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ABSTRACT

This paper presents a detailed study of the scattering polarization profiles formed under partial frequency
redistribution (PRD) in two thermal models of the solar atmosphere. Particular attention is given to understanding
the influence of several atmospheric parameters on the emergent fractional linear polarization profiles. The shapes
of these Q/I profiles are interpreted in terms of the anisotropy of the radiation field, which in turn depends on
the source function gradient that sets the angular variation of the specific intensity. We define a suitable frequency
integrated anisotropy factor for PRD that can be directly related to the emergent linear polarization. We show that
complete frequency redistribution is a good approximation to model weak resonance lines. We also show that the
emergent linear polarization profiles can be very sensitive to the thermal structure of the solar atmosphere and, in
particular, to spatial variations of the damping parameter.
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1. INTRODUCTION

The linearly polarized solar limb spectrum produced by
scattering processes in quiet regions of the solar atmosphere
(Stenflo & Keller 1997) contains a wealth of information on the
physics of scattering and on the thermodynamical and magnetic
conditions of the solar atmosphere. The rich structuring of this
so-called second solar spectrum and its interpretation has opened
a new window in solar physics with great diagnostic potential
(e.g., Stenflo 2004, 2006; Trujillo Bueno 2001, 2003, 2009).
This linearly polarized spectrum has been measured with high
spectral resolution from the UV at 3160 Å to the red at 6995 Å
(Gandorfer 2000, 2002, 2005). Using this atlas of the second
solar spectrum, Belluzzi & Landi Degl’Innocenti (2009) have
presented a very useful classification and spectroscopic analysis
of the most polarizing atomic lines.

The modeling and physical interpretation of the second solar
spectrum requires the application of sophisticated theories of
line formation capable of accounting for, in a self-consistent
way, the physics of scattering polarization in the presence of
magnetic fields. Starting from the principles of quantum elec-
trodynamics, a rigorous theory of the polarization in spectral
lines was formulated by Bommier & Sahal-Bréchot (1978) for
optically thin lines and by Landi Degl’Innocenti 1983 (see also
the monograph by Landi Degl’Innocenti & Landolfi 2004) for
optically thick lines. This latter theory, which can take into
account radiative transfer effects in multi-level atomic systems,
lower-level polarization, hyperfine structure, and level crossings
interferences, has been successfully applied to interpret several
interesting spectropolarimetric observations (see Trujillo Bueno
2009, for a recent review). However, a limitation of this theory
is that it is based on the approximation of complete frequency
redistribution (CRD) in scattering (namely, no correlation be-
tween the frequencies of the incident and scattered photon).
Though this is a suitable approximation for several solar spec-

5 Currently at Indian Institute of Astrophysics, Koramangala, Bangalore,
India.

tral lines (e.g., Manso Sainz & Trujillo Bueno 2003; Trujillo
Bueno et al. 2004; Štěpán & Trujillo Bueno 2010), it is not suit-
able to model the observed linear polarization patterns in some
of the strongest and most prominent lines of the second solar
spectrum, like Ca i 4227 Å and Ca ii K at 3933 Å. For these and
a few other resonance lines, one has to take into account the
effects of partial frequency redistribution (PRD) in scattering.

An attempt to handle PRD effects within a theoretical
framework where the basic results of the CRD density-matrix
theory are generalized through the hypothesis of considering
the atomic levels as a continuous distribution of infinitely sharp
sublevels (the so-called metalevels theory) has been proposed
by Landi Degl’Innocenti et al. (1997). Although this theory has
proved to be quite successful for some applications (e.g., Landi
Degl’Innocenti 1998), the difficulty of coherently incorporating
depolarizing collisional effects in such a theoretical approach
prevents us from employing it in the present investigation. We
thus prefer, in this paper, to rely on the better-established theory
of resonance scattering (see below), although we have to remind
readers that such a theory suffers from the main limitation of
being applicable only for two-level atoms with unpolarized,
infinitely sharp lower levels.

In a scattering event, the direction, frequency, and polarization
of the scattered photon are in general different from those of
the incident photon. The correlations between angle, frequency,
and polarization of the incident and scattered photons can be
described by a PRD matrix. The effects of PRD are clearly
observable in the wings of strong resonance lines and to a lesser
extent in the line core (e.g., Frisch 1996). The general problem
of redistribution of resonance radiation including the effects of
collisions was investigated by Omont et al. (1972). Using a
quantum mechanical description of matter and radiation, they
derived PRD functions in the rest frame of the atom. A year later,
these authors addressed the same problem but for the magnetized
case (Omont et al. 1973). Starting from the work of Omont et al.
(1972), Domke & Hubeny (1988) derived expressions of the
PRD matrices for resonance line polarization in a two-level atom

1269

http://dx.doi.org/10.1088/0004-637X/722/2/1269
mailto:sampoorna@iiap.res.in
mailto:jtb@iac.es
mailto:landie@arcetri.astro.it


1270 SAMPOORNA, TRUJILLO BUENO, & LANDI DEGL’INNOCENTI Vol. 722

with unpolarized lower level. By applying a master equation
theory, Bommier (1997a) derived a more elegant but equivalent
expression for the non-magnetic PRD matrix. Furthermore, she
derived the explicit form of the laboratory frame PRD matrix
in the presence of an arbitrary magnetic field (see Bommier
1997b) for the case of a two-level model atom without atomic
polarization in the lower level. Bommier & Stenflo (1999)
developed a classical time-dependent oscillator PRD theory for
the particular case of a normal Zeeman triplet in the atomic
rest frame. The ensuing laboratory frame PRD matrices for
the magnetized case were derived by Sampoorna et al. (2007a,
2007b). In this paper, we restrict our attention to the problem of
resonance line polarization in situations where the radiation field
is axially symmetric (e.g., the case of non-magnetic resonance
line polarization in plane-parallel stellar atmospheres). We use
the angle-averaged (AA) version of the non-magnetic PRD
matrix (see Domke & Hubeny 1988; Bommier 1997b).

Dumont et al. (1977) carried out model calculations of
polarized line transfer with PRD in axisymmetric plane-parallel
atmospheres. They used the angle-dependent type I (pure
Doppler) redistribution function of Hummer (1962), which
may be used in some circumstances for the Doppler cores
of resonance lines. They considered (1) an isothermal model
atmosphere and (2) a chromospheric-like model atmosphere
described by an analytic form for the Planck function. For
the case of isothermal model atmospheres, they studied the
influence of ε (the photon destruction probability per scattering
event) and the error introduced by the assumption of CRD
on the emergent linear polarization profiles. They showed that
CRD is adequate to describe the line core polarization. For
the case of schematic chromospheric-like model atmospheres,
they considered the influence of the line strength, but under the
assumption of CRD. Rees & Saliba (1982; see also Saliba 1985,
1986) considered the same problem, but using an AA type II
redistribution function (RII,AA) of Hummer (1962). However, for
RII,AA they used an approximate form given by Kneer (1975),
which assumes that CRD prevails in the line core and coherent
scattering in the wings. They studied the influence of the line
strength, ε, and damping parameter a of the absorption profile on
the emergent linear polarization and showed that in the presence
of a background continuum, linear polarization profiles with
both core and wing maxima are formed in isothermal as well as
in chromospheric-like model atmosphere.

Later, Faurobert (1987, 1988) studied the linear polarization
of resonance lines formed in isothermal slabs of finite thick-
ness, in semi-infinite isothermal atmospheres and in a schematic
chromospheric-like model atmosphere given by an analytical
expression of the Planck function. She considered both angle-
dependent and AA type II redistribution functions of Hummer
(1962). She confirmed the conclusion of Dumont et al. (1977),
namely, that the approximation of CRD is adequate to describe
the line core polarization even when type II redistribution is
used. Using the actual functional form of RII,AA, Faurobert
(1987, 1988) demonstrated that Kneer’s approximation used by
Rees & Saliba (1982) and Saliba (1985, 1986) cannot account
for the phenomenon of diffusion in frequency which takes place
in the line wings. She showed that Kneer’s approximation leads
to non-negligible errors in the wing polarization obtained from
slabs of finite thickness. In the case of a semi-infinite atmo-
sphere, this approximation affects both the line core and line
wing polarization, as well as the intensity itself. Furthermore,
she showed that in the presence of a background continuum,
Kneer’s approximation predicts incorrect values for both the

position and the magnitude of the polarization maximum in the
wings. Faurobert (1988) also considered the influence of ε and
of the line strength on the linear polarization profiles and gave a
qualitative interpretation of the behavior of the emergent polar-
ization profiles in terms of an Eddington–Barbier expression.

