KODAIKANAL AND MADRAS OBSERVATORIES.

REPORT FOR THE YEAR 1912.

GONTENTS.

Page
 I-Kodaikanal Observatory.

KODAIKANAL AND MADRAS OBSERVATORIES.

$$
\begin{aligned}
& \text { I.-REPORT OF THE KODAIKANAL OBSERVATURY FOR } \\
& \text { THE YEAR } 1912 . \\
& \text { Staff.-The staff of the Observatory on December 31, 1912, was as follows:- }
\end{aligned}
$$

The subordinate staff consists of a book-binder, an assistant book-binder, a mechanic, five peons, a boy peon for the dark room, and two lascars.
2. Distribution of work. The Director and the Assistant Director have charge of the two spectroheliographs and of the large grating spectrograph. The First, Second, and Third Assistants are in charge of the work with the Cooke equatorial (spectroscopic), the Lerebour and Secretan equatorial (visual and photographic), and the transit instrument. They have also to do the astronomical computing and the preparation of the cbservations for the press. The Ihird Assistant has charge of the seismometer and clock comparisons. The Fourth Assistant, with the help of the Writer, is responsible for the whole of the meteorological work. The Writer is responsible for the accounts, correspondence, and all office records. The Photographic Assistant has charge of most of the photographic developing, printing, etc.
3. Buildings and grounds.-The electric installation was completed in February and the storage battery received its first charge on the 25th of the month. With the exception of some initial troubles with the gas engine which were soon remedied by Messrs. Siemens, the electric plant has worked satisfactorily throughout the year. The current is used for research work in which an electric are is required for direct comparisuns of metallic and solar spectra. The electric power is also used for pumping water, for lighting, and other minor purposes.

The new quarters for the photographic assistant were completed and occupied in August.

The Takhtasinghji Observatory at Poona was dismantled in February and the instruments were transferred to this observatory by order of the Government of India. The question of constructing a building for locating the 20 -inch reflecting telescope is under correspondence with the Government of India and the Public Works Department. Provisional plans for the new building have been prepared by the Director.

The fire lines in the compound have been kept in good order and there was at no time any risk to the buildings and instruments from forest fires.
4. Instruments.-The following are the principal instruments belonging to the Observatory, or in use, at the present time:-

Six-inch Cooke equatorial.

Six-inch Lerebour and Secretan equatorial remounted by Grabb, with a five-inch Grubb portrait lens attarhed. The Lerebour and Seoretan object glass has been replaced by a Cooke photo-visual lens of the same aperture and the instrument has been adapted for direct solar photography in addition to visual work.
Spectrograph I.-consisting of slit, collimator lenses of 4 and 7 feet focus, 2 -inch parabolic grating, and camera tube without lens. Used in connection with an 11-inch polar siderostat and 6-inoh Grubb lens of 40 feet focus.

Spectrograph II.-consisting of a collimator of 7 feet focus and camera of 14 fee focus placed at an angle of 60° with the former. Plane gratings of $3 \frac{1}{4}$ inches or 5 inches ruled surface are used, and the slit is provided with varions devices for the direct comparison of spectra from different souroes, and for rotating the solar image.
Spectroheliograph-with 18 -inch siderostat and 12 -inch Cooke photo-visual lens of 20 feet focus, by the Cambridge Soibntific Instrament Company.
An auxiliary spectroheliograph attached to the above, made in the Observatory workshop.
Six-inch transit instrument and barrel chronograph, formerly the property of the Survey of India.
T heodolite, six-inch-Cooke.
Sextant.
Evershed spectroseope with three prisms, for prominence and sunspot work, by Hilger. Mean time clock, Kullberg 6326.

Do. Sheltor.
Mean time chronometer, Kullberg 6299.
Sidereal chronometer, Kallberg 6184.
Tape chronograph, Fuess.
Two micrometers for measuring spectrum photographs, Hilger.
Dividing engine, Cambridge Scientific Instrument Company, Limited.
Milne horizontal pendulam seismograph.
Induction coil with necessary adjuncts.
Small polar siderostat.
Universal instrument.
Complete set of meteorological instruments, including Richard barograph and thermograph, and wind recorders.
A high class screw cutting turning lathe by Messrs. Cooke \& Sons.
Angström Pyrheliometer.
An 18 -inch concave mixror by Henry of Paris belonging to the Director is mounted in the spectroheliograph room for general spectrum work.

The instruments received from the Takhtasinghji Observatory at Poona include the following :-

Twenty-inoh reflecting telescope, by Common.
Six-inch Cooke photo-visual telescope with equatorial mounting.
Two prisms of 6 inches aperture for use with the above.
Twelve-inoh Cooke siderostat.
Eight-inch horizontal telescope.
Large grating spectroscope, by Hilger.
An ultra-violet spectrograph by Grubb.
OBSERVATIONS.
(a) Solar Physics.
5. The following table shows for each day the solar observations that were made:-
Table A.
Solar Observations in 191%.

