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ABSTRACT

Context. The linear polarization of strong resonance lines observed in the solar spectrum is created by the scattering of
the photospheric radiation field. This polarization is sensitive to the form of the partial frequency redistribution (PRD)
function used in the line radiative transfer equation. Observations have been analyzed until now with angle-averaged
PRD functions. With an increase in the polarimetric sensitivity and resolving power of the present—day telescopes, it
will become possible to detect finer effects caused by the angle dependence of the PRD functions.

Aims. We devise new efficient numerical methods to solve the polarized line transfer equation with angle-dependent
PRD, in plane-parallel cylindrically symmetrical media. We try to bring out the essential differences between the
polarized spectra formed under angle-averaged and the more realistic case of angle-dependent PRD functions.
Methods. We use a recently developed Stokes vector decomposition technique to formulate three different iterative
methods tailored for angle-dependent PRD functions. Two of them are of the accelerated lambda iteration type, one
is based on the core-wing approach, and the other one on the frequency by frequency approach suitably generalized to
handle angle-dependent PRD. The third one is based on a series expansion in the mean number of scattering events
(Neumann series expansion).

Results. We show that all these methods work well on this difficult problem of polarized line formation with angle-
dependent PRD. We present several benchmark solutions with isothermal atmospheres to show the performance of
the three numerical methods and to analyze the role of the angle-dependent PRD effects. For weak lines, we find no
significant effects when the angle-dependence of the PRD functions is taken into account. For strong lines, we find a

significant decrease in the polarization, the largest effect occurring in the near wing maxima.
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1. Introduction

This paper is concerned with a study of the linear polar-
ization of spectral lines due to the resonance scattering of
anisotropic radiation. We deal only with two-level atoms
with an unpolarized ground-level. The theory of resonance
scattering shows that in general correlations exist between
the directions and frequencies of the incident and scattered
photons, a situation referred to as “partial frequency redis-
tribution” (PRD). In some cases, these correlations can be
ignored and one has the so-called “complete frequency re-
distribution” (CRD). The line polarization is very sensitive
to the nature of the frequency redistribution mechanism.
Polarized radiative transfer problems with PRD are much
harder to solve than those with CRD. The complexity is
particularly significant because the scattering process is in
general described by a (4 x 4) redistribution matrix. In the
special case of the non-magnetic resonance (Rayleigh) scat-
tering in planar atmospheres with axisymmetric boundary
conditions, it is sufficient to use (2 x 2) redistribution ma-
trices for the Stokes vector (I, Q).

We are particularly interested in radiative transfer with
an angle-dependent PRD. Dumont et al. (1977) were the
first to consider line polarization with angle-dependent
PRD, using the Hummer (1962)’s type I redistribution
function. McKenna (1985) used Hummer’s types I, II, and
II1, and Faurobert (1987, 1988) the type II.! Nagendra et al.
(2002, 2003) considered a more general problem of angle-
dependent PRD for the weak-field Hanle effect using the
PRD matrices derived by Bommier (1997b). An even more
general redistribution matrix for the Hanle-Zeeman scat-
tering was proposed in Sampoorna et al. (2007a,b) and used
in Sampoorna et al. (2008a) to calculate linear and circular
polarizations of spectral lines in magnetic fields of arbitrary
strength.

The difficulty in using angle-dependent PRD matrices
comes mainly from the evaluation of the scattering terms
because the redistribution matrices depend in an intricate
way on the directions and frequencies of the incident and

! We recall that for these three different types of redistribution
functions the lower level is infinitely sharp; for type I, the upper
level is also sharp, for type II, the upper level is radiatively
broadened, and for type III, it is also broadened by collisions.