The collisional redistribution matrix given by Domke &
Hubeny (1988) was used in polarized line transfer computa-
tions by Faurobert-Scholl (1992, in plane-parallel atmospheres)
and by Nagendra (1994, 1995, in spherically symmetric at-
mospheres). Faurobert-Scholl (1992) showed that the line-
wing polarization is sensitive to the elastic collisional rate ΓE

while Nagendra (1994) emphasized that the line core polariza-
tion is sensitive to the depolarizing collisions parameter D(2).
Nagendra (1994, 1995) presented a detailed study about the in-
fluence of ε, the damping parameter a, the elastic collisional
rate ΓE , and D(2) on the linear polarization profiles, interpret-
ing them using simple asymptotic expression (see, e.g., Hubeny
1985a; Frisch 1980).

In all the above-mentioned references, Feautrier’s method was
used to solve the PRD polarized line transfer equation, except in
Nagendra (1994, 1995) who used a discrete space method. As is
well known, these type of numerical methods are computation-
ally expensive. Over the last two decades, fast iterative methods
based on operator-perturbation have been developed to solve the
PRD radiative transfer problem of resonance line polarization
assuming a two-level model atom without lower-level atomic
polarization (see the review by Nagendra & Sampoorna 2009).
More recently, Sampoorna & Trujillo Bueno (2010) have devel-
oped very efficient and accurate symmetric Gauss–Seidel and
successive–overrelaxation iterative methods to solve the above-
mentioned PRD problem. Applying this fast radiative transfer
method, in this paper we study in detail the effects of vari-
ous atmospheric parameters on the linear polarization profiles
formed under PRD conditions, but using semi-empirical mod-
els of the solar atmosphere and paying particular attention to
understanding the shape of the emergent fractional linear polar-
ization profiles in terms of the radiation field anisotropy within
the medium. In particular, we consider two one-dimensional
models of the quiet solar atmosphere: one based on the VALC
model of Vernazza et al. (1981, which has a relatively hot lower
chromosphere) and the other based on the M-CO model of
Avrett (1995, which has a relatively cool lower chromosphere).
Although the solar atmosphere is highly inhomogeneous and
dynamic and such one-dimensional models can only be consid-
ered as illustrative of the complex atmospheric conditions, they
are suitable for achieving the main aim of this paper, namely, a
basic investigation on the impact of PRD effects on the shape of
the emergent Q/I profiles and their sensitivity to various atmo-
spheric parameters. In particular, we study the sensitivity of the
linear polarization profiles to the following relevant quantities:
(1) the photon destruction probability per scattering event ε,
(2) the strength of the spectral line, parameterized as r (see the
discussion below Equation (8) for the definition of r), (3) the
damping parameter a of the line absorption profile, and (4)
the elastic collisional rate ΓE .

The paper is organized in the following manner: in Section 2,
we present a historical background on the PRD matrix for
non-magnetic resonance scattering in a two-level atom. The
formulation of the problem is presented in Section 3. A detailed
study of the sensitivity of the linear polarization profiles to
various atmospheric parameters and to the thermal structure
of the solar atmosphere is presented in Section 4. Concluding
remarks are given in Section 5.
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2. REDISTRIBUTION MATRIX FOR THE
NON-MAGNETIC RESONANCE SCATTERING PROBLEM

In this section, we present a brief background on the PRD
matrix for resonance line polarization. We follow the same
notation as in Sampoorna & Trujillo Bueno (2010).

The two-level atom PRD problem without polarization was
formulated by Hummer (1962). Later, starting from the work
of Omont et al. (1972), more general PRD functions includ-
ing a better treatment of collisions, for both resonance and
subordinate lines, were derived by Heinzel (1981), Hubeny
(1982), Hubeny et al. (1983a, 1983b), Hubeny & Cooper (1986),
and Hubeny & Lites (1995). Reviews on the unpolarized PRD
problem and its application to astrophysics were presented by
Hubeny (1985b) and Frisch (1988). For a more recent review
on the same topic, but with emphasis on numerical methods and
radiative transfer modeling, see Uitenbroek (2003).

When the polarization state of the spectral line radiation is
taken into account, the unpolarized PRD functions become
4 × 4 redistribution matrices that describe how the Stokes
vector is redistributed in both frequency and angle. In the non-
magnetic case, the redistribution matrix, once averaged over
the Maxwellian distribution of the scattering atoms, can be
expressed as a product of the angle and frequency-dependent
PRD function of Hummer (1962) times a frequency-independent
4×4 phase matrix. Clearly, there is an intricate coupling between
the frequency, angle, and polarization state of the radiation field.

A 4 × 4 phase matrix for the Jl = 0 → Ju = 1 → Jl = 0
scattering transition was derived by Chandrasekhar (1950)
using classical electrodynamics, which is referred to as the
Rayleigh phase matrix. Using quantum mechanics Hamilton
(1947) derived a more general Rayleigh phase matrix for a
Jl → Ju → Jl transition with arbitrary values for the lower
and upper level angular momentum quantum numbers. For the
particular case of a one-dimensional atmosphere, the 4×4 phase
matrix reduces to a 2 × 2 phase matrix, due to the azimuthal
symmetry of the problem.

In polarized radiative transfer, using redistribution matrices
that have intricate couplings between frequency and angles is
numerically expensive. Hence, to reduce the numerical work,
Rees & Saliba (1982) introduced the so-called hybrid approx-
imation, in which it is assumed that the 4 × 4 redistribution
matrix, depending on directions and frequencies, can be factor-
ized into a 4 × 4 matrix, depending only on directions, times a
scalar function depending only on frequencies (the so-called AA
redistribution function). Indeed such a factorization is valid only
in the atomic frame. In the laboratory frame, it is mainly used as
a practical “ansatz” for avoiding extremely time-consuming cal-
culations and is justified only by means of heuristic arguments.
Under the hybrid approximation, in a plane parallel atmosphere,
the redistribution matrix can be written, in general, as a linear
combination of terms of the form6

R(x, x ′;μ,μ′) = (1 − ε) φx gk
xx ′ P(μ,μ′). (1)

Here, x, x ′ are the non-dimensional frequencies of outgoing
and incoming photons, and μ,μ′ are the cosine of the polar
angles θ , θ ′ with respect to the vertical direction in the atmo-
sphere. R(x, x ′;μ,μ′) gives the joint probability of absorbing
a photon with frequency x ′ and direction μ′ and re-emitting

6 Note that the only difference with Equations (33) and (37) of Sampoorna &
Trujillo Bueno (2010) is that in Equations (1) and (3) of the present paper we
have written φxgk

xx′ instead of gk
xx′ , in order to be consistent with the definition

of R given below.

by spontaneous de-excitation a photon with frequency x and
direction μ. The photon destruction probability is given by
ε = ΓI /(ΓI +ΓR) with ΓI being the inelastic de-excitation colli-
sion rate and ΓR the radiative de-excitation rate. In Equation (1),
gk

xx ′ = Rk,AA(x, x ′)/φx , where Rk,AA (with k = I, II, and III)
are the AA redistribution functions of Hummer (1962) and φx

is the normalized Voigt profile function. The function Rk,AA/φx

gives the probability of absorption at frequency x ′, per emis-
sion at frequency x. Note that in Equation (1) we introduce
for convenience the quantity gk

xx ′ which has the advantage of
formally simplifying the expression for the line source vector
(see Equations (9) and (10) below). Finally, for the case of a
one-dimensional atmosphere, P(μ,μ′) denotes the 2 × 2 phase
matrix.

The redistribution matrix given in Equation (1) does not take
into account the elastic collisions, quantified by the parameters
ΓE and D(2). However, the elastic collisional rate ΓE can be
included into the hybrid approximation by replacing gk

xx ′ by
a linear combination of type II and type III PRD functions,
weighted by the factor γ = (ΓR + ΓI )/(ΓR + ΓI + ΓE), namely,

R(x, x ′;μ,μ′) = (1 − ε) φx

[
γgII

xx ′ + (1 − γ )gIII
xx ′

]
P(μ,μ′).

(2)

We remark that the (1, 1) element of R given in Equations (1)
and (2) is normalized to (1−ε), because it does not take into ac-
count the depolarizing collisional rate D(2). We refer the reader
to Omont et al. (1972) for a detailed discussion on the normal-
ization of the redistribution matrix. To qualitatively model the
solar Ca ii K line, Saliba (1985) used the redistribution matrix
given by Equation (2), but with a further simplification which
consisted in replacing RII,AA by Kneer’s (1975) approximation
and RIII,AA by the CRD expression. Also, he neglected ΓI in
the expression for γ (see above), and assumed that the ma-
trix P(μ,μ′) which multiplies RIII,AA (see Equation (2)) is the
isotropic scattering phase matrix. Moreover, Saliba (1985) did
not take into account the depolarizing collisional rate D(2) in his
modeling.