4
Solar Observatione－Abstract．

	1912.												
－		家	宫	家	安	$\stackrel{\oplus}{\text { g }}$	$\frac{8}{8}$	鋯		¢ ¢ O ＋ 0			Total
A	30	29	17	\cdots	16	18	24	26	27	25	23	26	261
B	\cdots	－	2	1	\cdots	＊	，	\cdots	－	\cdots	－	－•	3
C	30	29	29	38	31	18	15	22	25	13	16	24	280
D	30	29	31	30	31	27	22	29	28	26	22	24	328
E	30	29	81	30	31	26	24	28	29	26	22	25	331

The sun＇s dise was examined visually for spots etc．on 261 days only whilst in 1911 it was examined on 35.3 days．The reduction in the number of observations was mainly due to an interruption of 66 days whilst the Lerebour and Secretan telescope was being adapted for both visual and photographic work．The observing conditions were perhaps not so good as in 1911 and there were as many as 25 days when there was no sunshine recorded．

6．Photoheliograph．－Photographs of the sun were obtained on 329 days as against 324 in 1911 ．Up to July 31 they were taken with the Dallmeyer photohelio－ graph，and since that date mostly with the Lerebour and Secretan telescope．Double exposures are taken twice a month for determining the error of orientation of the photographs．Two solar negatives were sent to the Greenwich Observatory out of three asked for to complete the series．

7．Spectroheliograph．－Monochromatic photographs of the sun＇s disc in＂K＂ light were taken on 331 days，and prominence plates on 280 days．With the auto－ collimating spectroheliograph H_{a} images were secured on 158 days．The prominence plates are measured as soon as obtained，and the results tabulated．Duplicates of the disc plates have been sent to South Kensington for measurement，as in former years，and in exchange prominence plates have been received from South Kensington．

Mr．Koyds has made a special study of the absorption markings shown on the H a plates．

8．Grating Spectrograph．－Owing to the paucity of sunspots only a few spectra were obtained for the study of radial movements．The general state of calm in the solar atmosphere was，however，specially favourable for other lines of research and a large number of comparison spectra were obtained of the sun＇s limb and the centre of the dise．The relative displacements of the lines towards the red at the limb have been measured and compared with the displacements due to pressure．A series of plates has also been obtained of the arc spectrum of iron in air and the centre of the sun＇s disc．These have been measured to determine the general displace－ ment of the solar lines after correction for the earth＇s movements．The general result of the whole investigation，although far from being completed，appears to throw great doubt on the usual interpretation of the line displacements，which ascribes the general shift of the solar lines，as well as the relative shift of the lines at the limb，to the effect of pressure．The investigation is being continued with the aid of a special device for the direct photographic comparison of the solar and are spectra，and a second series of plates has been obtained with the arc under reduced pressure．

9．6－inch Cooke Equatorial and Spectroscope．－Visual observations of the prominenoes and of spot spectra have been continued as in former years but only two spots were studied in detail in this way，Nos． 6977 and 6980 of the Greenwhich numeration．Ubservation of the behaviour of the C and D_{i} lines were recorded in tow spots．

In October the telescope and its mounting were removed from the south dome and re－erected in the photoheliograph dome．This involved a break in the prominence observations of one week only．Prominences were recorded visually on 280 days．

10．Poona 6－inch Equatorial．－This fine instrument has been erected in the south dome and a powerful grating spectroscope，also from Poona，has been adapted for use with it．

It is intended to make a special study of the metallic prominences and of pro－ minences showing displacements of the hydrogen lines．It has been found from the Kodaikanal reeords that not only do prominences in general show a numerical pre－ ponderance on the east limb，but the preponderance is much greater in the above mentioned special classes of prominence．As the metallic prominences are closely associated with sun－spots，this appears to indicate that both prominences and spots are more active when on the east limb than when on the west．There is also found to be an excess of displacements of the hydrogen lines torards the red end of the spectrum．These facts raise questions which will require the most careful study in the future，and the Poona telescope is well adapted for this work．

11．Solar Radiation．－The new photographic telescope for comparing the intensity of moonlight and first type stars was completed during the year，but owing to cloudy skies no opportanity for using it occurred until December when a fer plates were secured．

A Hartmann Photometer for measuring the plates has been received from Messrs． Toepfer．

Summary of Sunspot and Prominence Observations．

12．Sun－spots．－The following table shows the monthly numbers of new groups observed，the mean daily numbers of spots visible，and the distribution between the northern and southern hemispheres：－