M. Sampoorna et al.: Spectral line polarization with angle-dependent PRD II

scattered beams. For this reason, most of the linear po-
larization investigations taking into account PRD effects
have been carried out with an approximate angle-averaged
PRD, as suggested by Rees & Saliba (1982). In this ap-
proximation, frequency redistribution is independent of the
scattering angle and also of the polarization phase ma-
trix. This so-called “hybrid” approximation has been em-
ployed in works by Rees & Saliba (1982), McKenna (1985),
Faurobert (1987, 1988), Nagendra (1988, 1994), Faurobert-
Scholl (1991), Nagendra et al. (1999), Fluri et al. (2003),
Sampoorna et al. (2008b), Sampoorna & Trujillo Bueno
(2010), among others. For the Rayleigh scattering, the
use of an angle-averaged PRD function is not unjustified
as the quantitative differences between the (/I profiles
calculated with angle-dependent (AD) and angle-averaged
(AA) frequency redistribution remain around 15% or less
as shown by Faurobert (1987) and Nagendra et al. (2002).
Improvements in observational techniques is a strong incen-
tive to develop more elaborate diagnostic tools by taking
into account the angle-dependent frequency redistribution.

Here we describe three new numerical methods to han-
dle the Rayleigh scattering with an angle-dependent PRD.
Two of them are of the accelerated lambda iteration (ALI)
type and the other is based on a Neumann series expan-
sion, which amounts to an expansion in the mean number
of scattering events. They differ rather strongly from previ-
ous methods used for angle-dependent PRD. In Dumont et
al. (1977), Faurobert (1987, 1988), Nagendra et al. (2002),
Sampoorna et al. (2008a), the radiation field is described
by the two Stokes parameters I and () and the transfer
equations for I and @ are solved by Feautrier—type meth-
ods, sometimes associated with a perturbation method, or
fully perturbative methods, which is based on the linear
polarization created by resonance scattering being a few
percent only. In McKenna (1985), the radiation field is also
described by I and @, but the radiative transfer equations
are solved by a moment equation method.

ALI methods introduced for scalar radiative transfer
problems have been generalized to handle Rayleigh scat-
tering and the weak-field Hanle effect (see the review by
Nagendra 2003, and also Nagendra & Sampoorna 2009).
These methods have the advantage of being much faster
while remaining as accurate as the traditional exact or per-
turbative methods (see Nagendra et al. 1999). They have
been so far applied to the angle-averaged PRD only. They
make use of a decomposition of the Stokes parameters
into a set of new fields, referred to as “reduced intensi-
ties” in Faurobert-Scholl (1991) and Nagendra et al. (1998)
and as “spherical irreducible components” in Frisch (2007).
These decompositions were introduced to study the Hanle
effect. The decomposition method in Frisch (2007) is based
on the decomposition of the polarization phase matrix in
terms of the spherical irreducible tensors for polarime-
try 75 (i, Q) introduced by Landi Degl'Innocenti (1984,
see also Bommier 1997a, Landi Degl’Innocenti & Landolfi
2004). In Faurobert-Scholl (1991, see also Nagendra et al.
1998), the decomposition relies on an azimuthal Fourier ex-
pansion method. It is a generalization of Chandrasekhar’s
(1950) azimuthal Fourier expansion method for Rayleigh
scattering, to the case of Hanle scattering. The Té{ based
expansion technique turns out to be simpler than the az-
imuthal Fourier expansion method.

The irreducible spherical components satisfy transfer
equations that are simpler than the equations for I and
Q. For angle-averaged PRD functions, the irreducible com-
ponents of the source terms become independent of the ray
direction, even in the presence of a magnetic field, and sat-
isfy fairly standard integral equations that can be used
to construct ALI numerical methods of solution. It has
been shown in Frisch (2009, 2010) that a similar decom-
position of the Stokes parameters can be performed with
angle-dependent PRD functions. The Hanle effect is consid-
ered in Frisch (2009) and the Rayleigh scattering in Frisch
(2010, hereafter HF10). Here we show how the decomposi-
tion described in HF10 can be used to construct ALI and
a Neumann series expansion methods.