The redistribution matrix given by Domke & Hubeny (1988)
for the unmagnetized case (see also Bommier 1997b) takes into
account the effect of depolarizing collisions through the D(2) pa-
rameter. It is worth noting that this collisional redistribution ma-
trix is very general, namely, it depends on the angle-dependent
redistribution functions of Hummer (1962). However, for com-
putational simplicity, following Rees & Saliba (1982), some au-
thors have used the AA version of this general collisional redis-
tribution matrix (e.g., Faurobert-Scholl 1992; Nagendra 1994).
Following Bommier (1997b) the AA version of the collisional
redistribution matrix can be written as (see also Equation (37)
of Sampoorna & Trujillo Bueno 2010)

R(x, x ′;μ,μ′) =
∑

K=0,2

WK (Jl, Ju)

× φx

{
α gII

xx ′ + [β(K) − α] gIII
xx ′

}
PK

R (μ,μ′), (3)

where the branching ratios α and β(K) are given by

α = ΓR

ΓR + ΓI + ΓE

, (4)

β(K) = ΓR

ΓR + ΓI + D(K)
. (5)
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Note that D(0) = 0, and also that the factor (1 − ε) is con-
tained in the branching ratios. The coefficient W0(Jl, Ju) = 1,
and W2(Jl, Ju) characterizes the maximum linear polarization
that can be produced in the line. In the case of a normal
Zeeman triplet (Jl = 0, Ju = 1), W2(Jl, Ju) = 1. Furthermore,
PK

R (μ,μ′) are the Rayleigh phase matrix multipolar compo-
nents (Landi Degl’Innocenti 1984, see also Equation (35) of
Sampoorna & Trujillo Bueno 2010).

The CRD limit is obtained from Equation (3) by taking ΓE �
ΓR (in other words α � 1) and gIII

xx ′ = φx ′ (compare the result-
ing expression with Equation (10.54) of Landi Degl’Innocenti
& Landolfi 2004, with the magnetic field strength set to zero).
Note that CRD means that there is no frequency correlation be-
tween the incoming and outgoing photons. In other words, the
incident radiation is completely redistributed in frequency, so
that there is complete non-coherence between the incident and
scattered photon frequencies. This CRD limit is reached when
the atomic system is illuminated by a spectrally flat radiation
field (e.g., Landi Degl’Innocenti & Landolfi 2004). Another
good approximation to this CRD limit occurs when the atoms
are so strongly perturbed by elastic collisions during the scatter-
ing process that the excited electrons are randomly redistributed
over the substates of the upper level (see Mihalas 1978). How-
ever, in the context of polarization, adopting the CRD approx-
imation appears to lead to the following contradiction: CRD is
obtained in the limit of very high collisional rates with respect
to the radiative rate, but then the spectral line would be com-
pletely depolarized by depolarizing collisions. This apparent
contradiction can be clarified by recalling the explicit physi-
cal meaning of the branching ratios appearing in Equation (3).
First of all, for the problem at hand, elastic collisions produce
two different effects represented by the collisional rates ΓE and
D(2). The collisional rate ΓE is responsible for line broadening
and for destruction of correlations between incoming and out-
going photon frequencies. The rate D(2) is responsible for the
destruction of the upper-level atomic alignment and, thereby,
causes depolarization. The branching ratio α gives the proba-
bility that a radiative decay from the excited state occurs before
any type of collision (elastic or inelastic). Therefore, α gives
the fraction of the scattering processes that are coherent in the
atomic rest frame (RII). The branching ratio β(K) gives the prob-
ability that radiative decay of the excited state occurs without
destruction of the 2K multipole moment. Therefore, the total
branching ratio [β(K) − α] gives the probability that radiative
de-excitation occurs after an elastic collision (ΓE) which redis-
tributes the radiation in frequency without destroying the 2K
multipole moment. Clearly, [β(K) − α] gives the fraction of
the scattering processes that are completely non-coherent in the
atomic rest frame (RIII). Therefore, to get the CRD limit we
only assume that elastic collisions that completely redistribute
the radiation in frequency are sufficiently strong (ΓE � ΓR), so
that the branching ratio α → 0. In other words, D(2) and ΓE are
assumed to be independent, even though their physical origin
are the elastic collisions. In this case Equation (3) reduces to

RCRD(x, x ′;μ,μ′) =
∑

K=0,2
WK (Jl, Ju)

× β(K)φx φx ′PK
R (μ,μ′), (6)

where we have further replaced gIII
xx ′ by φx ′ . Clearly, the

branching ratio β(K) allows only that fraction of the scattering
processes which do not lead to destruction of the 2K multipole
moment.

We compute the RII,AA and RIII,AA functions by numerically
integrating the corresponding angle-dependent redistribution
functions (see Equations (59) and (61) of Bommier 1997b)
over all the scattering angles (see Equations (103) and (104)
of Bommier 1997b). For the numerical integration over all the
scattering angles we have used a 15 point Gauss–Legendre
quadrature. In this paper, we assume that the redistribution
functions RII,AA and RIII,AA and the Voigt profile function φx

are constant throughout the atmosphere. Since these functions
depend on the damping parameter a and on the reduced
frequency x, which is defined as x = (ν0 − ν)/ΔνD, with ν0
the line center frequency and ΔνD the Doppler width, the above
assumption implies that a and ΔνD are also constant within the
entire atmosphere.

3. FORMULATION OF THE PROBLEM

In this section, we discuss all the physical ingredients required
for our investigation (presented in Section 4) about PRD
scattering polarization profiles. Section 3.1 describes the basic
equations of the problem. The model atmospheres used for our
study in Section 4 are discussed in Section 3.2. The definition
of the anisotropy factor for PRD is considered in Section 3.3,
where we also discuss several known facts about the anisotropy
and its relation to the source function gradient. In Section 3.4, we
present the Eddington–Barbier relation for PRD problems, and
show the direct dependence of the emergent polarization on the
anisotropy within the model atmosphere under consideration.

3.1. The Basic Equations

We consider the standard two-level atom resonance line
polarization problem in a one-dimensional, plane-parallel, static
stellar atmosphere. Furthermore, we assume an unpolarized
background continuum with no continuum scattering. The basic
equations for the above-mentioned problem have been presented
in detail in Sampoorna & Trujillo Bueno (2010, see their
Section 5). Here, we follow the same formulation, but for the
sake of clarity we recall a few important basic equations from
that paper.

As shown by Chandrasekhar (1950), an azimuthally symmet-
ric polarized radiation field can be described by the two Stokes
parameters Ixμ and Qxμ. The Stokes Ixμ parameter is the spe-
cific intensity, while Qxμ quantifies the linear polarization (i.e.,
the difference between the intensity components parallel and
perpendicular to a given reference direction in the plane per-
pendicular to the direction of the ray under consideration). In
this paper, the positive Qxμ direction is defined in the plane
containing the direction of the ray and the vertical Z-axis. When
polarization is taken into account, the Stokes source vector de-
pends not only on the frequency x but also on μ = cos θ , with θ
the angle between the ray and the vertical Z-axis. It is possible
to transform from the Stokes basis to an irreducible basis where
the source vector components depend only on the frequency
x. Such a transformation is referred to as the “decomposition”
of the Stokes vector. Frisch (2007) has given a simple way of
achieving this goal using the irreducible tensors for polarimetry
introduced by Landi Degl’Innocenti (1984). This decomposi-
tion technique was used in Sampoorna & Trujillo Bueno (2010)
and we adopt it here also.

In the reduced basis the irreducible intensity (Ixμ)K0 with
K = 0 and 2 satisfies the following transfer equation:

d

dτxμ

(Ixμ)K0 (τxμ) = (Ixμ)K0 (τxμ) − (Sx)K0 (τxμ), (7)
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where the irreducible source vector components are given by

(Sx)K0 = φx(Slx)K0 + rBUK
0

φx + r
. (8)

Here, τxμ is the total optical depth defined by dτxμ = −(χlφx +
χc)dz/μ, with z as the distance along the normal to the
atmosphere, χl and χc are the line and continuum opacities,
respectively, r = χc/χl , B is the Planck function, and UK

0 is
equal to unity for K = 0 and zero for K = 2. The irreducible
line source vector components are given by

(Slx)K0 = εBUK
0 + WK (Jl, Ju)(J̄x)K0 , (9)

where

(J̄x)K0 =
∫ +∞

−∞
dx ′{αgII

xx ′ + [β(K) − α]gIII
xx ′

}
(Jx ′ )K0 . (10)

The angle integrated irreducible tensors of the radiation field
are, respectively, given by

(Jx)0
0 = 1

2

∫ +1

−1
dμ Ixμ, (11)

(Jx)2
0 = 1

4
√

2

∫ +1

−1
dμ [(3μ2 − 1)Ixμ + 3(μ2 − 1)Qxμ]. (12)

The irreducible components of the radiation field and of the
source function are connected to the Stokes parameters and to
the source vector through a simple formula (see Appendix B of
Frisch 2007). Note that in the solar atmosphere the dominant
contribution to (Jx)2

0 is given by the first term in the square
bracket of Equation (12).

