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ABSTRACT

Quantum interference phenomena play a fundamental role in astrophysical spectra that are formed by coherent
scattering processes. Here we derive a partial frequency redistribution (PRD) matrix that includes J-state interference
in the presence of magnetic fields of arbitrary strength. The paper focuses on PRD in the collisionless regime, which
in the traditional PRD terminology is referred to as Hummer’s type-II scattering. By limiting the treatment to the
linear Zeeman regime, for which the Zeeman splitting is much smaller than the fine-structure splitting, it is possible
to formulate analytical expressions for the PRD matrices. In the special case of non-magnetic scattering we recover
the redistribution matrix derived from an independent quantum electrodynamic formulation based on the metalevel
theory.
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1. INTRODUCTION

The linearly polarized spectrum (the second solar spectrum)
of the Sun, formed due to coherent scattering processes, is a
fingerprint of physics of scattering (see Stenflo & Keller 1996,
1997). For example, Stenflo (1980) showed for the first time
that the scattering polarization signatures that he observed for
the solar Ca ii H and K lines could only be explained when
J-state interference between the J = 1/2 and J = 3/2 levels
was taken into account. The interpretation of second solar spec-
trum requires the use of advanced theories of scattering in the
presence of magnetic fields. The Rayleigh (non-magnetic) scat-
tering phase matrix for a J = 0 → 1 → 0 scattering transition
was derived by Chandrasekhar (1950) using classical electrody-
namics. The phase matrix for arbitrary (namely, a Ja → Jb →
Ja) scattering transition was derived by Hamilton (1947) using
quantum mechanics. A classical electrodynamic expression of
the Hanle phase matrix for polarized light scattering on atoms
in the presence of weak magnetic fields was given by Stenflo
(1978). The quantum electrodynamic (QED) theory of polar-
ized scattering on atoms in the presence of arbitrary strength
magnetic fields was formulated in Bommier & Sahal-Bréchot
(1978) and Landi Degl’Innocenti (1983, 1984, 1985), under the
assumption of complete frequency redistribution (CRD).

The interpretation of observed linear polarization in reso-
nance lines often requires the use of partial frequency redistri-
bution (PRD) in scattering. The problem of frequency redistri-
bution in resonance lines for non-magnetic and weak magnetic
field cases was formulated by Omont et al. (1972, 1973) using
a quantum approach. Based on this work, Domke & Hubeny
(1988) derived an explicit form of the polarized PRD ma-
trix for resonance scattering. Using a master equation theory,
Bommier (1997a, 1997b) derived the polarized PRD matrices
for scattering in non-magnetic and arbitrary strength magnetic
fields. Her theory can handle an arbitrary scattering transition
Ja → Jb → Ja , with Ja and Jb being the angular momentum
quantum numbers of the lower and the upper states, respectively.
The lower level in this theory is assumed to be unpolarized.

A classical PRD theory for the scattering of polarized ra-
diation in the presence of arbitrary strength magnetic fields

was developed by Bommier & Stenflo (1999). They solved
the time-dependent oscillator equation, in combination with a
classical model for collisions (see Stenflo 1994, Chapter 10).
However, Bommier & Stenflo (1999) present the polarized
PRD matrices in the atomic rest frame. The correspond-
ing laboratory frame redistribution matrices were derived in
Sampoorna et al. (2007a, hereafter P1). For the particular case
of a J = 0 → 1 → 0 scattering transition, Sampoorna
et al. (2007b, hereafter P2) showed that the QED theory of
Bommier (1997b) and the classical oscillator theory give iden-
tical results. Following the suggestion given in Section 5 of P1,
Sampoorna (2011) has extended the classical theory to treat
atomic transitions with arbitrary J-quantum numbers. This ex-
tension proceeds in a phenomenological way, drawing on the
analogy between the Kramers–Heisenberg scattering amplitude
for line scattering in quantum mechanics and the Jones matrix
for classical polarized scattering. The PRD matrices derived
from such a semi-classical approach are in agreement with those
derived by Bommier (1997b).

Stenflo (1980, 1994, 1997) formulated the quantum theory of
J-state interference for frequency coherent scattering. A QED
theory for the multi-term atom (that includes also the J-state
interference) under the assumption of CRD is given in Landi
Degl’Innocenti & Landolfi (2004, hereafter LL04). A metalevel
theory (also including J-state interference) has been formulated
by Landi Degl’Innocenti et al. (1997) to deal with PRD problems
in the presence of magnetic fields of arbitrary strength in the
absence of collisions.

