot 41 \end{gathered}$	$\begin{gathered} 1909 . \\ \text { Equare minates. } \\ 2 \cdot 10 \end{gathered}$
				$\cdots \quad$.		
				-. -	$2 \cdot 98$	$2 \cdot 04$
				Total	.. $5 \cdot 39$	$4 \cdot 14$

Considerable changes have taken place in the distribution of the prominences in latitude. The polar regions in both hemispheres have been inactive, that is, the mean areas in the regions comprised between latitudes 65° and the poles have fallen to less than one-tenth of the areas found in lower latitudes. A well-marked zone of activity has developed between the parallels 45° and 55° in the northern hemisphere, a corresponding active region in the south recorded in 1908 having subsided. Such. alternations between north and south have been recorded previously and appear to be a characteristic feature of prominence development. This change has had the effect of restoring the balance of activity between the hemispheres which have been sensibly equal in 1909.

There has been a great reduction in the number of metallic prominences recorded, particularly in the southern hemisphere, and the mean latitudes have decreased largely. The mean and extreme latitudes observed are given in the following table:-

Metallic prominences.

-	Number observed.	Mean latitude.	Extrema latitude.
North	21	8*8	$2^{\circ} 16^{\circ}$
South . . .	20	$12^{\circ} 2$	$2^{\circ} \quad 22^{\circ}$

The prominence activity in each month may be estimated from the following table:-

Numbers of Prominences.

- The eruptive prominence was also metallic.

The following were the more noteworthy prominences of the year :-
January.-The tallest and the most active prominence of the month was photographed on the 12 th at $8^{\mathrm{b}} 3^{\mathrm{m}}$, the main part of it was an arch 15° in extent and $160^{\prime \prime}$ high. Subsequent photographs showed it as changing both in form and height, and at $14^{\mathrm{h}} 27^{\mathrm{m}}$ there was nothing left except a narrow slanting strip $10^{\circ} \mathrm{long}$, far away from the limb and about $285^{\prime \prime}$ at the highest point.

February.-Two prominences photographed on the 25th reached a height of $240^{\prime \prime}$.

March.-The tallest prominence for the month was photographed on the 7 th and was $175^{\prime \prime}$ high.

April. -The main part of an eruptive prominence recorded on the 21 st was a bright, straight jet $220^{\prime \prime}$ high in Ca , but in H_{α} it was only a faint detached streak about $90^{\prime \prime}$ high. One of the prominences seen on the 23 rd was associated with spot group 1651 and was bright and metallie, but its height though changing did not exceed $30^{\prime \prime}$. C was displaced, and the direction as well as the amount of displacement frequently changed during the whole time of observation-from $9^{h} 45^{m}$ to $11^{\mathrm{h}} 0^{\mathrm{m}}$. The greatest displacement observed corresponded to a radial velocity of 115 miles a second towards the observer. The prominence showed about $\$ 0$ bright lines between C and F .

May.-Two of the largest prominences of the month were detached clouds, $270^{\prime \prime}$ and $240^{\prime \prime}$ high, photographed near the west limb on May 16.

June.-An eruptive prominence was recorded on the 23rd, situated at latitude $+25^{\circ}$ west, at $8^{\mathrm{h}} 50^{\mathrm{m}}$. C was displaced to violet over the whole prominence, the maximum displacements being $4 \AA$. The prominence was changing rapidly. The height in Ca varied from $70^{\prime \prime}$ at $8^{\text {b }} 7^{\text {m }}$ to $230^{\prime \prime}$ at $9^{\text {b }} 21^{\text {m }}$ and $150^{\prime \prime}$ at $9^{\mathrm{h}} 50^{\mathrm{m}}$. A rather faint prominence, $90^{\prime \prime}$ high, was photographed at this position on the next day.

July.-Only one metallic prominence was observed during the month. It was seen on July 6 at latitude - 8° east.

August.-The highest prominence recorded was only $120^{\prime \prime}$. The only prominence which showed any activity was a very bright one, $45^{\prime \prime}$ high, seen at latitude $+9^{\circ}$ east at $10^{\mathrm{h}} 10^{\mathrm{m}}$ on the 14 th. At $10^{\mathrm{h}} 20^{\mathrm{m}}$ there was only a detached streak $20^{\prime \prime}$ high left of it. An hour previously at about $9^{\mathrm{h}} 6^{\text {m }}$ nothing had been seen at the same place. The Ca photographs also did not show anything.

September. -The tallest prominence recorded for the month was also an eruptive one which was photographed at latitude - 15° west on the 23 rd , and reached a height of $330^{\prime \prime}$.

October.-The tallest prominence of the month was $240^{\prime \prime}$ high observed in about the same position on the 9th and 10th.