3.2. The Model Atmospheres

In this section, we describe the two solar model atmospheres
that we have chosen for our detailed study of the linear polar-
ization profiles presented in Section 4. As already mentioned in
Section 1, we consider the VALC and the M-CO models for this
purpose. Figure 1 shows the variation of the temperature as a
function of height for the VALC (dotted line) and M-CO (solid
line) models. We note that both models include the transition
region as well as the corona. Most of the results presented in this
paper correspond to spectral lines which become optically thin
for heights z > 2100 km. However, we also present some results
for a very strong spectral line whose line center originates in the
transition region of the VALC model.

For a hypothetical line at λ = 5000 Å we calculate the Planck
function B (in erg s−1 cm−2 sr−1 cm−1) as7

B = 2hc2

λ5

1

ehc/(λkBT ) − 1
, (13)

where c is the speed of light, h is the Planck constant, and kB
is the Boltzmann constant. As the tabulated height grid of the
VALC and M-CO models is crude, we actually first interpolate
the tabulated temperatures on a much finer height grid. We
use cubic spline interpolation for this purpose. Our height grid

7 Rigorously speaking, the Planck function expression should be that
corresponding to the Wien limit because we are neglecting stimulated
emission. However, for visible and UV lines both expressions give similar
values.

Figure 1. Temperature stratification of the VALC (dotted line) and M-CO (solid
line) solar model atmospheres. Note that between 600 and 1300 km (hereafter
the “lower chromosphere”) the M-CO model is cooler than VALC.

has a spacing of Δz = 5 km. Note that achieving the accuracy
corresponding to such a fine spatial grid requires finding the self-
consistent solution via the application of a highly convergent
iterative scheme, such as that on which the PRD computer
program used here is based on (see Sampoorna & Trujillo Bueno
2010).

We assume that both solar model atmospheres are exponen-
tially stratified, so that the continuum optical depth is described
by the law τc = 2.2 exp(−z/H ) with z (in km) the vertical
height in the atmosphere, and H the scale height (which we
have chosen equal to 120 km). Moreover, we assume that the
line strength parameter r, the photon destruction probability per
scattering ε, and the damping parameter a of the line absorp-
tion profile are constant with height. Figure 2 shows a plot of
τc versus height for the VALC model. For τc we use the tab-
ulated value at λ = 5000 Å from Vernazza et al. (1981). Our
continuum optical depth versus height is overplotted. Clearly,
the τc of the VALC model does not show a single scale height.
In fact, our attempts to fit the τc of VALC required the use of
a weighted combination of two exponentials with two different
scale heights. We find that for heights lower than 600 km one
has to use a scale height of 60 km, while for larger heights one
needs a scale height of 250 km, in order to reasonably fit the
τc of VALC. However, to keep the problem as simple as pos-
sible, we choose a single scale height of 120 km for the entire
atmosphere and τ c

0 = 2.2 that nearly coincides with the τc value
of the VALC model at the lower boundary of the atmosphere
(see the dotted line in Figure 2). The same choice applies to the
M-CO model. This strategy appears to be reasonable for facil-
itating a systematic investigation on the impact of PRD effects
on the shape of the emergent Q/I profiles.
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Figure 2. Continuum optical depth, τc vs. height in the VALC model atmosphere
(solid line) and for an exponentially stratified atmosphere (dotted line). In this
paper, we have used τc = 2.2 exp(−z/H ), with H = 120 km and z in km.

3.3. The Anisotropy

The (Jx)2
0 tensor, which is dominated by the contribution

from the Stokes Ixμ parameter, characterizes the “degree of
anisotropy” of the radiation field (Landi Degl’Innocenti &
Landolfi 2004; see also Trujillo Bueno 2001). We define a
“monochromatic anisotropy factor” as

A = (Jx)2
0/(Jx)0

0. (14)

For clarity of notation, we denote the monochromatic anisotropy
A for CRD and PRD by ACRD and APRD, respectively. We also
define a “frequency integrated or mean anisotropy factor” for
PRD as

ĀPRD = (J̄x)2
0/(J̄x)0

0, (15)

where (J̄x)0
0 and (J̄x)2

0 are defined as in Equation (10). In the case
of CRD, the frequency integrated anisotropy factor is defined
by

ĀCRD = (
J̄ 2

0

)
CRD

/(
J̄ 0

0

)
CRD, (16)

where

(J̄ K
0 )CRD =

∫ +∞

−∞
β(K)φx(Jx)K0 dx. (17)

Clearly, the mean anisotropy ĀCRD does not depend explicitly
on frequency. However, in the solar atmosphere ĀCRD changes
with height. It then results that, even in CRD, since different
points of the profile form at different heights, we have an
“apparent” frequency dependence of ĀCRD across the profile.
On the contrary, ĀPRD depends explicitly on frequency and this
effect adds to the previous one.

In Figure 3, we illustrate the important difference between
the monochromatic and mean anisotropy factors for both the

PRD and CRD cases. To compute these anisotropy factors we
have used the VALC model atmosphere (see Section 3.2) and
ε = 10−4, r = 10−5, a = 10−3, and ΓE/ΓR = D(2)/ΓR = 0.
In Figure 3, we plot A and Ā versus the reduced frequency
at the height where for a line of sight (LOS) with μ = 0.11
the condition τxμ = 1 is satisfied. Clearly, the monochromatic
anisotropy factors ACRD and APRD are similar. The differences
are basically due to the slight differences that are found in
Stokes Ixμ for CRD and PRD (compare the dotted lines in
the intensity panels of Figures 4 and 5). It is interesting to note
that ACRD(τxμ = 1) does not tend to zero in the wings. This is
because the condition τxμ = 1 for an LOS with μ = 0.11 is
satisfied at the height of 360 km for all frequencies x � 20. At
this height, the anisotropy ACRD for x � 20 is determined by
the Planck function gradient at that height. The mean anisotropy
factors ĀPRD and ĀCRD differ greatly, particularly in the wings.
This can be understood as follows. In the case of CRD, we
integrate (Jx ′ )2

0 and (Jx ′ )0
0 over all x after multiplying them by

the absorption profile function φx (see Equation (17)), which
goes to zero in the wings. Thus, at any depth τxμ the dominant
contribution to (J̄ K

0 )CRD and thereby to ĀCRD comes from the
line core region. Furthermore, the monochromatic anisotropy
ACRD decreases with depth, particularly in the line core. As
already noted above, the frequency dependence of ĀCRD is due
to the fact that different parts of the line profile are formed
at different heights. Combining these facts, it is easy to see
that ĀCRD at τxμ = 1 decreases as the frequency increases.
In particular, far in the wings of strong lines like the one
we are considering in Figure 3 (i.e., with r = 10−5) ĀCRD
is zero (even if ACRD is substantial), because we are looking
deep in the atmosphere where ACRD in the line core is zero
(which dominantly contributes to ĀCRD). In the case of PRD,
we integrate (Jx)2

0 and (Jx)0
0 over all x after multiplying them

by the type II redistribution function (see Equation (10)), which
behaves like CRD in the core and like coherent scattering in the
wings. Thus, unlike CRD, at any depth τxμ the mean anisotropy
ĀPRD depends explicitly on x. Furthermore, in the line core
it looks somewhat similar to ĀCRD. But in the wings ĀPRD
coincides with APRD, due to the coherent behavior of gII

xx ′ .
The importance of the anisotropy factor, which is the fun-

damental quantity that determines the shape of the emergent
polarization, was realized by Rees & Saliba (1982) who pointed
out that the polarization is a mapping of the depth dependence
of the anisotropy of the radiation field within the atmosphere.
However, they neither quantified nor presented a detailed study
of the anisotropy factor. Some information can be found in
the PhD thesis of Saliba (1986), who presented a study of the
anisotropy for the CRD case (see his Chapter 4). He also illus-
trated the relation of the anisotropy factor to the source function
gradient by considering, in a finite slab atmosphere, a simple
piece-wise linear source function. His quantities α and ᾱ are
quite similar to our quantities ACRD and ĀCRD. However, in the
case of PRD, Saliba (1986) did not define a mean anisotropy
factor ĀPRD similar to that defined in our Equations (15) and (10)
as he used Kneer’s approximation for RII,AA. Nevertheless, he
correctly noted that for line core frequencies the anisotropy of
the radiation field is controlled by ĀCRD and for the line wings
it is controlled by APRD. In this paper, we show that a better
way of defining the anisotropy for the PRD problem is through
Equation (15) along with Equations (10)–(12).