In the present paper, based on the Kramers–Heisenberg scat-
tering formula, we derive polarized PRD matrices including the
J-state interference. Here we restrict our attention to scatter-
ing in the absence of collisions (the so-called type-II scattering
of Hummer 1962). Our formulation however has the advan-
tage that it allows elastic collisions to be taken into account
by following an approach similar to that described in P1, in
the context of m-state interference phenomenon. We consider
an La → Lb → Lf scattering transition, where La, Lb, and
Lf denote the orbital angular momentum quantum numbers of
the initial, intermediate, and final levels, respectively, but limit
ourselves here to the case of resonance scattering with common
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initial and final states, La = Lf . According to the terminology
of LL04 (p. 580), this is a two-term atom.

Due to L−S coupling, a given (L, S) state splits into several
J-states, with |L − S| � J � |L + S|. Here we account for
interference between the Jb-states belonging to a given excited
Lb-state. This includes the interference between the magnetic
substates of different Jb-states. However, the present treatment is
limited to the regime where the Zeeman splitting is much smaller
than the fine-structure splitting. Therefore, the Paschen–Back
regime is not covered and the level crossings are not dealt
with. Thus, in the linear Zeeman regime of relatively weak
fields, the interference between magnetic substates belonging to
different J-states takes place mainly in the line wings, outside
the Doppler cores. The Paschen–Back theory that covers the
regime of relatively strong fields is given in LL04.

In Section 2 we recall the expressions of the Kramers–
Heisenberg formula and the Mueller scattering matrix. In
Section 3 we derive the elements of the redistribution matrix
in both the atomic and the laboratory frames. In Section 4 we
rewrite the redistribution matrix derived in Section 3 in terms of
the irreducible spherical tensors. The Stokes profiles obtained
for single scattering on an L = 0 → 1 → 0 transition with
S = 1/2 are discussed in detail in Section 5. The concluding
remarks are given in Section 6.

2. KRAMERS–HEISENBERG FORMULA AND
THE MUELLER SCATTERING MATRIX

The complex probability amplitude for scattering from a given
initial magnetic substate a to a final substate f via all possible
intermediate substates b is given by the Kramers–Heisenberg
formula (see Stenflo 1998)

wαβ ∼
∑

b

〈f |r. eα|b〉 〈
b|r. eβ |a〉

ωbf − ω − iγ /2
, (1)

where ω = 2πξ is the angular frequency of the scattered
radiation in the atomic rest frame, h̄ωbf is the energy difference
between the excited and final states, and γ is the damping
constant that accounts for the broadening of the excited state,
while the initial and final states are assumed to be infinitely
sharp. The damping parameter is assumed to be same for
all the magnetic substates of the excited state. The matrix
elements appearing in Equation (1) can be expanded using the
Wigner–Eckart theorem (see Stenflo 1994, pp. 145 and 199).
This gives us

wαβ(Jf μf Jaμa) ∼
∑
Jbμb

(−1)q−q ′√
(2Ja + 1)(2Jf + 1)(2Jb + 1)

× (2La + 1)

{
La Lb 1
Jb Jf S

} {
La Lb 1
Jb Ja S

}

×
(

Jb Ja 1
−μb μa −q ′

)(
Jb Jf 1

−μb μf −q

)
× Φγ (νJbμbJf μf

− ξ )εα∗
q ε

β

q ′ , (2)

where μb represents the magnetic substates of the upper level
b with total angular momentum quantum number Jb, orbital
angular momentum quantum number Lb, and spin S. The
total angular momentum quantum numbers of the initial and
final states are Ja and Jf with orbital angular momentum
quantum number La, spin S, and magnetic substates μa and μf ,
respectively. The quantities ε are the geometrical factors (see

Equations (2) and (27) of Stenflo 1998) with α and β denoting
the outgoing and incoming rays, respectively. In Equation (2),
q and q ′ satisfy

q = μf − μb; q ′ = μa − μb. (3)

The frequency-normalized profile function is given by

Φγ (νJbμbJf μf
− ξ ) = 1/(π i)

νJbμbJf μf
− ξ − iγ /(4π )

, (4)

where
νJbμbJf μf

= νJbJf
+ (gbμb − gf μf )νL. (5)

Here, hνJbJf
is the energy difference between the upper state

Jb and lower state Jf in the absence of magnetic fields, gb,f

are the Landé factors of the Jb and Jf states, and νL is
the Larmor frequency. Equation (2) refers to the frequency-
coherent scattering case. The Mueller matrix M that describes
the transformation from the incident to the scattered Stokes
vector is of the form (see Equation (7) of Stenflo 1998)

M = TWT−1, (6)

where

W =
∑
Jaμa

ρμaμa

∑
Jf μf

w(Jf μf Jaμa) ⊗ w∗(Jf μf Jaμa). (7)

The symbol ⊗ stands for the tensor product. ρμaμa
represents

the relative populations of the initial magnetic substates μa

(diagonal elements of the density matrix for the initial state,
normalized such that the sum over ρμaμa

is unity). Without
initial-state polarization, all the ρμaμa

are equal and can therefore
be absorbed in the normalization constant for the Mueller
matrix M. In Equation (6), T and T−1 are purely mathematical
transformation matrices, and their explicit forms are given in
Equation (9) of Stenflo (1998).

