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We report the implementation of a general-order relativistic coupled-cluster method for performing high-
precision calculations of atomic and molecular properties. As a first application, the black-body radiation shift of
the Al+ clock has been estimated precisely. The computed shift relative to the frequency of the 3s2 1Se

0 → 3s3p 3P o
0

clock transition given by (−3.66 ± 0.60) × 10−18 calls for an improvement over the recent measurement with a
reported result of (−9 ± 3) × 10−18 [Phys. Rev. Lett. 104, 070802 (2010)].
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The role of high-precision calculations of various properties
of heavy atoms and molecules which support the state-
of-the-art measurements has gained incredible importance
in recent years. This is particularly true in the context of
atomic clocks [1,2], probes of fundamental symmetry vio-
lations [3–6], and search for the variation in the fundamental
constants [7]. The relativistic coupled-cluster (CC) method
with single and double excitations (CCSD) supplemented
by the important triple excitations has yielded reasonably
accurate results [3–5,8]. However, an extension to this method
by including higher excitations and its application to large
systems are extremely challenging. The general nonrelativistic
CC approach of Kállay and co-workers provides one of the
most efficient routes to the incorporation of higher excitations
by exploiting the features of the many-body diagrammatic
techniques and using automated programming tools based on
the strings of spin-orbital labels [9].

In this Rapid Communication, we extend the general-order
nonrelativistic CC work [9] to the relativistic framework and
we also consider its extension to linear-response (LR) calcula-
tions which is the first application of its kind to atoms. The new
relativistic CC code has a great potential for high-precision
studies in several important areas of fundamental physics; to
mention a few: atomic clocks, parity nonconservation, electric
dipole moment due to parity, and time reversal violations.
As a proof of principle, we have employed the method for
the calculation of the black-body radiation (BBR) shift of the
3s2 1Se

0 → 3s3p 3P o
0 clock transition of Al+. This transition

provides the basis for the most accurate atomic clock to
date [1,7,10], for which the fractional frequency inaccuracy has
recently been estimated as 8.6 × 10−18 [7]. Although the size
of the BBR shift in the Al+ clock is smaller than those in most
of the other ions considered for atomic clocks, the associated
uncertainty in the estimated BBR shift is about 35% of the
total uncertainty when calculated using static polarizabilities
and oscillator strengths taken from different sources [11].
Other semiempirical configuration interaction (CI) calcula-
tions [12] and nonrelativistic results [13–15] agree with this
estimate.

The exact wave function in the single-reference (SR) CC
theory involves an exponential parametrization of the form

|�CC〉 = eT̂ |0〉, (1)

where |0〉 is the Dirac-Hartree-Fock (DHF) reference deter-
minant, and the cluster operator T̂ can be decomposed as
T̂ = ∑n

k=1 T̂k , where

T̂k =
∑

a1<a2 ...<ak

i1<i2...<ik

t
a1a2...ak

i1i2...ik
a+

1 i−1 a+
2 i−2 · · · a+

k i−k . (2)

The convention followed here is that indices i (a) refer to
occupied (virtual) spinors in the reference determinant. Pro-
jecting onto the excited determinants defined by |�a1a2···ak

i1i2···ik 〉 =
a+

1 i−1 a+
2 i−2 · · · a+

k i−k |0〉 we get the nonlinear algebraic equa-
tions for the correlation energy E and unknown cluster
amplitudes t

a1a2···ak

i1i2···ik for the excitation of any order as
〈
�

a1a2···ak

i1i2···ik |e−T̂ ĤNeT̂ |0〉 = Eδk,0, (k = 0, . . . ,n), (3)

where ĤN is the normal-ordered Dirac-Coulomb (DC)
Hamiltonian and k is the level of excitation. The CC
approaches corresponding to the n = 2,3,4, . . . values, i.e.,
the CC singles and doubles (CCSD), CC singles, doubles, and
triples (CCSDT), CC singles, doubles, triples, and quadruples
(CCSDTQ), etc., methods constitute a hierarchy, which
converges to the exact solution of the Dirac equation in the
given one-particle basis set.