\cdots				！		$\underset{\underset{3}{3}}{\stackrel{y}{3}}$	号	$\stackrel{3}{3}$	宮	$\cdot \text { requequdes }$	$\begin{aligned} & \text { 芯 } \\ & \text { 总 } \\ & \stackrel{8}{8} \end{aligned}$			Year．
New groups ．．	－•	－	．	1	2	2	1	3	2	5	1	1	4	22
Daily number ．．	\cdots		－	0.4	0.3	0.4	0.5	0.3	0.1	0.7	$0 \cdot 3$	\cdots	0.4	0.2
North	\cdots	\cdots	\cdots		\cdots	．	－•	\cdots	－	\cdots		＊	2	2
South	－	＊	\cdots	1	2	2	1.	3	2	5	1	1	1	19
Equator ．．	－	－	－		．	\cdots	\cdots	－	＊＊				1	1

The decline in spot activity noted in the last few years continued in 1912，but the rate of decrease between 1911 and 1912 has lessened very slightly as is shown in the following comparisons for the four years 1909－1912．

Year．									$\begin{gathered} \text { Namber } \\ \text { of } \\ \text { of } \\ \text { groupe. } \end{gathered}$	Par oent． preaions yeara
1909	\ldots						．	\cdots	220	
1910	．．	\cdots	\cdots	\cdots	\cdots	．．	．．	．．	152	68
1911	．	．．	．		\cdots	．	．	．．	56	37
1912	．．	．	．	．．	\cdots	．．	．．	．．	22	39
Year．									$\begin{gathered} \text { Mean } \\ \text { daily } \\ \text { nembers. } \end{gathered}$	$\begin{aligned} & \text { Par eant. } \\ & \text { prot. } \\ & \text { provious } \\ & \text { pramber } \\ & \text { namber. } \end{aligned}$
1909	\cdots	．	．	．．	．．	－	\cdots	－	$3 \cdot 9$	
1910	．．	．．	．	．	\cdots	．．	\cdots	．．	1.8	46
1911		．	．	\cdots	．		\cdots	\cdots	${ }_{0}^{0.7}$	${ }_{43}^{39}$
1912	．	．	．	\ldots	\cdots	．	\ldots	－		
Yar．										
1909	\cdots	．．	\cdots	\cdots	．	\cdots	\cdots	\cdots	5	
1910	\because	\because	\because	\cdots	\because	\because	\ldots	\because	－ 568	${ }_{2}^{112}$
1912	\ldots	\ldots	\because	．．	\ldots	．	．．	\because	240	1.5

It seems probable that the minimum of spat activity occurred during the early part of 1912, not a single spot having been recorded in January and February, whilst there was a slight recovery of activity in September and in December. The appearance of a spot in latitude $+27^{\circ}$ in December may probably ba considered as the beginning of a new cycle of activity.

Of the twenty-two groups recorded during the year, nineteen were in the southern hemisphere and were, on the whole, closer to the equator than in 1911. Their mean latitude was- $7^{\circ} \cdot 2$ against- $9^{\circ} 8$ in 1911. Of the three remaining spots, one was a small dot on the equator, one was at $+20^{\circ}$ and the third, the last group of the year was at $+27^{\circ}$; all three spots were observed in the latter part of December.

Only four groups-No. 2007 (March 7 to 19), No. 2012 (June 17 to 28), No. 2023 (October 4 to 11), and No. 2025 (December 15 to 23)-contained fairly large spots. The spectra of Nos. 2007, 2008 (April), 2021 (September), and 2025 (December) showed disturbances in C and D_{3}.
13. Prominences.-The mean areas of prominences for each hemisphere of the sun are shown in the following table in which the figures fo the previous two years are given for comparison :-

The reduction of prominence area is here shown to be very much less than the reduction of spot numbers or of new groups, also the rate of decrease has lessened considerably between 1911 and 1912.

The area curve underwent a narked chauge in the secoud-half of 1711. There were several sharp, though small, maximand a pronounced maximum near 50° south. These features were mintained in a general way in 1912.

Metallic Prominences.

\footnotetext{
The prominence activity in each month may be estimated from the following table :-

Number of Prominences.

The metallic and eruptive prominences show a decrease corresponding to that of the spot activity. But there is actually an increase in the number of "large" prominences ; this is particularly striking in January and February when there was no spot recorded, but the numbers of large prominences are the highest in the year.

The following were the more noteworthy prominences obserred during the year:-

June.-A prominence recorded at latitude- 25° East in the 22 nd reached a height of $200^{\prime \prime}$ at $10^{\mathrm{h}} 33^{\mathrm{m}}$ but fell to $130^{\prime \prime}$ at $11^{\mathrm{h}} 20^{\mathrm{m}}$.