The outline of the paper is as follows. In Section 2, we
present transfer equations for the irreducible components
of the radiation field and the main steps of the decom-
position technique. In Section 3, we present two different
ALI methods, one of which generalizes the frequency-by-
frequency (FBF) method of Paletou & Auer (1995) into a
frequency-angle by frequency-angle method (FABFA) and
the other that generalizes the core-wing separation method,
also of Paletou & Auer (1995). In this section, we present
a third iterative method, which relies on a Neumann se-
ries expansion of the irreducible components of the source
terms contributing to the polarization. We refer to this ap-
proach here as the “scattering expansion method” because
it is equivalent to an expansion in the mean number of
scattering events. The three methods described in Section
3 make use of the azimuthal Fourier coefficients of order
0, 1, and 2 of the Hummer’s PRD functions of type II and
ITI. In Section 4, we show how these Fourier coefficients can
be calculated and discuss their main properties. Numerical
validation and convergence properties of the iterative meth-
ods are presented in Section 5. Results are presented in
Section 6, where we discuss in detail the angle-dependent
PRD effects on the @/I profiles. Some concluding remarks
are presented in Section 7.

2. Governing equations

The atmosphere is assumed to be plane-parallel, the pri-
mary source of photons to be of thermal origin, the incident
radiation to be either zero or axisymmetric, and the mag-
netic field to be zero or micro-turbulent. These assumptions
imply that the radiation field is cylindrically symmetric and
can be described by the two Stokes parameters I and @, if
one chooses the reference direction for the measurement of
@ such that positive () is perpendicular to the surface of
the atmosphere. Because of the cylindrical symmetry Stokes
U=0

The polarized transfer equation for the Stokes parame-
ters I and @) can be written in a component form as

oI;

:U/E = ? =0517 (1)

[(p(.%') + T] [Ii(TJmJIU') - Si(TJ:Ea/L)] )

where . = cosf, with 6 being the co-latitude with respect
to the atmospheric normal, 7 the line optical depth de-
fined by dr = —kidz, with k; the frequency—averaged line
absorption coefficient, and () the normalized Voigt func-
tion. The frequency z is measured in units of the Doppler
width, assumed to be constant, with z = 0 at line cen-



M. Sampoorna et al.:

ter. The ratio of continuum to line absorption coefficient is
denoted by r. The total source vector is given by

So(x)sl,i(ﬂmaﬂ) + rSc,i
o@+r ®

where S.; are the components of the unpolarized contin-
uum source vector. We assume that S.o = B, where B is
the Planck function at line center, and Sc; = 0. The line
source vector can be written as

Si(r,z, p) =

S1i(r,z,pw) = Gi(7)
s[5 MRS s 0 e, o
7=0,1

where d) = sinf’' d6’' dy’. The outgoing and incoming ray
directions © and Q' are defined, respectively, by their polar
angles (0, x) and (', x'). For simplicity, we assume that the
primary source is unpolarized, namely that only Go(7) is
non-zero. It is proportional to the Planck function at line
center. The term R;;(z,,z',Q') denote the elements of
the redistribution matrix for Rayleigh scattering (Domke
& Hubeny 1988; Bommier 1997a).

According to the decomposition technique described in
HF10, we can write I; and S;; as

Li(r,z,p) = Z TQ zu)IQ(Tx,u) i=0,1, (4)
K,Q>0

S1i(T, 1) = Z zuSQl('rmu) i=0,1. ()
K,Q>0

We have four terms in the summation over K and @ cor-
responding to K =@ =0, K = 2 with Q = 0,1, 2. The ir-
reducible tensors Té{ (i, p) are defined in HF10. An explicit
expression of Eq. (4) can be found in Eq. (42). The total
source vector S; has a decomposition similar to Eq. (5).
The irreducible line source vector components Sg, (T, 1)

may be written as

-‘rOO +1 d
SE (.2, 1) = 6x0boGolr / / i
,ﬁ’K(:I"J/J'JmIJIU/I) !
= 2 DaWIE (), (©)
¥ K',Q'>0
where
T8 (W Z 3 (o ). (7)