3. COLLISIONLESS REDISTRIBUTION MATRIX
INCLUDING THE J-STATE INTERFERENCE

The matrix form of the tensor product w(Jf μf Jaμa) ⊗
w∗(Jf μf Jaμa) in Equation (7), which is needed for the
computation of the redistribution matrix, is given by
Equation (10) of Stenflo (1998). It contains bilinear products
like wαβ(Jf μf Jaμa)w∗

α′β ′(Jf μf Jaμa). The profile function
Φγ (νJbμbJf μf

− ξ ) appearing in Equation (2) for outgoing fre-
quency (ξ ) may be replaced by Φ′

γ (νJbμbJaμa
− ξ ′) for incoming

frequency (ξ ′), through an application of energy conservation
(see Equation (9.10) of Stenflo 1994). The profile func-
tion Φ′

γ (νJbμbJaμa
− ξ ′) is given by Equation (4) with ξ re-

placed by ξ ′, while νJbμbJf μf
is replaced by νJbμbJaμa

which
is defined similar to Equation (5). Thus, the bilinear product
wαβ(Jf μf Jaμa)w∗

α′β ′ (Jf μf Jaμa) can be written in the atomic
frame as

wαβ(Jf μf Jaμa)w∗
α′β ′ (Jf μf Jaμa) ∼

∑
JbμbJb′ μb′

(−1)q−q ′

× (−1)q
′′−q ′′′

εα∗
q εα′

q ′′ ε
β

q ′ ε
β ′∗
q ′′′ cos βJb′ μb′Jbμb

eiβJ
b′ μb′ Jbμb

× Φγ

JbμbJb′ μb′Jaμa
(ξ ′)δ(ξ − ξ ′ − νJaμaJf μf

)(2Ja + 1)(2Jf + 1)

× (2Jb + 1)(2Jb′ + 1)(2La + 1)2

{
La Lb 1
Jb Jf S

} {
La Lb 1
Jb Ja S

}
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×
{
La Lb 1
Jb′ Jf S

} {
La Lb 1
Jb′ Ja S

}(
Jb Ja 1

−μb μa −q ′

)

×
(

Jb′ Ja 1
−μb′ μa −q ′′′

)(
Jb Jf 1

−μb μf −q

)

×
(

Jb′ Jf 1
−μb′ μf −q ′′

)
. (8)

In the above equation we have introduced the delta-function term
δ(ξ − ξ ′ − νJaμaJf μf

), which is simply the statement of energy
conservation (see Equations (9.7) and (9.10) of Stenflo 1994).
This term is essential as we are dealing with type-II scattering
which represents coherent scattering in the atom’s rest frame.
The νJaμaJf μf

appearing in the delta function is given by

νJaμaJf μf
= νJaJf

+ (gaμa − gf μf )νL, (9)

where hνJaJf
is the energy difference between the states Ja

and Jf in the absence of a magnetic field. The angle βJb′ μb′ Jbμb

(arising due to the combined effects of the J-state and m-state
interferences) is defined by

tan βJb′ μb′ Jbμb
= ωJb′ Jb

+ (gb′μb′ − gbμb)ωL

γ
, (10)

where h̄ωJb′ Jb
represents the energy difference between the

Jb′ and Jb states in the absence of a magnetic field. When
Jb = Jb′ , the angle βJb′ μb′Jbμb

describes the m-state interference
(see Stenflo 1994, p. 87) and when Jb 
= Jb′ , it characterizes the
J-state interference. In the present paper we limit the treatment
to the linear Zeeman regime, in which the Zeeman splitting is
much smaller than the fine-structure splitting. When Jb 
= Jb′ ,
the contribution from the second term with ωL in Equation (10)
to the angle βJb′ μb′ Jbμb

can therefore be ignored, because it is
insignificant in comparison with the first term.