July.-A metallic prominence was ubserved at $+78^{\circ}$ West un the 31st.
August.-A large promineace covering 30° of the south-west limb was photographed on the 31st and was slowly rising without altering its general shape. The height reached was $170^{\prime \prime}$ at $10^{\mathrm{h}} 17^{\mathrm{m}}$.

September.-A prominence photographed at latitude- 33° East on the 30th attained a height of $240^{\prime \prime}$.

November.-A prominence photographed at latitude--18r West on the 12th was $240^{\prime \prime}$ in height.

(b) Other Orserfatinns.

14. Time. - The error of the standard clock is usually determined by reference to the $16^{\text {h }}$ signal from the Madras (1bservatory. This is rendered possible by the courtesy of the Telegraph department which permits the Madras wire to be joined through to this obserratory. The signal is received with accuracy on most days and all failures are at once reported to the officer in charge of the Trichinopoly dirision. Time determinations are made with the transit instrument, when necessary, as a cherk.
15. Meteorology.-Meteorological observations were carried on as in former years. Eye observations are made at $8^{\mathrm{h}}, 10^{\mathrm{h}}$ and 16^{h} local mean time. Temperatures and pressures are recorded continuously by a Richard thermograph (ret and dry bulb) and barograph, and the mean temperatures and pressures are obtained from the traces, corrected by reference to the eye observations. The wind direction and velocity shown in tables II and III of the appendix are obtained from a Beckley anemograph, and the 8^{h} values for the daily weather reports of Simla and Madras from a Robinson anemometer and a wind vane.

Pressure.-The average pressure for the year was 0.007 inch above the normal. The monthly mean was below normal during four months only--June, July, August and November-and the greatest defect was only 0.009 inch. The greatest excess, on the other hand, was 0.034 inch in April.

Temperature.--The monthly mean temperature was in excess throughout the year, so also were the monthly mean maxima during nine months of the year, the annual excess in the two cases being $0^{0.9}$ and $1^{\circ} 2$, respectively. The annual means of the other temperature records, viz., "dry minimum", "wet mean ", "wet minimum", "sun maximum ", and "grass minimum" were also higher than the normal.

Frumidity. -The mean humidity for the year was the same as the normal, riz., 74 per cent. There was a defect of 15 per cent. in Jamuary, but the other months did not differ greatly from the normal.

Rainfall.-The rainfall distribution was rather abnormal. There was a deficiency in the months of January, February, March, July, August and October amounting to $7 \cdot 44$ inches, and an excess in the other months amounting to $13 \cdot 12$ inches, the total excess above normal being 5.68 inches. The most striking deviations were a defect of 2.52 inches in January and excesses of 5.7% inches in April and $5 \cdot 24$ inches in November.

Wind.-There was a defect of 95 miles in September and an excess of 92 miles in December in the average daily wind velocity, but there was otherwise no striking difference from the normal. The mean daily velocity was only 3 miles in defect. The mean wind direction for the year was north-north-east, the normal direction being north.

Transparency of the atmosphere.-The transparency of the lower atmosphere as judged by the risibility of the Nilgiris, about 100 miles dietant, was much below normal as was the case also in 1911. The atmosphere was clearest in January and December and least clear in April.

Cloud and Sunshine.-The year as a whole was somewhat more cloudy than usual and there were 25 days when no sunshine was recorded. The total number of hours of bright sunshine was 1997, which is 30.8 hours below the average of eleven years.
16. Seismology.-The Milne horizontal pendulum recorded 81 earthquakes during the year as against 95 in 1911. The highest records were in May and June, with 13 and 16 respectively. The heaviest shock, as judged by duration and amplitude, was due to the Burma earthquake of the 29th May.
17. Library.-One hundred and sixty-four volumes were bound during the year.
18. Publications.-Bulletins Nos. XXV. and XXVI. dealing with the prominence observations for 1911 were published during the year and Nos. XXVII, XXVIII. and XXIX. were sent to the press towards the end of the year. The titles of these are "On the presence of Radium and the elements of the inactive group in the chromosphere", "On the relative numbers of prominences observed on the eastern and western limbs " aud "Summary of prominence observations for the first-half of 1912".
19. General.-The Officiating Director-General of Observatories inspected the Kodaikanal Observatory in February and the Director inspected the Madras Observatory in October.

The staff of the Observatory worked well during the year.

Thr Observatory, Kodaikanal,
31st January 1913.

J. Eivershmb, Director, Kodaikanal and Madras Observatories...

II.-REPORT OF THE MADRAS OBSERVATORY FOR THE YEAR 1912.