A Milne–Eddington atmosphere is a very suitable model to
clearly demonstrate the strong dependence of the anisotropy
factor on the gradient of the source function for the Stokes Ixμ
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Figure 3. Anisotropy vs. the reduced frequency x at the height in the VALC model atmosphere where τxμ = 1 for an LOS with μ = 0.11. Panels (a) and (b) correspond
to PRD and CRD, respectively. The other model parameters are ε = 10−4, r = 10−5, a = 10−3, and ΓE/ΓR = D(2)/ΓR = 0. In both panels, the solid line is Ā and
the dotted line is A. Note that ACRD and APRD are similar, while ĀCRD and ĀPRD differ greatly, particularly in the wings.

parameter (see Section 3 of Trujillo Bueno 2001). The mean
anisotropy ĀCRD is bounded by −1/2 �

√
2ĀCRD � 1, the

lower and upper bounds being for a purely horizontal radiation
field without azimuthal dependence and for a purely vertical
illumination, respectively. We summarize the following facts
about the anisotropy in a stellar atmosphere.

1. The anisotropy is essentially negative for an atmosphere
with no or very small gradient in the source function. The
negative values of the anisotropy means that the radiation
field is predominantly limb-brightened (i.e., predominantly
horizontal).

2. The larger the source function gradient, the larger the
anisotropy. Positive anisotropy values imply that the ra-
diation field at the spatial point under consideration is pre-
dominantly limb-darkened (i.e., predominantly vertical).

In summary, in a stellar atmosphere the outgoing radiation is
predominantly vertical (which makes a positive contribution to
(J̄x)2

0), while the incoming radiation is predominantly horizontal
(which makes a negative contribution to (J̄x)2

0). More precisely,
“vertical” rays (i.e., with |μ| > 1/

√
3) make positive contri-

butions to Ā, while “horizontal” rays (i.e., with |μ| < 1/
√

3)
make negative contributions to Ā. As seen in Figure 4 of Tru-
jillo Bueno (2001), the larger the gradient of the source function,
the greater the anisotropy factor of the pumping radiation field,
and the larger the amount of atomic level polarization. A more
detailed study of the anisotropy factor and its relation to the
source function gradient can be found in Landi Degl’Innocenti
& Landolfi (2004).

More recently, Holzreuter et al. (2005) have presented a
study of the monochromatic anisotropy APRD for the solar
Ca i 4227 Å and Na i 5890 Å lines taking into account the
AA collisional redistribution matrix (see, e.g., Stenflo 1994).
They also illustrate the relation of APRD to the source function
gradient. However, as they consider only APRD, the interpretation

of the emergent linear polarization in terms of APRD is not
straightforward. In this paper, we show that a better quantity
that can be directly related to the emergent linear polarization
is ĀPRD.

3.4. The Eddington–Barbier Relation

In the case of CRD, the emergent polarization directly de-
pends on the anisotropy of the radiation field (see Equation (13)
of Trujillo Bueno 1999, see also Section 1 of Trujillo Bueno
2003). Such a relation can be considered the generalization of
the Eddington–Barbier relation for scattering polarization. Thus,
the emergent polarization is governed by the anisotropy of the
radiation field, which in turn is strongly related to the gradient
of the source function for Stokes Ixμ and, therefore, to the μ
dependence of Ixμ. Note that the Eddington–Barbier relation
given by Trujillo Bueno (1999, 2003) for the CRD problem is
very general, as it takes into account the effects of lower-level
polarization.

An Eddington–Barbier relation for the PRD case was given
by Faurobert (1987, 1988) who used it for a qualitative analysis
of the linear polarization profiles formed in an isothermal model
atmosphere. According to the Eddington-Barbier relation, the
emergent intensity and the emergent polarization from a semi-
infinite atmosphere can be written as (see also Equation (41) of
Frisch et al. 2009)

Ixμ(τxμ = 0) 	 (Sx)0
0(τxμ = 1),

Qxμ(τxμ = 0) 	 3

2
√

2
(μ2 − 1)(Sx)2

0(τxμ = 1). (18)

Restricting to the pure line case, and neglecting the thermal term
εB, it is easy to show from Equations (9)–(12) and (15) that

(
Qxμ

Ixμ

)
(τxμ = 0) 	 3

2
√

2
(μ2 − 1) W2 ĀPRD(τxμ = 1). (19)
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Figure 4. Sensitivity of the PRD solutions in the VALC model to the line strength parameter r. The different line types are the following. Solid: r = 10−6; dotted:
r = 10−5; dashed: r = 10−4; dot-dashed: r = 10−3; dash-triple-dotted: r = 10−2; long-dashed lines: r = 0.7. Other model parameters are λ = 5000 Å, ε = 10−4,
a = 10−3, and ΓE/ΓR = D(2)/ΓR = 0. The top solid line in the SI panel is the Planck function B for the temperature stratification of the VALC model. The vertical
lines in the same panel show the height at which τ0μ = 1 for an LOS with μ = 0.11. The inset in the −Q/I panel shows the line core region in more detail. The
symbol Icont denotes the intensity at very large distance from line center.

This approximate formula clearly shows that the emergent
fractional linear polarization depends on the mean anisotropy
ĀPRD at τxμ = 1 along the LOS. In this paper, we therefore
show ĀPRD versus the reduced frequency at the height in the
model atmosphere where τxμ = 1 for an LOS with μ = 0.11.
Furthermore, as our reference direction for positive Stokes Q is
defined perpendicular to the limb, we plot −Q/I whose positive
values indicate polarization parallel to the limb.

4. THE EMERGENT LINEAR POLARIZATION PROFILES

In this section, we present a detailed study of the PRD
scattering polarization profiles computed in the VALC and
M-CO model atmospheres (see Section 3.2 for details on the
assumptions made). For these two atmospheric models we
present our results by giving, for each choice of atmospheric
parameters, a set of figures with four panels showing (1) the
emergent intensity at μ = 0.11 (normalized to the continuum
intensity) as a function of the reduced frequency; (2) the

emergent fractional linear polarization at μ = 0.11 as a function
of the reduced frequency; (3) the mean anisotropy factor, Ā,
evaluated at the height where the monochromatic optical depth
along an LOS with μ = 0.11 is equal to unity, as a function
of reduced frequency; and (4) the line source function at line
center (x = 0) for the intensity propagating along an LOS with
μ = 0.11 (denoted as SI) as a function of height. For the sake of
comparison, the corresponding CRD linear polarization profiles
are shown for certain cases.

4.1. Results of Calculations in the VALC Model

In this section, we study the influence of the line strength
parameter r, the photon destruction probability per scattering ε,
the damping parameter a, the elastic collisional rate ΓE , and the
depolarizing rate D(2) on the PRD linear polarization profiles.
We use λ = 5000 Å, ε = 10−4, r = 10−5, a = 10−3, and
ΓE/ΓR = D(2)/ΓR = 0 as the nominal case, around which
we vary the various parameters mentioned above. Such a study
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Figure 5. Same as in Figure 4, but for CRD. The line types and the model parameters are exactly the same as in Figure 4.

should help us to understand the results of future, more realistic
computations where all the above-mentioned parameters are
depth-dependent. Unless stated otherwise we set W2 = 1, which
represents the case of a line transition with Jl = 0 and Ju = 1.
For the sake of clarity we divide this section about the results
of our radiative transfer calculations in the VALC model in
various subsections dealing with the sensitivity of the solution to
r (Section 4.1.1), ε (Section 4.1.2), a (Section 4.1.3), ΓE/ΓR , and
D(2)/ΓR (Section 4.1.4). Some additional studies are presented
in Section 4.1.5 concerning lines with wavelengths other than
λ = 5000 Å, lines formed in the transition region, and lines
with other W2 values.

4.1.1. Effect of the Line Strength Parameter r

Figure 4 shows the response of I (τxμ = 0), −(Q/I )(τxμ =
0), ĀPRD(τxμ = 1), and SI(x = 0) for an LOS with μ = 0.11
to variations in r. For comparison the corresponding CRD case
is shown in Figure 5. For notational simplicity, we drop the
subscripts xμ on I and Q. Table 1 gives the height in the VALC
model atmosphere at which lines of different strengths have
τ0μ = 1, both for μ = 0.11 and μ = 1.

Table 1
Height in the VALC Model Atmosphere at Which Lines

of Different Strength r Have τ0μ = 1

r z(τxμ = 1) in km z(τxμ = 1) in km
x = 0 and μ = 0.11 x = 0 and μ = 1

2 × 10−7 2148 1878
2.5 × 10−7 2118 1848
3 × 10−7 2088 1833
4 × 10−7 2058 1788
5 × 10−7 2028 1773
10−6 1950 1680
10−5 1670 1410
10−4 1395 1125
10−3 1120 855
10−2 845 585
0.7 430 165

Note. Other model parameters are λ = 5000 Å, ε = 10−4, a = 10−3, and
ΓE/ΓR = D(2)/ΓR = 0.