The coefficients f‘gg/ (u) are given in the Appendix of
HF10. The functions R in Eq. (6) take the form

+[89 - o] 72, (®)

R = Wap {aﬁ@ Lo -

o AP}, @=0,1,2, (9)

where Wy (J;, Jy,) is an atomic depolarization factor depend-
ing on the angular momentum of the lower and upper levels
of the transition. The coefficients & and %) are branching
ratios

I'r

_ 7 10
Fr+T1+TE (10)
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and
B — Tr

Tr+T;+ DE)’ (11)

where I'g is the radiative rate, I'; and I'g the inelastic and
elastic collisional rates, and D) the collisional depolariza-
tion rate such that D(® = (. The coefficient pe takes the
effects of a micro-turbulent magnetic field into account. It
depends on the magnetic field probability density function
(see e.g., Landi Degl’Innocenti & Landolfi 2004, p. 215)
and is unity in the absence of magnetic fields. Since the
Hanle effect acts only in the line core, the coefficient o
should be set to unity outside the line core. The r(Q) (with
X = IT or III) are the azimuthal Fourier coefﬁments of order
0, 1, and 2 of Hummer (1962)’s PRD functions iy and rjj.
They are defined by

2 — (50Q
2w

x / " (@ 2t x — X') coslQUx — x)]d(x — x')-(12)

7 (@m0’ ) =

The components Ig satisfy a transfer equation simi-
lar to Eq. (1). The source term is given by Eq. (2), where
S and S.,; are replaced by Sclg(,l and Sgc = dkodgoB.
Introducing the four-component vectors S;(r,z,u) =
{38, Sga 8127 822}T and I(T, T, :u) = {I(()):Iga 1127 I22}T7 we can
re-write Eq. (6) in vector form as

o)
oo 1 !
/+ /+ “’“ R T 1) 2, ) L

The primary source vector is G(1) = {Go(7),0,0,0}T,
where Go(7) = €B with € = I't/(I';y + I'r). The (4 x 4)
matrix R is diagonal, i.e., R = diag [7@8,7@%, 7@%,7%5] Its
elements are defined in Eqgs. (8) and (9 ) The (4 x 4) matrix
T is a full matrix with elements I‘QQ, . Owing to its sym-
metry, it has only ten independent elements (see Eq. (7)
and also HF10). When R is independent of x4 and g/ (CRD
or angle-averaged PRD), only the two components of the
source vector corresponding to the index () = 0 are non-
zero. In this case, one recovers the usual Rayleigh scattering
whereby the radiation field and source vector are fully de-
scribed by two-component vectors.

Si(r,z,pu) =

dz'.(13)

3. Numerical methods of solution

We present three iterative methods to solve the problem of
angle-dependent PRD. The first two are ALI type methods
and the third is a scattering expansion method. We assume
a plane-parallel slab geometry with a given total optical
thickness.

3.1. The polarized accelerated lambda iteration approaches

For notational simplicity, we neglect the explicit depen-
dence of Z and § on 7. The dependence on x and p appear
as subscripts. The formal solution of the transfer equation
for the four-component irreducible vector Z can be written
as

Iam = Aam [sru] + Twu; (14)
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where T, is the directly transmitted part of the intensity
vector and A, is the frequency- and angle-dependent (4 x
4) integral operator. We introduce the operator splitting
written as
AwH = A;p + (Awu - A;p,) ) (15)
where A7 | is the diagonal approximate operator (see Olson
et al. 1986). We now write the total source vector S, and
the line source vector S; ;,, as
1
S;‘:[ =8, +68;,,

St =87, + 08}

Lxp Lz’

(16)

where n is the iteration index. Combining Eqgs. (15) and
(16) with Eq. (13), we derive an equation for the line source
vector corrections that can be written as