November.-A highly eruptive prominence which was also the highest for the month was recorded at latitude $+13^{\circ}$ east on the 30 th. C was displaced and the amount and direction of the displacement, as well as the form of the prominence, underwent rapid changes. The maximum displacement corresponded to a velocity towards the observer of 200 miles a second and the maximum height recorded was $360^{\prime \prime}$. A smaller, but equally active and brighter prominence, had been observed at the same position on the previous day. A noteworthy feature was that, during one of the transformations it was undergoing, the main part consisted of a number of bright concentric arches.

December. -The tallest prominence of the month was a detached vertical strip $360^{\prime \prime}$ high which was photographed at latitude - 55° east at $母^{11} 13^{m}$ on December 23.

(b) Other obsertations.

15. Time. -The error of the standard clock is usually determined by reference to the 16^{n} signal sent from the Madras Observatory. This is rendered possible by the courtesy of the Telegraph department which permits the Madras wire to be joined through to this observatory. The signal is received with accuracy on most days and all failures are at once reported to the officer in charge of the Madura division who takes much interest in the accuracy of the time service. Time determinations are made with the transit instrument at frequent intervals, as a check.

The usual time signal to the station was given, by means of a flag, throughout the year.
16. Meteorology.-Meteorolugical observations were carried on as in former years. Eye observations are made at $8^{\mathrm{h}}, 10^{\mathrm{h}}$, and 16^{h} local mean time. Temperatares and pressures are recorded continuously by a Richard's thermograph (wet and dry bulb) and barograph, and the mean temperature and pressure are obtained from the traces corrected by reference to the eye observations. The wind direction and velocity are obtained from a Beckley anemograph.

Pressure.*-The mean pressure for the year was 0.029 inch below the normal. It was in defect in every month of the year. The highest mean pressure recorded was $22 \cdot 919$ inches on March 27 and the lowest $22 \cdot 611$ on June 3.

Temperature.-The mean temperature for the year was $0^{0.3}$ below normal. It was $1^{\circ} \cdot 4$ in excess in Jonuary normal in March and in defect in all other months. The greatest defect was 0.8 in July. The maximum shade temperature recorded was $72^{\circ} \cdot 7^{\circ}$ on March 9 , and the minimum $43^{\circ} 0$ on February 6. The highest temperature shown by the black bulb in vacko was $142^{\circ} 6$ on April 17 and the lowest temperature on the grass was $26^{\circ} 2$ on February 13.

Humidity.-The mean humidity of the year was normal. The greatest differences from normal were a defect of $15_{0} /{ }^{\circ}$ in January and an excess of $6_{0} /{ }^{\circ}$ in August, November, and December.

Rain.-The total rainfall for the year was considerably above normal and the distribution throughout the year was very abnormal. It was largely in excess in January and August (7 inches and 10 inches), and largely in defect in September and Deeember ($5 \frac{1}{2}$ and 4 inches). The rainfall of august was a record for that month while that of September was the smallest on record. The greatest fall in one day was $4: 61$ inches on January 1.

Wind.-On the average for the year the wind was somewhat weaker and two points more northerly than the average. The amount was in considerable excess in January, March, and September and in considerable defeet in April, June, October, and December. The largest amount of wind in any one day was 689 miles on March 5 and the smallest 104 miles on May 28.
-Thare is como reacon to belicve that these barometor rendingg aro about 0.01 inch too 10 w , bat no ahange in the barometer correotion man be made till a comparison ir obtained with a standard.

Transparency of the atmosphers.-The transparency of the lower atmosphere, as judged by the visibility of the Nilgiris, was much below the average. They were seen on only 147 days as against 175 in 1908.

Cloud and sunshine.-The year as a whole was rather less eloudy than usual :and the amount of bright sunshine exceeded the average by 140 hours.
17. Seismology,-The Milne horizontal pendulum worked well throughout the year and the results are given in Appendix I. The watch had to be sent to Madras for repairs in November, but this did not affect the working of the instrument as the standard clock marks each hour on the paper by an electrical device, and the marks made by the watch are used only in case of a failure in the electric record. Sixtyeight earthquakes were recorded during the year. The original records are retained here, but copies of the traces of the more important shocks are sent to the British Association Committee, the Strassburg International Bureau, and to other workers on the subject who ask for them.
18. Library.- One hundred and fifty-eight books were bound during the year.
19. Publications.-Bulletins Nos. XIV. to XVIII. were published during the year, No. XIX. is in the press and Part I. Volume I. of the Memoirs was ready for distribution at the end of the year. Bulletins Nos. XIV. and XVII. deal with prominences observed in 1908, No. XV. with "Radial movement in spots" and No. XVIII. with "Pressure in the reversing layer"; No. XVI. is "On the curvature of lines in the spectrum formed by a plane grating," by Dr. Gilbert T. Walker. In addition to these, the following papers were published during the year:-
"Radial Movement in Sunspots " by J. Evershed. (M.N., R.A.S., LXIX., No. 5.)
"A Solar Outburst and a Magnetic Storm" by C. Michie Smith. (M.N., R.A.S., LXX., No. 1.)
20. General-. Sufficient observations having been obtained for comparative purposes, the Periyakulam Observatory was closed at the end of a pril 1909.