We first discuss the PRD line profiles presented in Figure 4
and then compare them with the CRD profiles of Figure 5.
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Figure 6. Effect of ε on PRD solutions in the VALC model. The different line types are the following. Solid: ε = 10−5; dotted: ε = 10−4; dashed: ε = 10−3;
dot-dashed: ε = 10−2. Other model parameters are λ = 5000 Å, r = 10−5, a = 10−3, and ΓE/ΓR = D(2)/ΓR = 0.

Table 1 indicates that as r decreases we progressively sample
lines that are formed higher in the atmosphere. As r increases the
line becomes weaker and the broad damping wings disappear
(see Figure 4). The −Q/I profile of the line with r = 10−6

shows a maximum in both the line core and in the line wing
(i.e., at about ≈15 Doppler widths) as well as a minimum in
the near wing (i.e., at about ≈4 Doppler widths). As r increases
both the wing maximum and the wing minimum are shifted
toward line center and decrease in magnitude, to eventually
disappear (see the long-dashed line in Figure 4). The line core
polarization, however, initially decreases and becomes negative
for r = 10−2 and then becomes positive again for r = 0.7.
This response of −Q/I to the variations in r can be understood
using the mean anisotropy ĀPRD plotted in Figure 4. It is worth
to note that the shapes of the −Q/I profiles that we obtain
with PRD for r values between 10−6 and 10−2 (see Figure 4)
are similar to those classified as M-signals by Belluzzi & Landi
Degl’Innocenti (2009), whereas the shape of the −Q/I profile
for r = 0.7 is similar to that classified as S-signal by these
authors. We recall from Belluzzi & Landi Degl’Innocenti (2009)
that a Q/I profile with a single peak at line center is classified as

S-signal, while Q/I profiles showing a polarization maximum
in the wings, a decrease in amplitude approaching the line core,
and eventually a narrow peak at line center are classified as
M-signals.

For r = 10−6 and 10−5 the −Q/I profile is nearly propor-
tional to ĀPRD in the frequency range 0 � x � 5 Doppler
widths, so that Equation (19) is applicable. However, for x > 5,
one cannot neglect the contribution of r in (Sx)0

0 as was done to
deduce Equation (19). In the presence of a background contin-
uum, one can approximately write the emergent Q/I profile as
(still neglecting the thermal term εB)

Q

I
(τxμ = 0) ≈ 3

2
√

2
(μ2 − 1) W2

φxĀPRD(τxμ = 1)

φx + r B/(J̄x)0
0

. (20)

The term with r, in the denominator of Equation (20), is re-
sponsible for the formation of a wing maximum in −Q/I . The
fact that the introduction of r gives rise to a wing maximum
in −Q/I was already noted for isothermal models by Rees
& Saliba (1982). This wing maximum is located at the fre-
quency where the radiation field starts being influenced by the
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Figure 7. Same as in Figure 6, but for CRD. The line types and the model parameters are exactly the same as in Figure 6.

continuous absorption (see Faurobert 1988). In other words, at
that frequency the line source function and the (unpolarized)
continuum source function equally contribute to the total source
function. For isothermal model atmosphere, the position of this
wing maximum can be estimated using the thermalization fre-
quency given by Frisch (1980).

The frequency range where Equation (19) can be applied
decreases as r increases and can no longer be applied for
r > 10−2. On the other hand, when r increases, the term
containing r in Equation (20) starts influencing not only the
wings but also the line core region, thereby greatly reducing
the polarization in the wings to zero and confining the −Q/I
profile to the line core. It is worth to note that for r � 10−3

the mean anisotropy ĀPRD is positive in the line core and in
the line wings showing that the radiation field is limb-darkened.
For the frequencies x whose τxμ = 1 at the heights where we
have the VALC temperature rise (≈500–1000 km; see Figure 1),
the anisotropy is negative, showing that the radiation field is
limb-brightened. This fact was already noted for schematic
chromospheric-like models by Faurobert (1988).

As r increases, the anisotropy ĀPRD in the line core decreases
and even becomes negative for r = 10−2. This is because the

line core photons now start to originate in deeper layers of the
atmosphere, where the radiation field for the line core photons
tends to become more and more isotropic. For r = 10−2 a limb-
brightened radiation field dominates to give a negative ĀPRD
in the line core. However, for r = 0.7, the anisotropy ĀPRD
reaches a large positive value. Note that the corresponding
line source function SI shows a larger departure from the
Planck function, not only above the temperature minimum,
but also in the photospheric range of heights 300–500 km
(where actually the line core is formed; see Table 1), differently
from what happens with other values of r (see the SI panel of
Figure 4). In fact, by taking values of r between 10−2 and 0.7,
it can be shown that there is a gradual transition in the line-
center anisotropy ĀPRD from negative values to a large positive
value.

It is worth to note that ĀPRD in the wings attains a constant
value, which is the same for all the values of r. However, the
frequency distance from line center at which this constant value
is reached decreases as r increases. This can be understood by
taking the example of r = 10−5. In this case, we find that
the Stokes parameters at all frequencies x � 20 are “formed”
at a height of 360 km (in the sense that this is the height
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Figure 8. Sensitivity of the PRD solutions in the VALC model to variations in the damping parameter a. The different line types are the following. Solid: a = 10−6;
dotted: a = 10−4; dashed: a = 10−3; dot-dashed: a = 10−2; dash-triple-dotted: a = 0.1. Other model parameters are λ = 5000 Å, ε = 10−4, r = 10−5, and
ΓE/ΓR = D(2)/ΓR = 0.

at which the monochromatic optical depth is unity). When
we plot the total source function for all these frequencies,
we find that they nearly coincide with the Planck function
and, moreover, that they are dominated by the continuum
source function. Thus, the anisotropy at those frequencies is
determined by the Planck function gradient at a height of
360 km. As r increases the frequency value above which all
the photons form at 360 km progressively moves toward line
center.

A comparison of Figures 4 and 5 shows that CRD is a
good approximation in the line core and particularly at line
center. This is a well-known result since the detailed work by
Dumont et al. (1977, using the type I redistribution function) and
Faurobert (1987, 1988, using the type II redistribution function).
Furthermore, for sufficiently large values of r (weak resonance
lines), the CRD approximation can be safely used to model line
profiles (Frisch 1996), like, for instance, the Q/I profiles of the
photospheric line of Sr i at 4607 Å (see Faurobert-Scholl 1993).
This is because these lines do not have well-developed broad
wings (unlike the strong resonance lines). Therefore, transfer of

photons in the line wings, where frequency coherent scattering
can play a crucial role, is negligible (see Faurobert-Scholl 1993).
As a result, even in the PRD case, the polarization gets confined
to the line core as in the CRD case.

4.1.2. Effect of Photon Destruction Probability per Scattering ε

Figure 6 shows the sensitivity of I, −Q/I , ĀPRD(τxμ = 1),
and SI(x = 0) at μ = 0.11 to changes in the ε value. The
corresponding CRD case is shown in Figure 7.

When ε increases, the coupling between the radiation field
and the Planck function becomes stronger. From Figure 6 we
clearly see that SI 	 B in a greater region of the atmosphere
for larger values of ε. As a result, the intensity increases.
However, the anisotropy decreases in the line core. Moreover, for
frequencies x 	 2.5, the absolute value of the anisotropy (which
is here negative) increases, while for x > 7 the anisotropy
is independent of ε. Note that x ≈ 7 corresponds to the
wing maximum in the −Q/I profile. As already noted in
Section 4.1.1, at this frequency the total source function starts
being dominated by the unpolarized continuum, so that the
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Figure 9. Same as in Figure 8, but for CRD. The line types and the model parameters are exactly the same as in Figure 8.

anisotropy as well as −Q/I are independent of ε. A comparison
with the corresponding CRD case in Figure 7 shows that the
above discussion for the line core region can also be used to
understand the CRD profiles.

4.1.3. Effect of the Damping Parameter a

Figure 8 shows the response of I, −Q/I , ĀPRD(τxμ = 1), and
SI(x = 0) at μ = 0.11 to variations of a. The corresponding
CRD case is shown in Figure 9.