The “generalized profile function” is defined as

Φγ

JbμbJb′ μb′Jf μf
(ξ ) = 1

2
[Φγ (νJbμbJf μf

− ξ )

+ Φ∗
γ (νJb′ μb′ Jf μf

− ξ )]. (11)

When deriving Equation (8), we have made use of the following
relation:

Φγ (νJbμbJf μf
− ξ )Φ∗

γ (νJb′ μb′Jf μf
− ξ )

= 4

γ − i(ωJb′ μb′Jf μf
− ωJbμbJf μf

)
Φγ

JbμbJb′ μb′Jf μf
(ξ ). (12)

Equation (8) can be transformed to the laboratory frame follow-
ing exactly the same steps as described in Section 2.2 of P1 (see
also Section 3.3 of Bommier 1997b). Thus, in the laboratory
frame, the bilinear product wαβ(Jf μf Jaμa)w∗

α′β ′(Jf μf Jaμa)
is given by Equation (8), but with the following replacement:

Φγ

JbμbJb′ μb′ Jaμa
(ξ ′)δ(ξ − ξ ′ − νJaμaJf μf

) −→[(
hII

Jbμb,Jb′ μb′
)
JaμaJf μf

+ i
(
f II

Jbμb,Jb′ μb′
)
JaμaJf μf

]
, (13)

where

(
hII

Jbμb,Jb′ μb′
)
JaμaJf μf

= 1

2

[
R

II, H
JbμbJaμaJf μf

+ R
II, H
Jb′ μb′JaμaJf μf

]
,

(14)

(
f II

Jbμb,Jb′ μb′
)
JaμaJf μf

= 1

2

[
R

II, F
Jb′ μb′JaμaJf μf

− R
II, F
JbμbJaμaJf μf

]
,

(15)
and the magnetic redistribution functions of type II are given by

R
II, H
JbμbJaμaJf μf

(xba, x ′
ba, Θ) = 1

π sin Θ

× exp

{
−

[
xba − x ′

ba + xJaμaJf μf

2 sin(Θ/2)

]2
}

× H

(
a

cos(Θ/2)
,

vJbμbJaμa
+ v′

JbμbJaμa
+ xJaμaJf μf

2 cos(Θ/2)

)
(16)

and

R
II, F
JbμbJaμaJf μf

(xba, x ′
ba, Θ) = 1

π sin Θ

× exp

{
−

[
xba − x ′

ba + xJaμaJf μf

2 sin(Θ/2)

]2
}

× 2F

(
a

cos(Θ/2)
,

vJbμbJaμa
+ v′

JbμbJaμa
+ xJaμaJf μf

2 cos(Θ/2)

)
.

(17)

In the above equations, H(a,x) and F(a,x) are the Voigt and
Faraday–Voigt functions defined by

H (a, x) = a

π

∫ +∞

−∞

e−y2
dy

(x − y)2 + a2
;

F (a, x) = 1

2π

∫ +∞

−∞

e−y2
(x − y)dy

(x − y)2 + a2
. (18)

The scattering angle between the incident and scattered rays
is denoted by Θ (see Figure 1). The dimensionless quantities
appearing in Equations (16) and (17) are given by

xba = ν0ba − ν

ΔνD
; a = γ

4πΔνD
; xJaμaJf μf

= νJaμaJf μf

ΔνD
;

vJbμbJaμa
= xba + (gbμb − gaμa)

νL

ΔνD
,

(19)

where xba, a, and ΔνD are the emission frequency, damp-
ing parameter, and Doppler width, respectively. We note that
(f II

Jbμb,Jb′ μb′ )JaμaJf μf
is zero when both Jb = Jb′ and μb = μb′ .

Substituting Equation (8) in Equations (6) and (7), we obtain
the Hanle–Zeeman redistribution matrix with the J-state inter-
ference included appropriately.

4. THE REDISTRIBUTION MATRIX EXPRESSED IN
TERMS OF IRREDUCIBLE SPHERICAL TENSORS

The irreducible tensors T K
Q (i, n) have been introduced by

Landi Degl’Innocenti (1984) to deal with problems in polarized
radiative transfer. Here index i refers to the Stokes parameters
(i = 0, 1, 2, 3), while K = 0, 1, 2 with −K � Q � +K . In
the following we will express the redistribution matrix in terms
of T K

Q , which allows it to be written as a sum of its multipolar
(K) components. We will need this form in particular for the
collisional redistribution matrix (type III). Furthermore, in the
weak field limit the expansion in terms of T K

Q allows us to
express the Stokes intensity and source vectors in terms of the

3
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respective “cylindrically symmetric” irreducible components
IK
Q and SK

Q (see Frisch 2007).
We start by expressing the equations given in Sections 2

and 3 in terms of the irreducible spherical tensors for polarime-
try, following Appendix C of P2 (see also LL04). Using Equation
(3.84) of Stenflo (1994) and Equations (C1) and (C2) of P2, we
can express the electric field Eμ of the scattered ray as

Eμ ∼
∑

ρJbμb

(−1)q−q ′√
(2Ja + 1)(2Jf + 1)(2Jb + 1)(2La + 1)