The Director-General of Observatories visited the Kodaikánal and Madras Observatories in January. The Director visited the Madras Observatory in November. When there, he obtained an interview with His Excellency the Governor to discuss the probable effect on the Madras Observatory of the proposed erection of a new General Hospital on the Spur Tank (see the Veputy Director's report). His Excellency promised that, if the scheme was carried out, all necessary care would be taken to safeguard the interests of the Observatory.

The Public Works Department has so far made no progress with the electric light installation in spite of various attempts made by the Director to impress upon it the urgency of the work.

The staff of the Observatory has worked well throughout the year and the First Assistant, Mr. S. Sitarama Aiyar, deserves special mention for efficiency and zeal.

The Observatory, Kodaikánal, C. Mrohie Smith, February $1910 . \quad$ Director, Kodaikunal and Madras Observatories.

II.-REPORT OF THE MADRAS OBSERVATORY FOR THE YEAR 1909.

1. Staff.-The computer went on privilege leave for one month. There were no other changes in the staff during the year.
2. Time Service.-No change was made in the programme of astronomical observations; these have been restricted as usual to meridian observations to determine time. The only change in the time signals distributed is the following; the 4 r.s. roll now commences 2 minutes before 4 p.m., instead of 3 minutes as hitherto. The change has been in effect since the 19th of March under the order of the Director of the Observatory. The Fort Time Signal was fired correctly at noon and 8 P.M., on 701 out of 730 occasions giving a percentage of success of $\because 6$. Some of these failures were traced to the bad earth at the Observatory; a new one was therefore put down in the bed of the river by the Telegraph Department. The time ball at the Port Office was dropped correctly at 1 p.m. on every occasion except 4 throughout the year and on 2 out of these 4 it was dropped correctly at 2 p.m.
3. Meteorological Observations.-Meteorological observations were continued as usual. The 10^{h} and 16^{h} observations were reduced and sent to the India Meteorological office on Form F. Observations on cloud movement were continued. Besides the ordinary weather telegrams, special storm observations were sent on two oceasions to Simla and on 47 occasions to Calcutta. The tabulation of the traces of the autographic instruments at Madras and of the anemograph at Dodabetta are brought up to date.
4. Buildings.-Certain repairs to the quarters of the Deputy Director were effected during the year.
5. Instruments.-The following is the list of instruments at the Madras Observatory on the 31st December 1.909 :-
(a) Astronomical.

Eight-inch Equatorial Telescope-Troughton \& Simms. Sidereal Clock-Haswall.
$" \quad$ Dent, No. 1408.
" S. Reifier, No. 61.
Mean Time Clock with galvanometor-Shepherd \& Sons. Meridian Circle-Troughton and Simms.
Mean Time Clock-J. Monk.
Mean Time Chronometer-V. Kullberg, No. 5394.

$$
\text { , No. } 6544 .
$$

$" \quad$ Parkinson and Frodsham, No. 2352.
Portable Transit Instrunent-Dolland.
Portable Telescope with stand.
Tape Chronograph-R. Fuess.
Relay for use with the Chronograph-Siemens.
(b) Meteorological.

Richard's Barograph-No. 10, L. Casella.
Thermograph-No. 3618, L. Oasella.
Beckley's Anemograph-Adie.
Sunshine Recorder-No. 149, I. Casella.
Anemoscope-P. Orr \& Sons.
Nephoscope-Mons Jules Daboseq \& Ph. Pellin.
Barometer, Fortin's-No. 1771, L. Casella.
" No. 725, L. Casella (spare).
Dry Bulb" Thermometer-No. ${ }^{\text {No }}$, L. Casella (spare).
Wet Bulb Thermometer No. 38087 , Negretti \& Zambra (врare).
No. 94219 , L. Casella.
No. 38037, Negretti \& Zambra (spare).
Dry Maximum Thermometer-No. 8581, Negretti \& Zambra.
Dry Minimum Thermometer-No. 69047, L. Casella.
Wet Minimum Thermometer-No. 91753, Negretti \& Zambra.
San Maximum Thermometer-No. 10479, Negretti \& Zambra,
Grass Minimum Thermometer-No. 3377, Negretti \& Zambra.
Rain-gauge ($8^{\prime \prime}$ diameter)-No. 1042, Negretti \& Zambra.