“+oco +1 7"2 L,
n T,z @
O8] g, — / e W
—o0 —1 Pz

dy' —n n
XA [5817?#“'] TM da’ = G(r) + T op = Stapr  (17)
where p, = ¢, /(¢z +r) and

. +oo p+1 'f\’, L du!
J‘;luz/ ) MFN’AZU’N’ [S;LIHI] Tp/dml (18)
— 00 —

Pz

For this investigation, we chose the Jacobi decomposition
of the A operator. Superior iterative methods such as the
Gauss—Seidel (GS) and the successive overrelaxation (SOR)
technique were introduced into scalar radiative transfer the-
ory by Trujillo Bueno & Fabiani Bendicho (1995). These
methods provide faster convergence rates than the Jacobi
method. Trujillo Bueno & Manso Sainz (1999) extended
these methods to the case of resonance scattering. The
generalization to the Hanle effect was developed by Manso
Sainz & Trujillo Bueno (1999). In these references, CRD is
assumed for the frequency redistribution. The GS and SOR
methods were extended to the case of angle-averaged PRD
in Sampoorna & Trujillo Bueno (2010). In this first attempt
at developing ALI methods for angle-dependent PRD func-
tions, we chose the simpler Jacobi decomposition. We now
describe two different methods of solution for Eq. (17).

3.1.1. Frequency-angle by frequency-angle (FABFA) method

This FABFA method is a generalization of the FBF method
introduced by Paletou & Auer (1995). In matrix form,
Eq. (17) can be written as
AéSP =r", (19)
where the residual vector ™ is given by the right-hand side
of Eq. (17). At each depth point, »™ and S} are vectors
of length 4N, 2N, where N, is the number of frequency
points in the range [0, xmax]2 and N, is the number of angle
points in the range [0 < g < 1]. The matrix A thus has di-
mensions (4N, 2N, x4N, 2N,). For a given z, ', 1, and p/,
the matrix A can be decomposed into (N; 2N, x N 2N,,)

2 Although the redistribution functions are not even functions
of z, because the radiation field is an even function of z, only
positive values of x can be considered.

blocks of 4 x 4 elements. In each block, denoted by A, the
elements may be written as

A= 5mn5aBE - wﬁgma,nBI‘BA:Lﬁ; (20)

wherem =1,---,Ny;,n=1,--- Ny, =1,---,2N,, and
B8=1,---,2N,, and E is the identity operator. The coeffi-
cients wg denote the y' integration weights and g,q4,np are
defined by

R ma,nB —
8ma,npg = Wn,,
©m
where w,, are the frequency (z') integration weights. The
FABFA method requires the calculation of the matrix A~!
before the iteration cycle.

(21)

3.1.2. The core-wing separation method for angle-dependent
PRD

Here we describe a generalization of the core-wing method
of Paletou & Auer (1995). According to the ALI methods,
the right-hand side of Eq. (17) must be calculated as ac-
curately as possible but in the left-hand side there is some
flexibility in the choice of the operator acting on the correc-
tions 087, - The choice of this operator affects the speed
of convergence of the process but not the final solution.
For Rayleigh scattering, we already know that the angle-
dependence of the PRD functions has only a mild effect
on the Q/I profiles. Hence, in the matrix Rzy 2, in the
left-hand side, we retain the two terms corresponding to
the index (Q = 0 and set to zero the two other terms corre-
sponding to Q = 1 and @) = 2. This is equivalent to making
the approximation

Ropow = Ropé, (22)
where & and R2S are (4 x 4) diagonal matri-
ces defined by & = diag[1,1,0,0] and R24 =
diag [ (RA2)o » (RAA);5,0,0], with

(RA})o = arllAh 4 (8@ — o] FII7AY (23)

2 _ -

(RAD)s = Wapa {arlsA% 4+ [B2) —a| A4 (2)
and TIICIE_,AA and r:IchI,_ AA are the type-II and type-III angle-

averaged (AA) redistribution functions. By comparing with
the FABFA method, we find that this approximation leads
to a correct converged solution, but at a much less compu-
tational cost (see Section 5).