Staff.-The staff at the Observatory on December 31, 1912, was as follows:-

Two peons and two lascars form the subordinate staff. The Computer was on privilege leave from 12th April to 31st May, aud the First Assistant from 16th July to 15 th August,
2. Iime Service.-Time determinations hare been made systematically on the plan followed in previous years and the time service was efficiently maintained. By the Adjutant-General's order the firing of the 8 p.m. gan at the Fort was discontinued from the 29th January. Towards the end of the year intimation was received that the δ p.y. firing was to be resumed from the lst January 1913. No other change was made in the number or manner of the signals distributed from the observatory. The Fort gun failed on five occasions and fired correctly on 386 occasions out of 391 , giving $95 \cdot 7$ as the percentage of success. The failures were due to faults outside the observatory.

The Semaphore at the Poit office failed on one occasion and was dropped correctly at I P.m. every other day ; on the day it failed at I p.m. it was dropped correctly at 2 Р.м.
3. Meteorological Cbservations.--In addition to the ordinary meteorological observations, extra obserrations were taken for storm warning purposes and telegrams sent to Simla on two occasions and to Calcutta on 107 occasions. A new I hermograph was received from Calcutta and brought into use on the 15th May 1912.
4. Buildings.- In addition to the usual annual repairs to the office and quarters, special repairs in the quarters were carried out during the year. The porch which was condemned early in the year was pulled down and rebuilt and malthoid sheeting was laid on the roof so that the quarters are now rain-proof. The Executive Engineer proposed to investigate the foundations of the transit circle in order to try and discover the cnuse of the large changes in level which have occurred during the last three years; but action was deferred till after the next inspection by the DirectorGeneral of Observatories.
5. Instruments.-The following is a list of the instruments at the observatory on the 31st December 1912 :-
(a) Astronomical.

Eight-inch Equatorial Telesoope-Troughton \& Simms
Sidereal Clock-Haswall.

$$
\text { Dent, No. } 1408 .
$$

$" \quad \begin{aligned} & \text { Dent, No. } 1408 . \\ & \text { S. Riefler, No. } 61 .\end{aligned}$
Mean Tíme Clock-J. H. Agar Baugh, No. 105. with galvanometer-Shepherd \& Sons.
Meridian Circle-Troughton \& Simms.
Mean Time Chronometer-V. Kullberg, No. 5394. No. 6544.
Portable Transit Instrument-Dollond.
Portable Telescope with stand.
Tape Chronograph-R. Fuess.
Relay for use with the Chronograph-Siemens.
(b) Meteorological.

Richard's Barograph-No. 10, L. Casella. Thermograph-No. 29637, I. Casella.
Beokley's Anemograph-Adie.
Sunshine Recorder-No. 149, L. Casella
Nephoscope-Mons Jules Daboseq \& Ph. Pellin.
Barcmetor, Fortin's-No. 1771, L. Casella.
" . No. 725, L. Casella (spare). $\% \quad$ No. 1420, L. Casella (spare).

Dry Bulb Thermometer-No. 94221, L. Casella.
No. 38037, Negretti \& Zambra (spare).
Wet Bulb Thermometer--No. 94219, S. Casella.
No. 38037, Negretti \& Zambra (spare).
Dry Maximum '1 hermometer-No. 8581, Negretti \& Zambra.
Iry Minimum Thermometer-No. 61017, L. Uasella.
Wet Minimum 'Thermometer-No. 91753 , Negretti \& Zambra.
Sun Maximum Thernometer-No. 10479, Negretti \& Zambra. Grass Minimum Thermometer-No. 3377, Negretti \& Zambra. Raingauge ($8^{\prime \prime}$ diameter)-No. 1042, Negretti and Zambra.
Measure glass for above.
Raingauge ($5^{\prime \prime}$ diameter).
Measure glass for above.
In its rainfall distribution the year was similar to the previous one. The first nine months were very dry-August excepted. During this time a steady and progressive change in the level of the transit circle took place from a small positive value at the beginning of the year to a large negative value in Uctober. With the heavy rain in October and November the level changed rapidly to a small negative value and has remained almost constant since. The steady change during the first nine months suffered a slight check in August after a moderate fall of rain. With the dry weather howerer which followed, the change was resumed; the error reached its maximum in ()stober. The azimuth was not much affected while these changes in level were going on. The observations for time were on the whole satisfactory and the rate of the Riefler clock bas been very steady throughout the year, except for a short period of about ten days at the end of July and the beginning of August.

It is difficult to surmise the cause of these large annual changes in level which have been so prominent since 1910. According to the account given on pages V and VI in Volume: I of "Madras Meridian Circle Observations, 1862, 1863 and 1864 " the piers of the transit circle rest on the eastern end of a "solid pyramidal mass of masonry, 37 feet long by 6 feet wide at its upper surface, 6 feet in depth and 45 feet long by 12 feet broad below. A conical granite pier rests on the centre of this mass, 4 feet in diameter at its base tapering up to 2 feet at its total height of 18 feet and weighing certainly over ten tons." It is difficult to believe that the whole of this mass which is described as "probably little less firm or massive than a solid rock of similar dimensions" partakes as a rigid body of the movement revealed by the level observations. It is more probable that owing to local subsidences in the soil, the masonry bar bas broken and that the transit instrument is on tho smaller part of it. There is ample evidence of subsidences at the surface of the ground in the compound to the south of the observatory.