The larger the damping parameter a, the broader the absorp-
tion profile. As a result, the emergent I as well as −Q/I profiles
broaden as a increases. Furthermore, an increase of a implies
that the source function departs from the Planck function to a
slightly larger extent (see Figures 8 and 9). In the CRD case,
the anisotropy decreases with increasing values of a and the
−Q/I profile does the same. In the PRD case, the anisotropy
at line center does not show a large sensitivity to a, and thereby
the same happens with −Q/I . On the contrary, for x > 3,
ĀPRD shows a large sensitivity to variations in a. In particular,
the anisotropy increases in the absolute value for frequencies
that are formed in the temperature rise region of the VALC

atmosphere. Furthermore, as a increases the frequency at which
ĀPRD reaches a constant value also increases. Consequently,
the negative dip (or wing minimum) and the wing maximum
in −Q/I are very sensitive to a. The position of the negative
dip as well as that of the wing maximum shifts away from line
center. Since the position of the wing maximum is determined
by the frequency at which the total source function starts be-
ing dominated by the unpolarized continuum, it is clear that
an increase in a results in a shift toward larger frequencies of
the wing maximum of −Q/I . It is worth to note that Saliba
(1985) also shows the influence of a on I and −Q/I , though a
detailed analysis is missing. Nevertheless, it is clear from our
Figure 8 that a height dependence of a has important effects on
the emergent polarization profiles, a point already stressed by
Saliba (1985).

We point out that our assumption of a constant damping pa-
rameter a throughout the atmosphere is actually in contradiction
with the hypothesis of an exponentially stratified atmosphere.
This is because, as a is proportional to the density, it should also
be exponentially stratified. We also point out that the damp-
ing parameter a is proportional to the elastic collisional rate
ΓE , that is here assumed to be zero. Notwithstanding these
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Figure 10. Effect of the elastic collisional rate ΓE/ΓR on the PRD solutions in the VALC model. The different line types are the following. Solid: ΓE/ΓR = 0;
dotted: ΓE/ΓR = 0.1; dashed: ΓE/ΓR = 0.25; dot-dashed: ΓE/ΓR = 1; dash-triple-dotted: ΓE/ΓR = 5; long-dashed: ΓE/ΓR = 10. Other model parameters are
λ = 5000 Å, ε = 10−4, r = 10−5, a = 10−3, and D(2)/ΓR = 0.5 ΓE/ΓR .

inconsistencies, we considered worthwhile to perform our stud-
ies as if the damping parameter were an independent quantity.

4.1.4. Effect of the Elastic Collisions

Figure 10 shows the sensitivity of I, −Q/I , ĀPRD(τxμ = 1),
and SI(x = 0) at μ = 0.11 to the variations of ΓE/ΓR .
The corresponding CRD case is shown in Figure 11. The
depolarizing elastic collision parameter is assumed to be D(2) =
0.5 ΓE (e.g., Stenflo 1994). We recall that in the CRD case,
the redistribution matrix is given by Equation (6). Clearly
only D(2) is the relevant quantity for CRD. Therefore, for
CRD varying ΓE/ΓR is equivalent to varying D(2)/ΓR since
we have assumed D(2)/ΓR = 0.5 ΓE/ΓR . We note that ΓE/ΓR

mainly operates in the line wing, while D(2)/ΓR operates in the
line core (see also Faurobert-Scholl 1992; Nagendra 1994). In
the solar atmosphere, the elastic collisions ΓE and D(2) increase
with depth in the atmosphere, while they are negligible in the
upper layers, namely, in the upper chromosphere and transition
region. Thus, depth-dependent elastic collisions affect only the
wings through ΓE/ΓR , while the line core is nearly unaffected

as it is formed higher in the atmosphere where D(2) is negligible
(see also Faurobert-Scholl 1992).

As expected, elastic collisions have little effect on the line
source function SI. In the case of PRD, as ΓE/ΓR operates in
the line wings, here there is some sensitivity to this parameter
in the intensity profile. However, for CRD, as D(2)/ΓR operates
mainly in the line core, there is hardly any effect on the intensity.
As ΓE/ΓR or D(2)/ΓR increases, basically the mean anisotropy
factors ĀCRD and ĀPRD decrease at all frequencies. In the case
of PRD, with an increase in elastic collisions, the contribution
of gIII

xx ′ increases. Since gIII
xx ′ behaves more like CRD, when its

contribution increases ĀPRD in the wings decreases and it then
gradually tends to zero.

4.1.5. Additional Studies

Here, we present some additional studies related to the PRD
linear polarization profiles. From now on we do not present the
corresponding CRD cases.

In Figure 12, we show I, −Q/I , ĀPRD(τxμ = 1), and
SI(x = 0) at μ = 0.11 for two different spectral lines. Clearly,
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Figure 11. Same as in Figure 10, but for CRD. The line types and the model parameters are exactly the same as in Figure 10.

the gradient of the Planck function as well as of SI are larger at
shorter wavelengths (e.g., for λ = 3933 Å compared to those
for λ = 5000 Å), particularly in the photosphere. Therefore,
when we move to the blue part of the spectrum, the anisotropy
increases particularly in the wings, so that the polarization also
increases there.

Figure 13 shows I, −Q/I , ĀPRD(τxμ = 1), and the line
source function SI(x = 0) at μ = 0.11 for lines formed in
the transition region of the VALC model. As r decreases, the
line is formed higher in the atmosphere (see Table 1) where
it encounters a steep temperature rise, so that the radiation
field tends toward becoming limb-brightened. As a result, the
anisotropy decreases in the line core, while it increases in
absolute value at the negative dip (3 � x � 7). Moreover,
as r decreases, Equation (19) can now be applied to a larger
frequency domain and hence the wing maximum in −Q/I ,
where the unpolarized continuum source function starts to
dominate, now shifts toward larger frequencies. As the spectral
line is formed in the region of the steep temperature rise, the
intensity shows a typical emission profile, increasingly self-
absorbed.

Figure 14 shows the effect of W2 on −Q/I and Ā(τxμ = 1)
at μ = 0.11, for the VALC model including its transition
region and corona. Since W2 has only marginal effects on
the intensity and the line source function SI, we do not show
them here. As expected, when W2 decreases the polarization
decreases everywhere. However, it is interesting to note that,
in general, we expect a linear dependence on W2 (since (Slx)2

0
directly depends on W2, see Equation (9)). In other words, as
W2 is reduced to half, we also expect the polarization to be
reduced to half its value throughout the profile when compared
to the corresponding W2 = 1 case. Instead, we see that for
x < 3, −Q/I (W2 = 0.5) is nearly 0.5 × −Q/I (W2 = 1).
But for x > 3 there is no linear dependence on W2. This
can also be seen in the mean anisotropy ĀPRD, which does not
contain the W2 factor in its definition (see Equations (10)–(12)
and (15)). If there were a linear dependence on W2, the
mean anisotropy ĀPRD should have been exactly the same for
both W2 = 0.5 and W2 = 1. Instead, we see considerable
difference for x > 3. This difference can be attributed to the
contribution of Q to (J̄x)2

0, as I is only marginally affected
by the value of W2. Thus, we conclude that the scattering
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Figure 12. PRD solutions in the VALC model for two spectral lines with different wavelengths. Solid line: λ = 3933 Å; dotted line: λ = 5000 Å. Other model
parameters are ε = 10−4, r = 10−5, a = 10−3, and ΓE/ΓR = D(2)/ΓR = 0.

polarization depends non-linearly on W2. This is true even
for the CRD case. This fact was also noted by Stenflo &
Stenholm (1976).

4.2. Results of Calculations in the M-CO Model

Here, we study the effect of a relatively cool lower chromo-
sphere on the emergent Q/I . As the sensitivity to parameters
like r, ε, and a is already quite well understood for the VALC
model, here we only present (1) the comparison between the
line profiles of VALC and M-CO models; and (2) the influence
of the elastic collisional rates ΓE/ΓR and D(2)/ΓR . We do not
show the corresponding CRD case as the main effects are con-
fined to the line core.

Figure 15 shows the effect of the thermal structure of the
atmosphere on the polarized line formation. From Figure 1,
we see that the temperature minimum is shifted from the height
z = 500 km in the VALC model to 1000 km in the M-CO model.
Thus, monochromatic radiation formed in the region 500–1000
km in the VALC model is limb-brightened, while it is limb-
darkened in the M-CO model (as there is no temperature rise
in that region). As the region of temperature rise for the M-CO

model is located between 1000 and 2000 km, where the line core
is formed, we find that the anisotropy in the line core is smaller
for the M-CO model than for the VALC model. The temperature
rise tends to make the radiation field more limb-brightened.
Finally, in the wings the anisotropy is smaller compared to
that of the VALC model. This is because frequencies x � 4
are formed in the region 360–500 km, where the temperature
gradient is larger for VALC than for M-CO.