The excitation energies are obtained invoking the LR CC
theory as given in Refs. [16,17]. In LR CC theory the excitation
energies ω are calculated by determining the right-hand
eigenvalues of the CC Jacobian as〈

�
a1a2···ak

i1i2···ik |[e−T̂ ĤNeT̂ ,R̂]|0〉 = ω r
a1a2···ak

i1i2···ik , (4)

where operator R̂ has the same structure as the cluster operator
with parameters r

a1a2···ak

i1i2···ik .
With the newly developed general-order relativistic CC

code we can handle a variety of methods including SR CC
approaches for arbitrary high-n values as well as a state-
selective multireference (MR) CC ansatz based on the SR CC
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formalism [18]. In comparison to the existing relativistic CC
[2–6,8], many-body perturbation theory (MBPT) [13], and CI
[12,15] methods the new approaches offer the following new
features and advantages: (i) previously only single, double,
and approximate triple excitations could be considered in CC
or MBPT methods, our implementation allows for arbitrary
high excitations and thereby higher accuracy; (ii) in contrast
to linearized CC or MBPT methods no approximations are
introduced in the equations, that is, all diagrams are retained
and treated iteratively; (iii) the LR theory, which enables the
balanced description of the ground and excited states and
facilitates the calculation of numerous properties, has not been
implemented so far for relativistic CC methods; (iv) the new
methods are applicable to the ground and excited states of any
multiplicity of atoms and molecules and are not confined, e.g.,
to one-valence systems or one-hole and one-particle excited
states; (v) in contrast to CI approaches CC methods truncated
at the same level of excitation are known to be more accurate,
furthermore the latter are size consistent, which could be
important for heavy elements.

As is well known, the energy of the ith state of an atom
placed in an isotropic electric field of strength ε changes as

Ei(ε) = Ei(0) − αi

2
ε2 − · · · , (5)

where Ei(0) and Ei(ε) are the total energies of the state i

in the absence and the presence of the field, respectively,
and αi is the static dipole polarizability of state i. The BBR
shift for a transition |Ji,Mi〉 → |Jj ,Mj 〉 is the shift of the
corresponding transition energy due to the finite background
thermal radiation. At temperature T , neglecting the dynamic
correction factor from Mitroy et al. [12], in the adiabatic
expansion it is given by

�EBBR
ij = −1

2
(831.9 V/m)2

(
T (K)

300

)4

(αi − αj ). (6)

Consequently the evaluation of the BBR shift requires the
knowledge of the static polarizabilities for the two states
involved in the clock transition.

It is obvious from Eq. (5) that the static polarizability can
be evaluated as the second derivative of Ei(ε) with respect to
ε. In our study we followed this approach and calculated the
polarizabilities by numerical differentiation. The total energies
were computed with and without the perturbation; here the
perturbation was taken to be −D · ε where D is the induced
electric dipole moment, and the values of the electric field ε

were fixed to 1 × 10−3 and 2 × 10−3 a.u. The polarizabilities
were obtained from the resulting three energy values assuming
that they lie on a quartic polynomial. With test calculations the
numerical error of this procedure was found to be negligible.

In order to approach the exact solution of the Dirac equation
with the Dirac-Coulomb Hamiltonian for the Al+ ion as closely
as possible, the convergent hierarchy of CC methods was
combined with the convergent basis sets in the total energy
calculations. The ground-state energies were obtained using
the CCSD, CCSDT, and CCSDTQ methods, while excited-
state energies were determined by the LR CC method in the
same excitation manifold. The one-electron basis sets used
were Dunning’s uncontracted correlation consistent double-,
triple-, quadruple-, and pentuple-ζ sets with polarization and
core-valence correlation functions and augmented with three
diffuse functions in each symmetry considered [19,20]. These
basis sets are hereafter simply referred to as Xζ where
X = 2, 3, 4, and 5, respectively. These hierarchical basis sets,
whose details are shown in Table I, are of progressively larger
sizes and designed such that they systematically converge to
the complete basis-set limit. The CC calculations were carried
out with our new all-order relativistic CC code implemented
in the MRCC suite [21]. The molecular orbital integrals were
generated by the DIRAC package [22].

To give an accurate estimate of the properties studied, we
have adopted a composite scheme, which is well established
in quantum chemistry and has widely been used for highly
accurate calculations of atomic and molecular properties (see,

TABLE I. Calculated excitation energies (cm−1) and polarizabilities (a.u.).

Polarizability

Level of correlation Excitation energy 3s2 1Se
0 3s3p 3P o

0 Differential

Basis: 2ζ (16s, 12p, 5d spinors)a

CCSD 37 222 24.215 24.380 0.165
CCSDT 37 324 24.158 24.357 0.199
CCSDTQ 37 326 24.156 24.358 0.202
Basis: 2ζ (16s, 12p, 5d spinors)
CCSD 37 005 24.203 24.261 0.058
CCSDT 37 167 24.072 24.208 0.136
Basis: 3ζ (20s, 14p, 7d , 5f spinors)
CCSD 37 228 24.143 25.040 0.897
CCSDT 37 373 24.017 24.979 0.962
Basis: 4ζ (22s, 17p, 9d , 7f , 5g spinors)
CCSD 37 160 24.273 24.700 0.427
Basis: 5ζ (23s, 17p, 11d , 9f , 7g, 5h spinors)
CCSD 37 186 24.251 24.656 0.406

a1s, 2s, and virtual orbitals above 5EH are frozen (here EH is the Hartree energy).
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e.g., Ref. [23]). In this approach any property P , i.e., excitation
energy, polarizability, or differential polarizability, is evaluated
as