Measure glass ion above.
Rain-gauge (5^{n} diameter).
Measure glass for ahove.
The axes and bearings of the transit instrument were examined and cleaned during the visit of the Director in November. The rate of the Riefler Clock has been steady. The Haswall Clock which was taken down last year was put up again and is keeping a steady rate. The Sidereal Clock by Dent was cleaned and the cord carrying the weight was renewed.

The body of the equatorial and the pillar were painted, the elock work, circles and the eye-pieces were cleaned by Messrs. P. Orr \& Sons in the early part of the year. Halley's comet was first observed on the 3rd of December.

In the latter half of September it was stated that a proposal was under consideration to build a new General Hospital in the Spur Tank-a site on the meridian through our transit and a little over one-fourth mile to the north of it. As I considered that this proposal, if carried into effect, would prejudicially affect our observations of close polar stars and might even render them valueless or impossible, it was my duty to call the attention of the Director of the Observatory and the Director-General to the matter. This was done, and representations have been made on the matter.
6. Weather summary.-The following is a summary of the meteorological conditions at Madras during the year 1909 :-

Pressure.-Pressure was below normal in all months except July and August. The greatest excess was 0.010 inch in August and the greatest defect 0.043 incin in January. The highest pressure was $30 \cdot 104$ inches on December 29 , and the lowest 29.476 inches on June 5.

Temperature.-The mean temperature was above the average in January, February, June, October, November, and December and below normal during the other months. The maximum temperature was below normal in all months except October, November, and December, the greatest excess being $4^{\circ} \cdot 3$ in October and the greatest defect $3^{\circ} \cdot 8$ in September. The minimum was above normal in January, February, November, and December, normal in October and below normal during the rest of the year. The minimum on the grass was above normal in all months except May, July and October. The highest shade temperature recorded was $106^{\circ} 1$ on May 30 and the lowest $64^{\circ} \cdot 5$ on January 25 .

Humidity. The percentage of humidity was normal in October and December, below normal in November, and above normal during the remaining months. The driest day was July 18 with 34 per cent. of humidity.

Wind.-Wind direction was normal for February and May; it differed most from normal in September when it was 3 points more westerly than usual, the average direction being south-west. The recorded air movement was apparently lower than usual throughout the year. This however is an effect due to a gradual change in exposure of the anemometer. The movement was certainly lighter than usual in May when hot weather conditions were much less intense than they often are in this month. The abnormal and heavy rain in April and May had completely changed the character of the surface of the country, and persistent high temperatares with vigorous air movement attending were impossible.

Cloud.-The percentage of cloud was abore normal in February and below normal during the remaining months

Sunshine.-The percentage of bright sunshine was above normal in October and December and below normal during the rest of the year. The total number of hours of bright sunshine during the year was $2,271 \cdot 1$ hours,

Rainfall.-The rainfall was above the average in January, April, May, July, August and September and below during the other months, the greatest excess being $9 \cdot 64$ inches in April and the greatest defect 10.39 inches in October. The rainfall for the year was 46.53 inches on 86 days, being $2 \cdot 49$ inches below the normal. The
monsoon rainfall from 15 th October to the end of the year was only 4.85 inches against an average of $26 \cdot 00$ inches. Several storms formed in the Bay during the period, but they formed far to the east and travelled in northerly directions taking the monsoon with them and away from the Madras Coast. The greatest fall on any day was $5 \cdot 42$ inches on May 4.

Storms.-A storm formed in the south-west of the Bay on May 2 and moviny on a westerly course crossed the Madras Coast on May 4. It was of no great soverity but was effective in directing the south-westerly winds that were blowing into the Bay at this time, towards the Madras Coast; hence heavy and general rain fell at Madras and all over the south. The depression passed out into the Arabian Sea where it depeened again, and gave very heavy rain on the West Coast.

Madras Obsbrvatorx,
 29 th January 1910.

R. LL. Jones,

Deputy Director.

Appendix I.

Kodatiáaxal Observatory Seismological Records in 1909.