The transit instrument was overhauled during the visit of the Director in October and the collimators were taken down and readjusted. A specification for a new eyepiece to the transit was drawn up at the same time.
6. Weather Summary.-The following is a summary, in the usual form, of the meteorological conditions at Madras during 1912:-

Pressure.--Pressure was above normal in January, April, May, October and December and below normal in the remaining mouths. The greatest excess was 0.051 inch in April and the greatest defect 0.031 inch in August. The highest pressure recorded was 30.184 inches on January 19 th and the lowest 29.52 I inches on July 28th.

Temperature. -The mean temperature of air was about normal in all months except in January and December. The highest shade temperature recorded was $111^{\circ} \cdot 6 \mathrm{~F}$. on May 19th aud the lowest $60^{\circ} 5 \mathrm{~F}$. on January 4th. The highest temperature in the sun was $149^{\circ} \cdot 2 \mathrm{~F}$. on September 16 th and the lowest on grass was $54^{\circ} .9 \mathrm{FF}$. on January 10 th.

Humidity,-Humidity was above normal almnst throughout the year.
Wind.-The wind direction was normal in April, July and December. It was more southerly than usual in February, June and September, more northerly in October and more easterly in November. The wind velacity was appareatly below
mormal in all the months except March. In July, the mean daily velocity was 43 miles below average. There is no doubt however that a change in exposure accounts in part for the low velocities relative to the average.

Cloud. -The percentage of cloud was normal in March, above normal in July and August and below normal in the remaining months.

Sunshine.-The percentage of bright sunshine was above normal in March, April, June, September and December and below normal in the other months.

Rainfall.-The rainfall was above the average in January, August and November, normal in October and below normal during the other months; the greatest excess being 8.60 inches in November and the greatest defect 4.98 inches in December. The total fall for the year was 46.69 inches against an average of 49.02 inches. The monsoon rainfall from October 15 to the end of the year was $32 \cdot 70$ inches against an zaverage of $26 \cdot 00$ inches. The heaviest fall on any day was $\pm .05$ inches on November 13 .
Madras Observatory,
28th January 1913.
R. Le. Jones,
Deputy Director.

Appendix 1.

Kodarkanal Observatory Seibmologioal Records.

Kodaikanal Observatory Seismological Records-cont.

[^0]
Appendix II.

Height of barometer cistern above
mean sea level, 7,688 feet.

Extreme monthly meteorological records at the Kodaikanal Observatory in 1912.

Appendix III.
Kodaikanal mean hourly wind velocity for the year 1912.

Appendix IV.

Kodarkanal mean hourly bright sunshine for the year 1912.

Appendix \mathbf{V}.

Nember of days in each month on which the Nilgiris were visible in 1912.

Appendix VI.