Figure 16 shows the effect of varying the elastic collisional
rate ΓE/ΓR for the M-CO model. Effects of varying ΓE/ΓR

or D(2)/ΓR for M-CO model are more or less similar to that
for the VALC model. We note that when ΓE/ΓR increases,
the differences in the anisotropy as well as in the polariza-
tion obtained from the M-CO and VALC models decrease
(for example, compare the long-dashed lines in Figures 10
and 16).

5. CONCLUSIONS

The interpretation of the second solar spectrum is an exciting
and tough challenge in solar physics. To achieve this, it is
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Figure 13. PRD solutions in the VALC model for spectral lines of the upper chromosphere and transition region. The different line types are the following. Solid:
r = 10−6; dotted: r = 5 × 10−7; dashed: r = 4 × 10−7; dot-dashed: r = 3 × 10−7; dash-triple-dotted: r = 2.5 × 10−7; long-dashed lines: r = 2 × 10−7. Other model
parameters are λ = 5000 Å, ε = 10−4, a = 10−3, and ΓE/ΓR = D(2)/ΓR = 0.

essential to solve the polarized radiative transfer equation taking
into account various physical phenomena. In the case of strong
resonance lines, one of the important physical ingredients
required for the modeling of the linear polarization profiles is
the so-called PRD. In this paper, therefore, we have studied the
scattering polarization profiles formed under PRD. We use the
angle-averaged version of the collisional redistribution matrix
(see Domke & Hubeny 1988; Bommier 1997b), which is valid
for a two-level atom with unpolarized lower level. For the
numerical method of solution, we have applied the very efficient
and accurate symmetric Gauss–Seidel method presented in
Sampoorna & Trujillo Bueno (2010).

Our main focus in this paper has been to study the influence
of various atmospheric parameters (namely, ε, r, a, ΓE/ΓR ,
D(2)/ΓR , and the temperature structure of the atmosphere) on
the linear polarization profiles. Interestingly, for strong lines the
−Q/I profiles that we obtain with PRD, for a wide range of
the various parameters, are of the shape that has been classified
as M-signals by Belluzzi & Landi Degl’Innocenti (2009). We
recall that M-signals represent Q/I profiles with a three-

peak structure. Therefore, we find that for strong resonance
lines the three-peak structure for Q/I is a common feature
for various combinations of the other relevant parameters,
thereby confirming previous results either obtained using more
crude model atmospheres (isothermal atmospheres) or with less
sophisticated modeling.

We interpret the linear polarization profiles using the
Eddington–Barbier relation and the anisotropy at the atmo-
spheric height where τxμ = 1. To this end, as in the CRD case,
we define a suitably frequency integrated or mean anisotropy
factor Ā for PRD that can be directly related to the emergent
linear polarization. We have shown in great detail that the emer-
gent scattering polarization is a mapping of the anisotropy at
τxμ = 1 (cf. Rees & Saliba 1982; Trujillo Bueno 2001; Landi
Degl’Innocenti & Landolfi 2004). Our study shows that a height-
dependent damping parameter a has significant influence on the
emergent linear polarization profiles, particularly in the wings
of strong resonance lines. In general, scattering polarization pro-
files are very sensitive to the thermal structure of the atmosphere
(see Figure 15). For the range of parameters considered in this
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Figure 14. Effect of the W2 factor on the PRD (top panels) and CRD (bottom panels) solutions in the VALC model for a strong line with r = 2 × 10−7. Solid line:
W2 = 1 (which corresponds to a line transition with Jl = 0 and Ju = 1); dotted line: W2 = 0.5 (which corresponds to a line transition with Jl = 1/2 and Ju = 3/2).
Other model parameters are λ = 5000 Å, ε = 10−4, a = 10−3, and ΓE/ΓR = D(2)/ΓR = 0.

paper, we also find that the dips in Q/I are located at values of
the reduced frequency x ranging from 2 to 5. Furthermore, the
values of Q/I at these dips (including their sign) seem to be very
sensitive to the thermal structure and to the various atmospheric
parameters.

The results of our investigation emphasize that PRD is
required to model the linear polarization of strong resonance
lines like Ca ii K and Mg ii k (compare Figures 4 and 5, see
also Figure 13), while CRD is a good approximation to model
weak resonance lines like Sr i 4607 Å (see also Faurobert-Scholl
1993; Frisch 1996, and compare the long-dashed lines of our
Figures 4 and 5). A strong resonance line is characterized by
broad damping wings, where frequency coherent scattering can
play a crucial role (e.g., Frisch 1996). Weak resonance lines
lack such damping wings and, therefore, the corresponding
linear polarization, even computed in PRD, gets confined to
the line core, with a single peak at line center, similarly to
what is obtained when assuming CRD. In order to quantify the
difference between the linear polarization profiles computed
with CRD and PRD for the case of weak resonance lines, we

define the following two quantities:

δ

[
Q

I
(x = 0)

]
= |(Q/I )PRD(x = 0) − (Q/I )CRD(x = 0)|

|(Q/I )PRD(x = 0)| ,

(21)
which gives the relative difference in amplitude of Q/I com-
puted using CRD and PRD at line center, and

δ [HWHM] = |(HWHM)PRD − (HWHM)CRD|
|(HWHM)PRD| , (22)

which gives the relative difference in the half width at half
maximum (HWHM) of the Q/I profiles computed using CRD
and PRD. Taking the particular case of r = 0.7 (see long-dashed
lines in Figures 4 and 5), we varied ε, a, and ΓE/ΓR as done
in Figures 6–11 for r = 10−5. We find that δ [(Q/I )(x = 0)]
is around 5% and δ[HWHM] is about 10% for the above-
mentioned parametric study with fixed r = 0.7. Clearly, the
error introduced through the use of CRD for weak resonance
lines is quite small. Therefore, we may conclude that CRD is a
good approximation for weak resonance lines.
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Figure 15. Effect of the atmospheric thermal structure on the PRD solutions. Solid lines: M-CO model, dotted lines: VALC model. Other model parameters are
λ = 5000 Å, ε = 10−4, r = 10−5, a = 10−3, and ΓE/ΓR = D(2)/ΓR = 0.

Future investigations should extend the present work by con-
sidering angle-dependent redistribution functions and the Hanle
effect of deterministic magnetic fields. On the one hand, radia-
tive transfer calculations with angle-dependent redistribution
functions are numerically very expensive (e.g., Faurobert 1988;
Nagendra et al. 2002). The assumption of the angle-averaged
PRD function used here instead of the general angle-dependent
function is justified only when polarization is neglected (e.g.,
Frisch 1996). Since resonance polarization is largely controlled
by the anisotropy of the radiation field, the use of angle-averaged
functions may not be as suitable for polarized transfer as for non-
polarized transfer. Tests of this approximation performed by
Faurobert (1988) for purely coherent scattering in semi-infinite
isothermal atmospheres show that the errors in the linear po-
larization are very small in the wings, while in the line core
the polarization peak obtained with the angle-dependent type
II redistribution function is slightly sharper than with RII,AA.
However, such tests need to be revised considering more re-
alistic solar model atmospheres. On the other hand, polarized
radiative transfer computations of the Hanle effect with angle-
averaged PRD have been performed for isothermal model at-

mospheres by several researchers (e.g., Faurobert-Scholl 1991;
Nagendra et al. 1999; Fluri et al. 2003; Sampoorna et al. 2008a).
Even though the Hanle effect is confined to the line core, there
are considerable differences in the linear polarization profiles
computed using CRD and angle-averaged PRD functions (e.g.,
Faurobert-Scholl 1991; Nagendra et al. 1999). Furthermore,
Nagendra et al. (2002, see also Sampoorna et al. 2008b) have
investigated the reliability of angle-averaged functions for the
case of Hanle effect in isothermal atmospheres, showing that
the Stokes U parameter is relatively more sensitive than Stokes
Q regarding the use of angle-averaged versus angle-dependent
functions. Therefore, to further assess the relative importance
of PRD effects, we need to carry out detailed investigations
similar to the one reported in this paper, but including the
Hanle effect of weak magnetic fields. Obviously, such radia-
tive transfer problems are significantly more complicated than
the one considered here, but we think that the same numerical
method presented in Sampoorna & Trujillo Bueno (2010) can
be suitably generalized to solve efficiently such more general
PRD problems, both in one-dimensional and three-dimensional
geometries.
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Figure 16. Effect of the elastic collisional rate ΓE/ΓR on the PRD solutions in the M-CO model. The different line types are the following. Solid: ΓE/ΓR = 0;
dotted: ΓE/ΓR = 0.1; dashed: ΓE/ΓR = 0.25; dot-dashed: ΓE/ΓR = 1; dash-triple-dotted: ΓE/ΓR = 5; long-dashed lines: ΓE/ΓR = 10. Other model parameters
are λ = 5000 Å, ε = 10−4, r = 10−5, a = 10−3, and D(2)/ΓR = 0.5 ΓE/ΓR .
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