			Mran monthly and anuual Meteorologieal Results at the Kodaikánal Observatory in 1909.													$H^{\text {eight of }}$ barometor cistern abova memin sea luvel，7，688 feat．				
Month．	Barometer．		Dry bulb thermometar．				Vet buib．		$\begin{array}{c}\text { Tension } \\ \text { of vapoar．}\end{array}$ $\begin{array}{c}\text { Relative } \\ \text { humidity }\end{array}$ By Blanford＇s tables		$\begin{gathered} \text { Suan } \\ \text { Sinax } \\ \text { in paco. } \end{gathered}$	$\begin{gathered} \text { Min. } \\ \text { gras. } \end{gathered} .$	Wind．			Ruin．		${ }_{\substack{\text { cleur } \\ \text { kry．}}}$		
	$\begin{aligned} & \text { Roducoed } \\ & \text { to } 82^{2} \text {. } \end{aligned}$	$\begin{aligned} & \text { Paily } \\ & \text { ranage } \end{aligned}$	stean．	Max．	Min．	P．nns	Mann．	Min．			$\begin{gathered} \text { Paily } \\ \text { velooity. } \end{gathered}$		Mean	direction．	Amount．	Dayg．				
	ıxorrs．	тмена．							incres．	onvst．				wilses．	rounts．	porsrs．	ıncıres．		ents	
${ }_{\text {January }}$		${ }_{0}^{0.066}$	${ }_{5}^{54 \cdot 5}$	${ }_{\substack{83 \\ 60.1 \\ 6}}$	48.7	$\xrightarrow{1+4} 18.4$	${ }_{46 \cdot 7}^{45 \cdot 7}$	40.1 40.0	－3．217	61 68	${ }_{\substack{112 \cdot 1 \\ 122 \cdot 6}}$		${ }_{\substack{385 \\ 306}}^{\substack{\text { a }}}$	${ }_{32}^{5}$	N．F．by E．	¢9.87 0.08	${ }^{6}$	${ }_{69}^{86}$	${ }_{251.2}^{251.2}$	
${ }_{\text {Marah }}^{\text {Maril }}$	．880 8.806	－065				（17．6．	cisk	$\substack{41 \cdot 6 \\ 490}$	－ 2.248	61 75 7	（127．9	＋11．8		$\stackrel{4}{4}$	N．E．	cist	7	${ }_{6}^{63}$	205．6	
${ }_{\substack{\text { April } \\ \text { May } \\ \text { did }}}$	$\begin{array}{r}\text {－776 } \\ \hline 786\end{array}$	． 0770	\％ 6.9.	67.6 66.7	¢ 53.3	lit：		40.0 50.0	－ 3897	${ }_{78}^{78}$	cin	－${ }_{\text {47 }}^{47.8}$	${ }_{268}^{242}$	3_{31}^{3}	N．E．by ${ }^{\text {N }}$ N．	cinc	${ }_{18}^{8}$	${ }_{42}^{54}$	2.23 .1 $188 \cdot 3$	
	．738	\％60，	${ }^{57} 5$	celt 6		11．4．		$\stackrel{48 \cdot 7}{49 \cdot 5}$	$\stackrel{3}{371}$	－78	${ }^{1219}$	46．8．	${ }_{3}^{3+0}$	${ }^{27}$	N．W．by w．	${ }^{3} 3.83$	10	${ }^{26}$	${ }^{134.7}$	
${ }_{\text {Jaly }}^{\text {Auguat }}$ ：	．780	－071	${ }_{\substack{65.6 \\ 66.3}}$	62.0 62.0	${ }_{52.8}^{52.1}$	9.9	${ }_{56}{ }^{6} 5$	－	${ }_{4} 98$	${ }_{89}^{84}$	${ }^{11515}$	＋88．8	$\stackrel{443}{260}$		W．N．W．	（16．91			1019 1080	
Sopreamber	－799	．088	${ }^{56.0}$	${ }_{62}^{62 \cdot 7}$	¢ 51.7	11：0	53．0．	$48 \cdot 1$ 49.3	${ }_{.88}^{.384}$	${ }_{88}^{83}$	${ }_{\text {119 }}^{119 \cdot 7}$	47.0 48.3	$\underset{ }{344}$	${ }^{28}$	N．W．	2．23		${ }_{3}^{32}$	（14tios	
$\underset{\substack{\text { Ootorer } \\ \text { Norember }}}{\text { ater }}$		－071	${ }_{5}^{56.3}$	${ }_{6}^{69.9}$	61.3 49.5	（10．4	coin	$49 \cdot 3$ $47 \cdot 7$	－386	${ }_{89}^{88}$	（110：6	$46 \cdot 3$ 44.5	－ 20.5	30 ${ }_{30}$					（130．5 $\begin{gathered}13.5 \\ 14.9\end{gathered}$	
Doeember	－821	． 070	${ }_{52} 2.8$	$61 \cdot 3$	$46 \cdot 9$	$14 \cdot 4$	48.7	12．4	306	76	${ }^{110 \cdot 2}$	${ }_{38 \cdot 2}$	253	1	N．E．	1．32		${ }_{48}$	184＊3	
Annual	22：790	0.068	6.0	${ }^{3} 8$	51.0	12：8	$51 \cdot 1$	${ }^{60}$	0.338	76	116.8	${ }^{44.2}$	$30 \pm$	0	N．	${ }^{68} 24$	110	${ }^{49}$	2，133	

Extreme monthly Meteorological Records at the Kodaikanal Observatory in 1909.