A bnormals				January.	February.	March.	April.	May.	June	July.	Angust	September.	October.	November.	December.	Annual.
Reduced atmospherio pressure	$+0.037$	-0.014	-0.007	+ 0.051	$+0.011$	- 0.02.	- 0.030	-0.031	-. 0.0015	$+0.004$	-0.013	+ 0.029	Sume as
'Temperature of air	-0.9	$+2 \cdot 2$	$+2.5$	$+0.7$	+ $2 \cdot 3$	$+2 \cdot 8$	+ 1.4	+ 1.2	+ 1.7	+ 1°	$+0.5$	-0.3	$+1.3$
Do. of evaporation	$+0.5$	+ 3.0	+ 28	+ 1.6	+ ${ }^{\prime} 4$	$+3 \cdot 6$	$+2 \cdot 6$	+25	$+2 \cdot 9$	+ 1.9	+ 1.6	-0.5	+ $2 \cdot 1$
Percentage of hamidity	.	.	.	+ 5	+ 5	+ 2	$+3$	$+5$	+ 4	+ 6	+5	+5	+ 3	$+6$	- 1	+ 4
Greatest solar heat in vacuo	- 9.4	-6.7	$-4 \cdot 1$	- $5 \cdot 4$	-24	-0.5	-- $8 \cdot 4$	-6.2	$-2 \cdot 4$	-5.3	-8.6	-57	- $5 \cdot 4$
Maximum in shade	.	.	.	-1.1	$+0.1$	+ $2 \cdot 5$	Same ив	+ $2 \cdot 4$	+29	$+1 \cdot 2$	$+2 \cdot 2$	$\div 1 \cdot 3$	$+1.2$	$+0 \cdot 3$	-0.2	$+1.1$
Minimum in shade	- 1.8	$-3 \cdot 3$	$+2 \cdot 2$	+ 0.2	$+1.7$	+ $2 \cdot 9$	$+1.2$	$+0.4$	$+1 \cdot 3$	$+0.6$	same as	- 1.4	$+0.9$
Do. on grass ..	-	-•	-	$-1 \cdot 3$	$-4 \cdot 4$	+ $3 \cdot 0$	$+0.3$	+ $2 \cdot 2$	+ $4 \cdot 2$	$+17$	$+0.8$	$+2 \cdot 1$	$+1.6$	$+1 \cdot 4$	$-1 \cdot 0$	$+1 \cdot 6$
Rainfall in inches	+ 1.94	-0.28	-0.39	-0.62	-- $2 \cdot 12$	-033	-1.65	$+0.83$	-3.33	Same as	+ 8.60	- 4.98	
Do. sinoe January ..		\cdots	..	.	$+1.66$	$+1.27$	$+0.65$	- 147	- 1.80	- 3.45	-2.62	- 5.95	-- 5.95	+ $2 \cdot 65$	$-2 \cdot 38$	-2.33
Genoral direotion of wind	..	.		1 point N .	2 points S.	1 point S .	Sume us	1 point E	1 point S .	Same as	1 point W.	2 points 8.	2 points N .	2 yoints E.	Sume ab	Sume as
Daily velocity in miles		.	..	- 39	-7	+8	- ${ }^{33}$	-19	-7	-43	- 21	- 28	-10	-23	- 21	- 19
Peroentage of oloudy dky			..	- 18	Same ne	-11	- 8	- 12	-23	+ 4	+ ${ }^{2}$	-15	-6	-10	- 18	-15
Do. of bright sunsbine	- 1.4	-2.1	+ 4.0	+ 8.2	$-3 \cdot 4$	$+3 \cdot 2$	-11.3	- 5.0	$+2 \cdot 4$	$-5 \cdot 1$	- $2 \cdot 4$	+ 4.1	-5.2

Appendix VII.

Abstract of the mean meteorological condition of Madras in the year 1912 oompared with the average of past years.

Duration and quantity of the wind from different points.

There were 234 caim hours during the year. The resultant corresponding to the above numbers is represented by a south-east wind, blowing with a uniform daily velocity of 42 miles.
Appendix VIII.

Appendix IX.
Madras Observatory.-Number of miles of wind from each point in the year 1912.

Appendix \mathbf{X}.

Appendix XI.

Madras Observatory.-Wind, clond and bright sunshine, 1912.

Appendix XII.