×
{
La Lb 1
Jb Jf S

} {
La Lb 1
Jb Ja S

} (
Jb Ja 1

−μb μa −q ′

)

×
(

Jb Jf 1
−μb μf −q

)
Φγ (νJbμbJf μf

− ξ )

× [eμ(n)]∗q[eρ(n′)]q ′E′
ρ, (20)

where E′
ρ is the electric field of the incident radiation, and in-

dices μ and ρ take the values 1 and 2. The above equation is
written in the basis defined in Equation (C3) of P2. The elements
of the coherency matrix may be written as

I S
μν ∼

∑
JaμaJf μf

EμE∗
ν . (21)

Substituting for Eμ in Equation (21), we obtain

I S
μν ∼

∑
ρσ

T S
μν,ρσ (ξ, n; ξ ′, n′, B)I ′S

ρσ , (22)

where

T S
μν,ρσ (ξ, n; ξ ′, n′, B) =

∑
JaμaJf μf JbμbJb′ μb′

(−1)q−q ′

× (−1)q
′′−q ′′′ES

qq ′′ (μ, ν, n) ES
q ′′′q ′ (σ, ρ, n′) cosβJb′ μb′Jbμb

× eiβJ
b′ μb′ Jbμb Φγ

JbμbJb′ μb′Jaμa
(ξ ′)δ(ξ − ξ ′ − νJaμaJf μf

)

× (2Ja + 1)(2Jf + 1)(2Jb + 1)(2Jb′ + 1)(2La + 1)2

×
{
La Lb 1
Jb Jf S

} {
La Lb 1
Jb Ja S

} {
La Lb 1
Jb′ Jf S

}

×
{
La Lb 1
Jb′ Ja S

} (
Jb Ja 1

−μb μa −q ′

) (
Jb Jf 1

−μb μf −q

)

×
(

Jb′ Ja 1
−μb′ μa −q ′′′

) (
Jb′ Jf 1

−μb′ μf −q ′′

)
. (23)

Here, ES
qq ′′ (μ, ν, n) is a reducible spherical tensor (see

Equation (C6) of P2). The transformation to the Stokes vector
formalism from the coherency matrix formalism is described in
Appendix C of P2. The scattered Stokes vector in the laboratory
frame is given by

Si =
3∑

j=0

RII
ij (x, n; x ′, n′, B)S ′

j , (24)

where the normalized type-II redistribution matrix in the labo-
ratory frame (see Equation (13)) is given by

RII
ij (x, n; x ′, n′, B) = 3(2Lb + 1)

2S + 1

∑
K ′K ′′QJaμaJf μf JbμbJb′ μb′

×
√

(2K ′ + 1)(2K ′′ + 1)(2Ja + 1)(2Jf + 1)(2Jb + 1)(2Jb′ + 1)

× (−1)q
′′+q ′+QcosβJb′ μb′Jbμb

eiβJ
b′ μb′ Jbμb

[(
hII

Jbμb,Jb′ μb′
)
JaμaJf μf

+ i
(
f II

Jbμb,Jb′ μb′
)
JaμaJf μf

]( Jb Ja 1
−μb μa −q ′

)(
Jb Jf 1

−μb μf −q

)

×
(

Jb′ Ja 1
−μb′ μa −q ′′′

)(
Jb′ Jf 1

−μb′ μf −q ′′

)(
1 1 K ′′
q −q ′′ −Q

)

×
(

1 1 K ′
q ′′′ −q ′ Q

) {
La Lb 1
Jb Jf S

}{
La Lb 1
Jb Ja S

}

×
{
La Lb 1
Jb′ Jf S

} {
La Lb 1
Jb′ Ja S

}
(−1)QT K ′′

−Q(i, n)T K ′
Q (j, n′).

(25)

In Section 5 we present the results computed using
Equation (25). When the magnetic field is set to zero in
Equation (25), it takes a particularly simple form given by

RII
ij (x, n; x ′, n′) = 3(2Lb + 1)

2S + 1

×
∑

KQJaJf JbJb′

(−1)Jf −Ja cosβJb′ Jb
eiβJ

b′ Jb

× [(
hII

Jb,Jb′
)
JaJf

+ i
(
f II

Jb,Jb′
)
JaJf

]
× (2Ja + 1)(2Jf + 1)(2Jb + 1)(2Jb′ + 1)

×
{
La Lb 1
Jb Jf S

} {
La Lb 1
Jb Ja S

} {
La Lb 1
Jb′ Jf S

}

×
{
La Lb 1
Jb′ Ja S

} {
1 1 K
Jb′ Jb Ja

} {
1 1 K
Jb′ Jb Jf

}
× (−1)QT K

Q (i, n)T K
−Q(j, n′). (26)

The quantities appearing in Equation (26) are given by
Equations (10) and (14)–(17), but with νL = 0. We have
verified that Equation (26), when written in the atomic rest
frame, is identical to the redistribution matrix derived by Landi
Degl’Innocenti et al. (1997) based on the metalevel approach
(see their Equation (15)). It is useful to note that in the non-
magnetic case, we recover the Rayleigh phase matrix for a two-
term atom without lower level polarization, but including J-state
interference derived in Section 10.16 of LL04.