1		－－\％ownorkixomo
号	亳	
	$\begin{aligned} & \text { 药 } \\ & \text { 部 } \end{aligned}$	
$\begin{array}{\|l\|} \hline \text { 童 } \\ \text { 覚 } \end{array}$	$\begin{array}{\|l\|l\|} \hline \mathbf{G} \\ \text { 总 } \end{array}$	
		1－70
	$\stackrel{\stackrel{\rightharpoonup}{1}}{\substack{\dot{W} \\ \hline}}$	
		¢ ¢ ¢ \％\％
高蒿鬲	遃	䓓
	$\begin{gathered} \text { 兽 } \\ \hline \end{gathered}$	
		禀
竞		

Appendix III.

Appendix IV.

Kodargánal Mean Hourly Bright Sunshine for the year 1909.

\qquad

Appendix \mathbf{V}.

Nomber of days in each month on which the Nilgiris were visible during 1909.

Appendix VI.
Madras Observatory.-Abnormals from monthly means Tor the year 1909.

Abnormals				January.	February.	Maroh.	April	May.	June.	July.	August.	September.	Oetober.	November.	Deoember.	Annual.
Keduced atmospherie prossure	-0.043	-0.019	-0.009	-0.009	-0.019	-0.012	$+0.002$	$+0.010$	-0.021	-0.013	-0.021	-0.018	-0.014
Temperature of air		+ 0.2	$+0.9$	- $0 \cdot 2$	-0.5	-0.4	$+0.1$	-0.7	-0.9	- 0.8	$+2 \cdot 7$	+ $2 \cdot 6$	$+2 \cdot 3$	+ 0.4
Do. of evaporation	$+1 \cdot 9$	$+1.8$	$+1.0$	+ 1.2	$+1.8$	$+1.2$	$+1.5$	+ 2.5	+ $2 \cdot 1$	$+2 \cdot 3$	$+1.6$	$+1 \cdot 9$	+ 1.7
Peroentage of humidity	+ 8	+ 4	+5	+ 7	+8	$+5$	$+9$	+ 14	+12	Same as	- 3	Same ae	+ 7
Greatest solar heat in youro	.	-	.	- 6.9	- 8.8	-5.3	-6.1	-85	-6.6	- $12 \cdot 1$	- 5.8	-13.4	$+0.7$	-2.4	- 3.9	-5.6
Maximum in ehade		-0.7	Same ab	-0.1	-1.1	-04	-0.2	- 0.9	-2.2	-2.8	+ 4.3	+ 3.9	$+2.0$	+ 0.2
Minimum in shade	$+0.6$	+ 15	- 1.8	- 0.2	-0.6	-0.4	-1.0	-0.4	-02	Same as	$+0.6$	$1+1 \cdot 3$	Same as
Do. on grass	-	.	-•	$+1.7$	+ $1 \cdot 9$	-13	+ 0.2	-0.8	Same as	-0.8	+ 0.2	Same as	- 0.4	$+11$	+ 1.8	+ 0.4
Rainfall in inohes	+ $3 \cdot 41$	- 0.23	-0.39	+ 9.69	$+7.37$	-0.46	+ ${ }^{\text {c. }} 99$	+ 0.51	$+3.67$	-10.39	- 9.29	- 4.58	.
Do. sinoe January ..	-•				+ $3 \cdot 18$	+ $2 \cdot 79$	$+7.01$	+ 17.06	$+16.61$	+17.59	+ 18.10	$+21.77$	+ $11 \cdot 38$	+ 2.09	- $2 \cdot 49$	$-2 \cdot 49$
General direotion of wind	\cdot	2 points E.	Same ия	1 point E.	1 point E .	Same as	1 point W.	1 point W.	2 points 8.	3 pointe W .	2 points S .	1 point E.	2 points E .	Same as
Daily velocity in miles	.	-•	.	-36	- 4	- 40	- 34	- 69	-37	-46	- 54	-27	-82	- 30	-16	- 84
Percentage of olondy sky		..	.	-2	$+6$	-- 2	$+3$	2	- 5	- 8	- ${ }^{13}$	-- 2	- 27	-8	-17	- 7
Do. of bright sunsbine			..	- $12 \cdot 6$	-10.2	-8.0	-3.1	-19.8	$-14 \cdot 3$	-10.5	$-2 \cdot 2$	-9.1	+ 15.5	-8.4	$+1 \cdot 0$	-8.9

Appendix VII.

Abstract of the mean meteorological condition of Madras in 1909 compared with the arerage of past years.

Duration and quantity of the wind from different points.