Substituting Eq. (22) in Eq. (17), we obtain

081y —
+oo AA etl du!
et 728 ET rpar Ny [68}1@, u,] Tﬂ dz' = Ty
o Pz S
(25)

To the above equation, we now apply the core-wing method
(Paletou & Auer 1995; Nagendra et al. 1999; Fluri et al.
2003), namely

TII—AA 0
zx' ~ T’
sz - { 6(37 - ml)?

for z <z,

for z > z., (26)
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III-AA
zz’

~ { 2
Pa 0,
where z. is the frequency that distinguishes the line core
and the wing. A value of z. = 3.5 Doppler widths for
the separation frequency is a reasonable choice. Combining
Egs. (26) and (27) with Eq. (25), we obtain the expression
for the line source vector corrections

081 sy = Top+(1— ) WBEAT™ + a,@WEATY™E (28)

T for z < z.,

for x > =z, (27

where W = diag[l, Wapa, Wapa, Waps] and B =
diag [, 8®), 5, 5]. The frequency and angle-
independent four-dimensional vector AT°™ is given by

+z. +1 dy'
AT = / / pz’r ’A [6Sl z'p! ] T dx"(Zg)

and the frequency—depen.dent but angle-independent four-
dimensional vector AT)'8 is given by
(30)

win i dll’
AT g:/ Pl A [6Slmu] 9

—1
In Eq. (28), a, is the core-wing separation coefficient. In
the core a, = 0 and in the wings a, = TH_AA

To evaluate AT, we cons1der Eq. (28) Wlth a; =0
and apply the operator f+ 0o [ pT w AL [ do from
left. After some algebra, we obtain

ATCOl‘e —
+z. +1 -1
[ (/ / paTu A%, ) WB&] 7", (31)
where
+z. +1
/ / pTuA}, [r2,] %daz. (32)

Similarly, to evaluate ATY™8 we apply the operator

S peTuAZ, 1% from the left to Eq. (28), to obtain
wing + * d/L -t
AT} = |E - aza PeT Ay, — 5 WE
-1

+1 du
x [f;”+(1 — a)ps (/ r,A;, L )WBSATC‘“] (33)

-1

where

+1 d
5 * Lk
#n = / AL ] 5

The equations for ATY™8 and AT are then incorpo-
rated into Eq. (28) to calculate the corrections to the source
vector.

(34)

3.2. Scattering expansion approach

We present an iterative method of a different type that can
also be used with an angle-dependent PRD. It is based on a
Neumann series expansion of the components of the source
vector contributing to the polarization. This Neumann se-
ries amounts to an expansion in the mean number of scat-
tering events (see Frisch et al. 2009). Its first term yields

Spectral line polarization with angle-dependent PRD II

the so-called single scattering solution. For Rayleigh scat-
tering with an angle-dependent PRD, the single scattering
solution is given in Eq. (25) of HF10. Here, following Frisch
et al. (2009), we include higher order terms. The main steps
of this method are given below.

We first neglect polarization in the calculation of Stokes
I, i.e., we assume that Stokes I is given by the component
79. This component is the solution of a non-LTE unpo-
larized radiative transfer equation. We calculate it with a
scalar version of the core-wing ALI method described in

Section 3.1.2, using (’Rﬁm"?)g as a PRD function. Knowing

79, we can calculate the single scattering approximation for
each component Sé’l (Q =0,1,2). It may be written as

[322 l] Y (r,z,p) =

400 p+1 2 I
/ / R Scli,-l' N) ( )Ig(T,xlju’)dTuda:'.(35)

The superscript 1 stands for single scattering. The corre-

=, 1M
sponding radiation field [Zé] is calculated with a formal

solver and it serves as a starting point for calculating the
higher order terms. For order (n),

=[] [ e [

7%2 (.'L',/J/, x,’ul) = (n—1)
QT 3 T2, (W) [12,] (r,, 1t').(36)
Q'>0

X

The iteration is continued until a convergence criterion de-
fined in Section 5 is satisfied. The component 7 is calcu-
lated only once. We emphasize that this method will be reli-
able only if the polarization rate remains small, say smaller
than 20%.