5. RESULTS AND DISCUSSIONS

To illustrate the general behavior of the redistribution matrix,
we present the Stokes profiles resulting from a single 90◦
scattering event for an L = 0 → 1 → 0 scattering transition
with S = 1/2. The J-quantum numbers of the lower and upper
levels are Ja = Jf = 1/2 and Jb = 1/2, 3/2, which give rise to
a doublet. Well-known examples of such doublets are the Na i D1
and D2, Ca ii H and K, and Mg ii h and k lines. The Na i D1 and
D2 lines, in particular, are in addition affected by the presence of
hyperfine structure, which would have to be taken into account
for modeling purposes, but which is not dealt with here. Instead,
a pair of hypothetical lines is used for the theoretical studies in
the present paper. We study the influence of the field strength,
the wavelength separation between the doublets, and the effect
of a background continuum on the Stokes profiles. The magnetic
field orientation is defined by angles ϑB and ϕB with respect to
the polar z-axis (see Figure 1). For all the figures presented here,
ϑB = 90◦ and ϕB = 45◦. The incident radiation is assumed to be
unpolarized ([Iin = 1, 0, 0, 0]T ) and spectrally flat (frequency
independent). It is assumed to be incident in the vertical direction
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Figure 1. Illustration of the scattering geometry in a coordinate system where
the magnetic field makes an angle ϑB with the polar z-axis and has an azimuth
ϕB . (ϑ ′, ϕ′) refer to the incident ray and (ϑ, ϕ) to the scattered ray defined with
respect to the z-axis. Θ is the scattering angle.

(parallel to the polar z-axis). Note that the PRD effects are
contained in the redistribution matrix and manifest themselves
irrespective of the spectral shape of the incident spectrum. The
use of a flat spectrum is only a convenient choice.

The singly scattered Stokes vectors are then determined
exclusively by the first column of the redistribution matrix. As

the elements of the redistribution matrix depend explicitly on λ
and λ′, an integration over λ′ is necessary to obtain the scattered
Stokes profiles at λ. The magnetic field strength is parameterized
by the splitting parameter vH given by

vH = λ2
0e0B

4πmc2
× 1

ΔλD
, (27)

where B is the field strength, e0 is the charge of the electron, and
m is its mass. ΔλD is the Doppler width. The radiative widths
of both the lines are represented by a single damping parameter
a, which is assumed to be 0.00143. The Doppler widths of both
lines are 0.025 Å. Figures 2, 3, and 4 show I,Q/I,U/I , and
V/I profiles for a range of field strengths and for three values
of wavelength separations between the doublets. The positive
Stokes Q directions for the incident and scattered beams lie on
the respective meridian planes shown in Figure 1. If λ1 and
λ2 denote the line center wavelengths of the two lines, then
δλ = |λ1 − λ2| denotes the separation between them. We have
chosen δλ = 6 Å, 1 Å, and 0.1 Å, respectively, for Figures 2,
3, and 4. Different line types correspond to different values of
vH. Note the characteristic signature of J-state interference in
Q/I , namely, a polarization profile with two sign reversals,
one between the two lines, the other at the center of the
J = 1/2 → 1/2 → 1/2 transition line. In the absence of a
background continuum, Q/I in the far wings approaches unity
on both sides of the lines (see the solid line in the top left panel
of Figure 9.2 in Stenflo 1994).

Figure 2. Profiles of the intensity I and the fractional polarizations Q/I,U/I , and V/I plotted for a hypothetical doublet at 5000 Å and 5006 Å with field-strength
parameter vH = 0 for the solid line, vH = 0.004 for the dotted line, vH = 0.1 for the dashed line, and vH = 0.5 for the dash-dotted line. The fine-structure splitting
is 6 Å. Single 90◦ scattering is assumed at the extreme limb (μ = 0). The model parameters are a = 0.00143, ϑB = 90◦, and ϕB = 45◦. The Doppler width
ΔλD = 0.025 Å. These profiles characterize scattering exclusively in the line pair without any background continuum.
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Figure 3. Same as Figure 2 except for the fine-structure splitting, which is 1 Å here. Note the shape of the U/I profiles (due to the increased magnitude of the J-state
interference).