P = PCCSD + �PT + �PQ + �PBQ, (7)

where �PT = PCCSDT−PCCSD, �PQ = PCCSDTQ− PCCSDT,
while PCCSD, PCCSDT, and PCCSDTQ are the values calculated
for property P using the CCSD, CCSDT, and CCSDTQ
methods, respectively. �PBQ is the contributions from the
Breit interaction and QED corrections. We will simply denote
the PCCSD, �PT, and �PQ values computed with an Xζ

basis set as PCCSD|Xζ , �PT|Xζ , and �PQ|Xζ , respectively.
The latter three contributions are calculated with the largest
feasible basis set and the largest feasible number of correlated
electrons. In our study, the PCCSD and �PT were computed
with the 5ζ and 3ζ basis sets, respectively, correlating all
electrons and all orbitals. The evaluation of �PQ was only
feasible with the 2ζ basis set, but further approximations were
necessary even in this basis, and the 1s and 2s electrons
were frozen as well as the virtual orbitals lying above 5EH

were dropped. The �PBQ correction was estimated using the
numerical multiconfigurational Dirac-Fock (MCDF) method
as implemented in the MCDFGME program [24] and the sum-
over-states expression for polarizabilities [12].

The results of CC calculations with various basis sets are
compiled in Table I, while the calculation of the investigated
properties using the composite approach is detailed in Table II.
The convergence of both the excitation energies and polar-
izabilities with increasing level of correlation is rapid. The
CCSD values themselves are already quite reliable with the
contribution of triple excitations to both properties amounting
to less than 1%. Although the �PT correction to the polariz-
ability shift is only 0.07 a.u., this contribution does still repre-
sent more than 10% of the composite shift value and cannot be
ignored. The effect of quadruple excitations is approximately
two orders of magnitude smaller than that of the triples and
can be considered as negligible, which also implies that it is
justified to ignore the effect of pentuple and higher excitations.

The basis-set convergence of the properties we have studied
follows the usual trend. The polarizabilities and excitation
energies are already reliable in the smaller basis sets, while
the polarizability shift, which is a small difference of two large
numbers, requires larger basis sets. From the comparison of the
4ζ and 5ζ results we observe that the CCSD excitation energies
and polarizabilities change on the scales of 10 cm−1 and
0.01 a.u., respectively, which means that the relative change
is about 0.1% for both properties. Unfortunately the errors
of the ground- and excited-state polarizabilities do not cancel

each other, and consequently the absolute error of the CCSD
polarizability shift is larger. For the aforementioned reason its
relative error is also significantly larger, a couple of percent
of the total value. Similar conclusions can be drawn for the
contribution of triple excitations. The �PT|Xζ increment also
changes in the 10 cm−1 and 0.01 a.u. range for excitation
energies and polarizabilities, respectively, when going from
X = 2 to 3, and the change in the polarizability shift is only
0.013 a.u.

The error bars of our computed values were estimated as
follows on the basis of the convergence of the calculated
properties shown in Table I. Let us consider first the PCCSD

term which can be divided into the Hartree-Fock and the
correlation contributions. It has been proven in numerous
studies (see, e.g., Refs. [25] and [26]) that when using the Xζ

(X � 3) correlation-consistent basis sets the first contribution
converges exponentially to the infinite basis-set limit. This sim-
ilarly holds for the correlation contribution if X � 5, while its
convergence slows down with the larger basis sets. In practice,
if PCCSD is evaluated with the Xζ , (X + 1)ζ , and (X + 2)ζ
basis sets, the [PCCSD|(X+1)ζ − PCCSD|Xζ ]/[PCCSD|(X+2)ζ −
PCCSD|(X+1)ζ ] ratio is considerably larger than two if X = 3,
while it is closer to two with larger basis sets (see, e.g.,
Refs. [26] and [17]). Let us simply suppose that the above
quotient is equal to two, then the error of PCCSD|Xζ with respect
to the hypothetic PCCSD value computed in the infinite basis
is identical to PCCSD|Xζ − PCCSD|(X−1)ζ since the sum of the
1/2 + 1/4 + · · · series is one. This reduction of the basis-set
error would also be valid for the current properties. In fact,
the ratio of the PCCSD|4ζ − PCCSD|3ζ and PCCSD|5ζ − PCCSD|4ζ