From	Hours!	Miles.	From	Hours.	Miles.	From	Hours.	Miles.	From	Hoars.	Miles.
North	137	869	East	328	1,544	South	173	1,102	West	261	1,863
N. by E. ..	189	1,101	E.by 8. ..	292	1,540	s. by W. ..	190	1,086	W. by N	169	1,198
N.N.E. ..	261	1,290	E.s.E. .	388	1,427	8.8.W. ..	228	1,269	W.N.W	176	1,077
N.E.by N.	391	2,398	G.E. by E.	448	2,019	S.W. by 8.	205	1,154	N.W. by W.	111	658
N.E. ..	507	3,242	S.E.	375	2,205	S.W.	231	1,378	N.W.	91	425
N.E. by E.	440	2,805	S.E. by 8.	674	4,037	S.W. by W.	275	1,700	N.W. by N.	62	348
E.N.E. .	309	1,891	8.S.E.	368	2,468	W.S.W.	256	1,643	N.N.W.	91	526
E. by N. .	350	1,775	S. by E. ..	287	1,748	W. by S...	280	1,912	N. by W.	74	445

There were 218 calm hours during the year. The resultant corresponding to the above numbers is represented by a S.E. by E. wind, blowing with a uniform daily velocity of 28 miles.

21
Appendix VIII.

Appendix IX.

Appendix X.

Appendix XI.

Madras Observatory.-Wind, cloud, and bright sunshine, 1909.

Month.	Wind resaltant.		Clouds ($0-10$).					Bright sunshine,	
	Velocity.	Direction.	8 H.	$10 \mathrm{H}$.	16 H.	20 H.	Mean.	Average day.	Greatest number of hours in a day.
January	miles. 69	E.N.E.	$2 \cdot 9$	$4 \cdot 7$	$3 \cdot 5$	$2 \cdot 4$	$3 \cdot 5$	ногrs. $7 \cdot 0$	$9 \cdot 0$
Febrnary	92	E.N.E.	$2 \cdot 9$	3.7	$3 \cdot 1$	$2 \cdot 1$	$3 \cdot 0$	$8 \cdot 4$	10.8
March	86	s.E.	$2 \cdot 4$	$2 \cdot 9$	$2 \cdot 0$	$1 \cdot 6$	$2 \cdot 2$	$8 \cdot 5$	10.5
April	123	S.E. by S.	3.8	$3 \cdot 9$	$2 \cdot 8$	$2 \cdot 3$	$3 \cdot 1$	$8 \cdot 6$	11.3
May	98	S. hy E.	$4 \cdot 2$	3.7	$3 \cdot 6$	$2 \cdot 9$	3.6	$6 \cdot 0$	8.8
June	116	s.w.	5.8	$5 \cdot 6$	6-3	$5 \cdot 8$	5.9	$4 \cdot 1$	$7 \cdot 3$
July	112	s.w.by W.	$6 \cdot 5$	6.2	7.5	6.7	6.8	$2 \cdot 8$	8.0
August ..	61	s.w. by S.	6.0	$5 \cdot 8$	6.1	$8 \cdot 5$	$5 \cdot 4$	4.8	$8 \cdot 6$
September ..	60	W. by s.	6.4	$5 \cdot 6$	$6 \cdot 9$	51	$0 \cdot 0$	$4 \cdot 2$	10.6
Datobar ..	45	E. by N .	3.0	$3 \cdot 2$	$8 \cdot 9$	$2 \cdot 5$	$3 \cdot 2$	8.0	$10 \cdot 7$
November .	127	n.f.E.	$4 \cdot 4$	4.8	$4 \cdot 6$	$3 \cdot 8$	44	$5 \cdot 6$	8.9
December ..	140	N.E.	3.7	4.0	$4 \cdot 0$	$2 \cdot 8$	$3 \cdot 5$	$6 \cdot 7$	$8 \cdot 2$
Annnal ..	28	8.E. by E.	$4 \cdot 3$	4.5	4.5	$3 \cdot 4$	$4 \cdot 2$	$6 \cdot 2$	-