4. The Fourier azimuthal averages and coefficients
of the PRD functions

The numerical methods described in the preceding section

involve the azimuthal Fourier coeflicients T(Q) and FI(I?) for
Q@ =0,1,2 defined in Eq. (12). The az1mutha1 averages with
@ = 0 were considered in the classical work by Milkey et al.
(1975). Subsequently Vardavas (1976), Faurobert (1987),
and Wallace & Yelle (1989) devised methods to evaluate
various azimuthal moments of the angle-dependent fre-
quency redistribution functions. We stress that the mo-
ments of order () = 0 are normalized to the absorption
profile when integrated over all the incoming frequencies
and angles, while the moments of orders Q =1 and ) = 2
are normalized to zero. For reasons that we explain below,
these normalizations should be satisfied to great accuracy.

Here, we use a 3l1-point Gauss-Legendre quadra-
ture to perform the integration over (xy — x'). Since
rx(z,p,x', 1, x — x') (X =1I and III) are even functions
of (x — x), the integration can be limited to the range
0<(x—x) <

In Fig. 1 we show surface plots of e%l) = FI(IO ) Jo()

and e%?l) = 7"111 /<p( ") (left panels and right panels, respec-

tively) as a function of the scattered frequency x and the
scattered direction p for the incoming frequencies z' = 3
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Fig. 1. Surface plots of azimuth averaged redistribution functions of type II (left panels) and of type III (right panels) with @ = 0.
The X-axis represents the outgoing frequency x, and the Y-axis represents outgoing direction u. The incoming direction is ' = 0.3.
The damping parameter a = 0.001. The top two panels correspond to the incoming frequency =’ = 3, and the bottom panels to

2 =4.

and ' = 4, and the incoming direction p' = 0.3. The damp-
ing parameter a of the Voigt profile ¢, is taken to be equal
to 0.001. The behaviors at ' = 3 and 2’ = 4 are typical
of line core and line wings, respectively. We can observe
that the functions ég)) and ég)l) have similar behaviors for
z' = 3 but quite different ones for ' = 4. For the wing
frequency z' = 4, one recovers features that are typical of
the angle-averaged PRD functions, namely ég?) as a func-

tion of z is peaked at the incident frequency z', while égl)

shows a CRD-type behavior with a single peak at £ = 0
for all values of u. The results shown for p' = 0.3 hold for
all incoming directions 0 < p' < 1.

Figure 2 shows é%?) and égg) for all the three values Q =
0,1,2 as a function of the outgoing frequency z for different
choices of (u, u') and different incoming frequencies z'. Our
choice of (u,p') values for Fig. 2 are identical to those of
Wallace & Yelle (1989) in their analysis of the azimuth-
averaged type II redistribution function. The frequencies
2’ =1 and z' = 4 are representative of the line center and
wing behaviors, respectively. Figure 2 clearly shows that
the sharp peaks appearing in Fig. 1 for Q = 0 also exist for
Q = 1,2 for forward and backward scattering (see panels b,
¢, e, f). Actually, surface plots for Q) = 1,2 are very similar
to the surface plots shown in Fig. 1. However, because they

are normalized to zero, é§?) and é§§) for @ =1,2 can take
negative values as can be observed in Fig. 2. In the upper
panels of this figure, one can observe that the coefficients

é%IQ) decrease in magnitude with increasing (). This result
agrees with the curves shown by Domke & Hubeny (1988)
for p = 0.8 and p' = 0.2 (see their Figure 3). However,
for the special cases of forward and backward scattering

(panels b, c, e, f), the Fourier coefficients for @ = 1 and 2
can become larger than the @@ = 0 coefficients.