Figure 4. Same as Figure 2 except for the fine-structure splitting, which is now 0.1 Å. The polarization profiles overlap substantially, greatly enhancing the impact of
the J-state interference.

6



The Astrophysical Journal, 733:4 (10pp), 2011 May 20 Smitha et al.

Figure 5. Profiles of the intensity I and the fractional polarizations Q/I, U/I , and V/I , plotted for a hypothetical line at 5000 Å (of a line pair with the other line at
5006 Å) with field-strength parameter vH = 0.00008 for the solid line, vH = 0.0008 for the dotted line, vH = 0.004 for the dashed line, vH = 0.1 for the dash-dotted
line, vH = 0.5 for the dash-triple-dotted line, and vH = 2.5 for the thin solid line. Single 90◦ scattering is assumed at the extreme limb. The other model parameters
are the same as in Figure 2. As before these profiles characterize scattering exclusively in the line without any background continuum.

The wavelength dependence of the J-state interference sig-
nature in the non-magnetic Q/I profile (based on the assump-
tion of frequency coherent scattering in a doublet transition) is
discussed in detail in Stenflo (1994). A wavelength-dependent
depolarizability factor W2(λ) was introduced in that approach
to conveniently describe the profile shape. In contrast, the
present approach includes PRD in the doublet transition. The
wavelength-dependent depolarizability of the line pair is implic-
itly built into the redistribution matrix. For the single scattering
case presented in Figure 2, the Q/I profile computed with our
PRD theory (solid line) gives results similar to the Q/I profile
(solid line) in the top left panel in Figure 9.2 of Stenflo (1994).

In the weak field regime (vH = 0.004), the shapes of the
(Q/I,U/I ) profiles are governed by the Hanle effect (depo-
larization in Q/I with respect to the non-magnetic case, and
creation of a non-zero U/I signature). When the fields are suf-
ficiently strong (for example, for vH = 0.1), signatures of the
transverse Zeeman effect show up in the cores of the two lines.
In the core of the J = 1/2 → 1/2 → 1/2 transition line,
the contribution from scattering polarization is zero (because
W2 = 0). As the field strength increases, one can clearly notice
the characteristic Q/I profiles typical of the transverse Zeeman
effect (see the dash-dotted lines in Figures 2, 3, and 4). The
J-state interference (scattering) effects dominate the Q/I pro-
files outside the line cores.

As δλ decreases, interesting signatures begin to show up in
U/I more strongly (see the inset panels in Figures 2, 3, and 4).
For the sake of discussion, let us consider the δλ = 1 Å case.
The signatures seen at the centers of both the lines at 5000 Å
and 5001 Å for vH = 0.1 and 0.5 appear to be entirely due to the
J-state interference effects (because the contribution from the
Zeeman effect to U is zero for the chosen geometry). However,
the shapes of the U/I profiles are different from each other
near the centers of the two lines. They can be understood in
terms of the explicit expressions (not presented here) that have
been derived for the case of the L = 0 → 1 → 0 scattering
transition. Note that for the line separation 0.1 Å (see Figure 4),
the near-wings of the two lines overlap. This results in Q/I and
U/I profiles with more complex shapes.

Extensive theoretical work and modeling of the J-state
interference in the well-known D1 and D2 lines of Na i (including
also the hyperfine structure and lower level polarization, but
without PRD) have been carried out by Trujillo Bueno et al.
(2002) and Casini & Manso Sainz (2005). Our emphasis in
the present paper is to study the J-state interference effects in
a hypothetical doublet when PRD effects are accounted for.
In Figure 5 we show the effect of the magnetic field on the
Stokes profiles in the core of the 5000 Å line of the doublet
for a wide range of field strengths. Here the doublet separation
is chosen to be 6 Å. Therefore, the J-state interference effect

7



The Astrophysical Journal, 733:4 (10pp), 2011 May 20 Smitha et al.

Figure 6. Profiles of the intensity I ′/I ′
c (see Equation (29)) and the fractional polarizations p′

Q, p′
U , and p′

V (see Equation (28)) plotted for the doublet at 5000 Å and
5006 Å in the presence of a background continuum. The field-strength parameter used is vH = 0.004. Different strengths of the background continuum are represented
by c = 1 × 10−8 for the solid line, 1 × 10−6 for the dotted line, and 1 × 10−2 for the dashed line. The limb-darkening parameter β = 0.5, and b = 0.1 for Q, while
b = 0 for U and V. The other model parameters are the same as in Figure 2.