differences for excitation energies, ground- and excited-state
polarizabilities, and polarizability shifts is 2.7, 5.8, 7.8, and
22.1, respectively. Thus we presume that twice the PCCSD|5ζ −
PCCSD|4ζ difference is a conservative estimate for the basis set
error of the PCCSD|5ζ values, and we attach these numbers
as error bars. The convergence of �PT with the basis set is
known to be similar to that of the correlation contribution to
PCCSD [26]. Therefore we take again 2 × (�PT|3ζ − �PT|2ζ )
as a conservative choice for the error. The �PQ contributions
are only available in one basis set, thus no conclusion about
their basis-set dependence can be drawn. Previous experience
shows (see, e.g., Ref. [23]) that the error of this contribution
computed even with the small 2ζ basis set is never in error by
more than 50% with respect to the basis-set limit. Nevertheless,
to be conservative, we take twice the entire contribution as
the error bar. As to the accuracy of the �PBQ contribution
we remark that it is computed using numerical orbitals at the
MCDF level of the theory and hence it is devoid of any basis-set

TABLE II. Composite excitation energy (cm−1), polarizabilities (a.u.), and their estimated errors.

Polarizability

Contribution Excitation energy 3s2 1Se
0 3s3p 3P o

0 Differential Source

PCCSD 37186 ± 52 24.251 ± 0.044 24.656 ± 0.088 0.406 ± 0.042 5ζ basis set
�PT 146 ± 33 −0.126 ± 0.011 −0.061 ± 0.015 0.065 ± 0.026 3ζ basis set
�PQ 2 ± 4 −0.002 ± 0.005 0.001 ± 0.002 0.003 ± 0.007 2ζ basis set
�PBQ −6 ± 6 0.015 ± 0.015 0.018 ± 0.018 0.003 ± 0.003 Numerical MCDF
Composite 37326 ± 95 24.137 ± 0.075 24.614 ± 0.123 0.477 ± 0.078 Sum of all contributions
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KÁLLAY, NATARAJ, SAHOO, DAS, AND VISSCHER PHYSICAL REVIEW A 83, 030503(R) (2011)

TABLE III. Comparison of theoretical and experimental polariz-
abilities (a.u.), and relative BBR shifts.

Polarizability Relative BBR shift

3s2 1Se
0 3s3p 3P o

0 (units of 1018) Reference

24.19 [13]
24.83 ± 5.26 24.63 ± 4.93 − 8 ± 3 [11]
24.20 ± 0.75 [14]
24.14 ± 0.12 24.62 ± 0.25 − 4.18 ± 3.18 [12]
24.14 ± 0.08 24.61 ± 0.12 − 3.66 ± 0.60 This work

incompleteness errors. As the missing correlation contribution
to this correction is not expected to exceed its MCDF value,
we have taken the entire value itself as the upper limit of the
error.

For the excitation energy a highly accurate experimental
value, 37 393 ± 0 cm−1 is available [1], thus the agreement
between the experimental and our best calculated excitation
energy, 37 326 ± 95 cm−1 is very good and the deviation is
within 0.2% of the experimental energy.

We compare our polarizabilities and relative BBR shift
(defined by the quotient of the BBR shift and the clock
frequency) to the previous theoretical and empirical results
in Table III. Our results are in good agreement with the
previous computational results, however, more precise than
the latter. In contrast, there is a considerable discrepancy

between the present and the experimental BBR shift. There is a
brief discussion on various approaches employed to calculate
the polarizabilities and the BBR shift by Mitroy et al. [12],
hence we do not repeat them here, however, we would like to
emphasize that our results are the first ab initio values based
on a relativistic framework.

In conclusion, we have developed a general-order relativis-
tic coupled-cluster method for high-precision calculations in
atoms and molecules. Using this method the ground-state,
excited-state, and differential polarizabilities of the Al+ ion
are obtained to be 24.14 ± 0.08, 24.61 ± 0.12, and 0.48 ±
0.08 a.u., respectively. From the latter value we obtain the
absolute BBR shift as −0.0041 ± 0.0007 Hz which then
translates to the relative BBR shift of (−3.66 ± 0.60) × 10−18

for the measured clock frequency of 1.121015393207851 ×
10−15 Hz [7]. It is the most accurate estimate of the BBR
shift in Al+ to date, using which the systematic error
of the clock-frequency measurement [7] can be reduced
by 28%.
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