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{Month.} \& \multicolumn{2}{|l|}{Barometer.} \& \multicolumn{4}{|l|}{Dry bulb thermometer.} \& \multicolumn{2}{|l|}{Wet balb.} \& \multicolumn{2}{|l|}{\begin{tabular}{c|c}
Tension \& Relativo \\
of rapour., \\
hunidity.
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { sun } \\
\text { inn }
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\underset{\substack{\text { Min. } \\ \text { gruss. }}}{\text { got }}
\]} \& \multicolumn{3}{|l|}{Wind.} \& \multicolumn{2}{|l|}{Rain.} \& \multirow[t]{2}{*}{Cloudy} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Bright } \\
\text { sunt } \\
\text { suine. }
\end{gathered}
\]} \& \multirow[t]{2}{*}{\(\underset{\substack{\text { General } \\ \text { wetther. }}}{ }\)} \\
\hline \& \& \[
\begin{aligned}
\& \text { Daily } \\
\& \text { rang. }
\end{aligned}
\] \& Mean. \& Max. \& Min. \& Range. \& Menn. \& Min. \& \multicolumn{2}{|l|}{By Blanford's} \& \& \& \[
\begin{aligned}
\& \text { Daily } \\
\& \text { vello } \\
\& \text { eity. }
\end{aligned}
\] \& \& direction. \& Amount. \& Daya. \& \& \& \\
\hline \& \({ }^{\text {rixCR}}\) \& rNеH8s. \& \& \& \& \& \& \& ixснвя. \& vys. \& \& \& nılike. \& rrs. \& porrss. \& тхснвя. \& мo. \& wrs. \& Ors \& \\
\hline \({ }_{\text {Jafuary }}^{\text {February }}\) :. \& \[
\begin{aligned}
\& 30 \cdot 034 \\
\& 29 \cdot 960
\end{aligned}
\] \& \({ }_{\text {O }}^{0} \mathrm{O} 1108\) \& 78:9 \& 88.5 \& \({ }_{6}^{65 \cdot 7}\) \& \(\underset{\substack{17 \cdot 8 \\ 15.4 \\ \hline}}{ }\) \& \({ }_{7}^{69 \cdot 7}\) \& \({ }_{7}^{65 \cdot 4}\) \& \& 78878 \& 1393.0 \& \({ }_{\substack{81 \\ 68.8 \\ 68.2}}\) \& 105
110 \& \({ }^{4}\) \& \(\underset{\text { E.E.E.E. }}{\text { N. }}\) \& \({ }^{2} \cdot 88\) \& .. \({ }^{2}\) \& 19
24
29 \& \begin{tabular}{l}
2365 \\
2640 \\
\hline 10
\end{tabular} \& \\
\hline \& - \& - 1138 \& \({ }_{\text {cki }}^{82 \cdot}\) \& (1917 9 \& \({ }^{74.3} 7\) \& \begin{tabular}{l}
17.4 \\
17.5 \\
15.5 \\
\\
\hline
\end{tabular} \& cor \begin{tabular}{l}
76.7 \\
79.1 \\
\hline
\end{tabular} \& cis \begin{tabular}{c}
78.5 \\
\(78 \cdot 5\) \\
\hline
\end{tabular} \& -8099 \& \({ }_{7}^{76}\) \& \& \(\underset{\substack{71.66 \\ 750.0}}{ }\) \& (108 \& \({ }_{13}^{13}\) \& S.E. by s. \& \& .. \& \(\begin{array}{r}13 \\ \hline 6\end{array}\) \& \(289 \cdot 6\)
289.2 \& \\
\hline \& - 7868 \& \({ }_{\text {212 }} 12\) \& \& \& \& - 17.7 \& co. \& 78.6. \& -981 \& \({ }_{78}^{77}\) \& cister \& coin \& \& ¢ 14 \& s.a.s. \& \& \& 26
41
41 \& \& \\
\hline \& \({ }_{\text {- }}^{\text {- } 888}\) \& \({ }_{121}^{117}\) \& \({ }_{85}^{89.9}\) \& 109.20.2 \& \({ }_{79}^{88.7}\) \& 178.1 \& \(\xrightarrow{80 \cdot 2}\) \& \({ }_{77}^{76 \cdot 8}\) \& -900 \& \({ }_{71}^{66}\) \& cos \begin{tabular}{c}
140.0 \\
130.3 \\
\hline
\end{tabular} \& cis \& \(\underset{ }{215}\) \& \({ }_{20}^{18}\) \& s.i.w. \& 1 \& \({ }_{17}{ }^{7}\) \& \& (19\% \& \\
\hline \& \({ }_{7} 773\) \& \({ }_{-128}{ }^{128}\) \& \(88 \cdot 6\)
\(8+7\) \& \& \({ }_{78.4}^{77}\) \& ¢ \& \& \({ }_{7}^{77 \cdot 0}\) \& -990 \& \({ }_{7}^{75}\) \& \& \({ }_{77 \cdot 1}^{76 \cdot 2}\) \& - 1123 \& 121 \& s.w. \& \& \({ }_{5}^{18}\) \& 18 \& \begin{tabular}{c}
131.9 \\
188.2 \\
\hline 18
\end{tabular} \& \\
\hline \& \% 88.6 \& \begin{tabular}{l}
.116 \\
.108 \\
\hline 128
\end{tabular} \& \& cos \& \& \& cos \& , \& -882 \& \({ }_{81}^{77}\) \& \& 74.4. \& 113

112
112 \& \& \& 11.00 \& 188 \& 63
49 \& cibe \&

\hline Noveomber .: \& 30.007 \& ${ }_{-114}$ \& cis \& 8854 \& ${ }_{68,4}^{72 \cdot 3}$ \& cis \& \% 70.5 \& ${ }_{67 \text { 72. }}$ \& ${ }_{8}^{867}$ \& ${ }_{86}^{8,}$ \& cos \& \& ${ }_{162}^{142}$ \& $\stackrel{4}{2}$ \& N.N.E. \& $0 \cdot 30$ \& ${ }_{2}^{8}$ \& 49 \& ${ }_{200.1}^{20.1}$ \&

\hline Annual \& 29.844 \& 0.120 \& 88.4 \& 91.9 \& $75 \cdot 6$ \& ${ }^{16 \cdot 3}$ \& $76 \cdot 6$ \& 73:8 \& 0.843 \& ${ }^{76}$ \& ${ }^{134}$ \& 785 \& 152 \& ${ }^{14}$ \& s.E. \& 46.69 \& ${ }^{78}$ \& ${ }^{34}$ \& $2,547 \cdot 9$ \&

\hline
\end{tabular}

Extreme Monthly Meteorological Records at the Madras Observatory in 1912.

[^0]: * Lnstrament distarbed in the day-time from the 17 th to 23 rd October daring bailding operatione.