is extremely weak at the core of the line and shows up only
in the wings (see the thick solid line in the Q/I panel). As
the field strength increases from vH = 0.00008 (B ∼ 0.1 G)
to vH = 2.5 (B ∼ 4 kG), the weak field Hanle scattering
signatures make way for the strong field Zeeman signatures.
The values of the Hanle Γ (= ωL/γ ) parameter that correspond
to the chosen set of vH values are, respectively, 0.03, 0.28, 1.4,
7, 35, 175, and 874. For Γ � 7 the shapes of the polarization
profiles are typical of the Hanle effect. For Γ > 7 we have
entered the Zeeman regime, and the shapes of the polarization
profiles become typical of the Zeeman effect. A comparison
of Figure 5 for the J = 1/2 → 3/2 → 1/2 transition with
Figure 3 of Stenflo (1998) for the J = 0 → 1 → 0 transition
shows that the field-strength dependence is similar. Note that the
(a, ΔλD) = (0.00143, 0.025 Å) chosen by us is different from
the corresponding values (a, ΔλD) = (0.004, 0.03 Å) chosen in
Stenflo (1998). Due to our choice of relatively smaller (a, ΔλD)
values, we enter the Zeeman regime already for vH = 0.1.

In the real solar spectrum the line emission is superposed on
a background continuum that is weakly polarized. The relative
importance of the line emission scales as I/(I + c), where I is
the line scattering probability and c is a constant representing
the background continuum (see Stenflo 1998). The observed
fractional polarization p′ in the presence of a continuum is
given by

p′ = I

(I + c)
p +

c

(I + c)
b , (28)

where p is the fractional polarization given by −Q/I,−U/I ,
and V/I . b represents the continuum polarization (see
Equation (58) in Stenflo 1998). In the presence of continuum,
the Stokes I can be modeled by assuming LTE and using a
Milne–Eddington model (see Stenflo 1998, for more details).
With this assumption, one can show that (see Equation (61) of
Stenflo 1998)

I ′

I ′
c

= 1 − β +
c

(I + c)
β , (29)

where β is the limb-darkening parameter, I ′ is the total intensity
of scattered radiation, and I ′

c is the intensity of the background
continuum. Figures 6 and 7 show the Stokes profiles in the
presence of a continuum for various values of c and for two
values of vH. Similar to Stenflo (1998), we choose the limb-
darkening parameter β = 0.5 and continuum polarization
b = 0.1 for Q and b = 0 for U and V. As the contributions
from the background continuum increase, Stokes I takes the
shape of a deep absorption line. The linear polarization Q/I
approaches the continuum polarization level in the far wings.
As the continuum parameter c increases from 10−8 to 10−2, the
J-state interference effects nearly vanish in the line wings. While
the wings are dominated by the continuum polarization, the line
core polarization is dominated by the Hanle or Zeeman effects
depending on the field strength, irrespective of the strength of
the background continuum. This can be seen from the inset
figure in the Q/I panels of Figures 6 and 7.
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Figure 7. Same as Figure 6, but with vH = 0.5, which represents a strong field regime (B ∼ 900 G). The Zeeman effect dominates in the line cores. J-state interference
effects are responsible for the shapes of (Q/I,U/I ) in the line wings.

6. CONCLUSIONS

We have derived a PRD matrix that includes J-state interfer-
ence in a two-term atomic framework. The present treatment is
limited to the collisionless regime and assumes that the Zeeman
splitting is much smaller than the fine-structure splitting. With
these restrictions we have derived laboratory frame expressions
in the presence of magnetic fields of arbitrary strength and ori-
entation (Hanle–Zeeman regime).

In the non-magnetic case we recover the collisionless PRD
matrix derived by Landi Degl’Innocenti et al. (1997), who used
a metalevel approach that can also treat J-state interference in
the presence of a magnetic field. We also reproduce the results
computed with the frequency coherent J-state interference
theory of Stenflo (1994, 1997).

Examples of the Stokes profiles computed for the single
scattering case are illustrated, with and without a background
continuum. Due to the frequency coherent nature of the RII

function in the wings, the (Q/I,U/I ) profiles are quite similar
to the corresponding profiles computed with the pure coherent
scattering theory of Stenflo (1994). However, when the PRD
matrices are used in radiative transfer computations, we expect
to find significant differences with respect to the pure coherent
scattering case, especially for optically thick lines.

As the fine-structure splitting decreases, the J-state interfer-
ence effects show up in the line wings as well as the line cores.
The shapes of the Stokes profiles depend strongly on the sepa-

ration of the doublet. Interesting signatures appear in the U/I
profiles, particularly for strong fields.

M.S. is grateful to Drs. J. Trujillo Bueno and E. Landi
Degl’Innocenti for useful discussions on the density matrix
theory.
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