Ap pendix XII．

	Barometer．		Dry bulb thermometer．				Wet bulb．		$\begin{array}{\|c\|c} \begin{array}{c} \text { Tension } \\ \text { of vapour. } \end{array} & \begin{array}{c} \text { Relative } \\ \text { humidity. } \end{array} \end{array}$			$\underset{\substack{\text { Min. } \\ \text { grass. }}}{\text { gras. }}$	Wind．			Rain．		Clondy	$\begin{array}{\|l\|l} \text { Sright } \\ \text { stinnt } \\ \text { shine. } \end{array}$	－Daw
	${ }_{\substack{\text { Reduoed } \\ \text { to } 32 .}}$	$\begin{aligned} & \text { Dill } \\ & \text { rang. } \end{aligned}$	Mean．	Max．	Min．	Rango．	Mca	Nin．	${ }_{\text {By }}^{\text {Bla }}$（tal	nford＇s			$\begin{aligned} & \text { Daily } \\ & \text { Volo } \\ & \text { oity. } \end{aligned}$		n direction．	Amount．	Days．			
	incres．	inous．			－				коиrs．	osxTb			vilive．	prs．		incriss．	xo．	s8．	Housa	
${ }^{\text {January }}$	${ }^{29 \cdot 954}$	${ }^{0.118}$	${ }_{7}^{77 \cdot 3}$	83.9 86.6	68．1	${ }_{1}^{15 \cdot 8} 1$	${ }_{7}^{71.1}$	67．6 ${ }_{\text {69 }}^{6}$	0．739	${ }_{77}^{81}$	${ }_{\substack{1315 \\ 138.4}}$	$64 \cdot 8$ 65.7	108 118	8	E．by Nast ．	¢4.30 0.05	1	${ }_{30}^{35}$	${ }_{236 \cdot 9}^{216.9}$	${ }^{67}{ }_{69.9}$
${ }_{\text {March }}$	${ }_{896} 986$	． 123	79.8	${ }_{89}^{89}$	${ }_{70} 8$	$18 \cdot 5$	${ }_{74} 9$	70.7	${ }_{-803}$	79	${ }_{135}^{135}$	${ }_{67 \cdot 3}$	112	11	S．E．by E ．			22	${ }_{263}^{238}$	${ }_{71 \cdot 4}$
${ }_{\text {Ald }}^{\text {May }}$	． 816	－121	－ 88.5	$\xrightarrow{91.4}$	${ }_{80.2}^{77.0}$	14.8 17.2	78.8 80.1	${ }_{77}^{76.0}$	－925	${ }^{81}$		\％ $\begin{gathered}74.9 \\ 78.1\end{gathered}$	157 158 15	15	S．${ }_{\text {S．}}^{\text {ex }}$ E．	\％${ }_{9}^{7.52}$	$\stackrel{8}{4}$	$\stackrel{31}{36}$	${ }_{186.9}^{258.1}$	${ }_{76 \cdot 1}^{76 \cdot 7}$
June	－691	． 121	$86 \cdot 5$	${ }^{98 \cdot 1}$	79.9	${ }^{18.2}$	${ }_{77}^{77.8}$	${ }_{74}^{74.7}$	． 889	${ }_{67} 67$	${ }^{133} 13.9$	${ }_{78 \text { 76．}}$	183	20	S．W．	li．6． 1.65	16	${ }_{69} 5$	${ }^{1284}$	${ }_{77}^{77.2}$
${ }^{\text {July }}$	${ }_{7}^{722}$.129 .12	88．8．8	994．7	${ }_{76}^{77}$	$17 \cdot 2$ 14.6	77－5	${ }_{75}^{75 \cdot 2}$	－897	888	${ }_{134}^{126 \cdot 6}$		${ }_{120}^{152}$	12	S．w．byw．	4.86 5.07	168		87.1 160.2	$\xrightarrow{77.9}$
$\xrightarrow{\text { Sastustber }}$	． 766	．120	${ }_{82} 8$	90.4	76.9	${ }_{13} 14{ }^{\circ}$	78.4	${ }_{70}{ }^{\circ} 4$	${ }^{-924}$	${ }_{84}$	127.9	$7{ }^{75} 5$	129	21	s．w．bsw．	8.36	14	60	126.7	76.9
$\substack{\text { Oectober } \\ \text { November } \\ \text { O．}}$	－903	${ }_{-118}$	80．3 8		72．2		${ }_{74}^{77.6}$	${ }_{717}^{74.5}$	${ }_{783}{ }^{887}$	78 78	$139 \cdot 8$ 135.0	${ }_{706}^{72 \cdot 4}$	${ }_{151}^{91}$	$\stackrel{9}{3}$	N．E．by by．	－O．61 3.92		－${ }_{44}^{32}$	${ }_{167.9}^{247.2}$	74.3 70.7
Deoember ．．	－969	－110	$7{ }^{2} \cdot 8$	${ }_{85} 8$	${ }_{71} \cdot 1$	$14 \cdot 6$	72.5	69.8	．730	77	${ }_{131.9}$	68.2	167	4	N．E．	$0 \cdot 70$	3	35	$206 \cdot 8$	68.8
Annual	829	$0 \cdot 109$	${ }^{81 \cdot 6}$	91.0	74.7	16.3	2	73.0	0.838	79	${ }^{134 \cdot 1}$	${ }^{72 \cdot 3}$	137	12	s．E．	46.53	86	42	2，271．1	$72 \cdot 6$

合	勆	䍔	
		$\begin{aligned} & \text { 要 } \\ & \text { 部 } \end{aligned}$	言
			－
	窝		管
	$\begin{aligned} & \text { 咅 } \\ & \stackrel{\rightharpoonup}{0} \\ & \text { Ben } \end{aligned}$		
		$\begin{gathered} \text { 蕽 } \\ \hline \end{gathered}$	
		晨	宏
		薯	
			宸
		$\begin{aligned} & \text { 芯 } \\ & \text { 旁 } \end{aligned}$	