A significant difference between angle-averaged and
angle-dependent PRD functions is the presence of very
sharp and narrow peaks for z ~ z’ and p ~ ' for the
angle-dependent PRD functions. This has important impli-
cations for the numerical evaluation of the scattering inte-
grals (see Eq. (6)). It is well known in scalar non-LTE ra-
diative transfer calculations that an accurate normalization
is required for the profile function and the PRD functions,
especially for lines with a large optical thickness and a very
small thermalization parameter. Any error will indeed act
as a spurious sink or source of photons. To achieve the nor-
malization to a high accuracy, a very fine frequency grid
is needed. However, the use of such fine frequency grids in
the transfer calculations require large computing resources.
Hence, strategies have been developed in the past (see for
e.g., Wallace & Yelle 1989) to handle frequency quadra-
tures in angle-dependent PRD problems. For unpolarized
transfer problems, Adams et al. (1971) proposed a natural
cubic spline representation for the radiation field. In this
paper, we have developed our own strategy to maintain the
computational cost of the radiative transfer calculations at

. . . . =(0) .
a reasonable level while ensuring a high accuracy : 7y~ is
normalized to ¢, with an accuracy of 99% and the integrals
of F&Q), @ = 1,2, over incoming frequencies and directions
are around 1077,

We first start with a frequency grid typical of PRD line
transfer problems on which the transfer equation will be
solved. The choice of the actual frequency grid is given be-
low in Section 5. We then sub-divide each frequency inter-
val into a fine mesh of Simpson quadrature points (e.g.,
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Fig. 2. Azimuth averaged redistribution functions of type II (left panels) and of type III (right panels), plotted as a function of
the outgoing frequency z, for different choices of p, and p'. The damping parameter @ = 0.001. Thin lines correspond to =’ = 1
and thick lines to ' = 4. Solid, dotted and dashed lines correspond respectively to Q = 0,1, and 2.

41-point Simpson formula) on which we calculate the co-

efficients F&Q). A seven-point Gaussian quadrature formula

with p in the range 0 < p < 1 is used for the angular grid.

To handle the peaks that occur in the forward and back-
ward scattering situations (see e.g. Fig. 1) we proceed in
the following way. We introduce a cut-off scattering angle
Ocut—of = 10~ %radians and assume that the PRD func-
tions keep a constant value, given by the values at the
cut-off, when © < Ocyy_off Or (T — ©) < Ocyt_of. This
practical trick has implications for the normalization accu-
racy of the redistribution functions, but we have verified
that Ocut—osf = 1078 radians is a reasonable choice. To ap-
proach the two extreme values of © as close as possible, it
is sufficient to employ a seven-point Gaussian quadrature
in[0<p<1].

5. Validation and convergence properties of the
iterative methods

We consider isothermal, self-emitting plane-parallel slab at-
mospheres with no incident radiation at the boundaries.
These slab models are characterized by a set of input pa-
rameters (T, a,€,7, g /T'R), where T is the optical thickness
of the slab. The Planck function is set to unity. The depo-
larizing collisional rate D?) is assumed to be 0.5 x T'g. The
thermalization parameter €, which is actually a photon de-
struction probability, is defined by ¢ = I't/(Tr + I'1) =

1 —B©). The PRD function defined in Eq. (8) can also be
written as

Ry=(1-¢ [’Ycohfl(?) +(1- ’Ycoh)FI(?I)] ) (37)
where Yeon = (1 + I'g/(Tr + T1))~ L. For Tg = 0, one has
pure 71 since veon = 1. For small values of €, vcon is about
1/(14+Tg/T'r). In all our calculations, Wy = po = 1.

For all the figures presented in this paper, we use a log-
arithmically spaced 7-grid with 5 points per decade, with
the first depth point at 7, = 1072. For the frequency grid,
we use equally spaced points in the line core and logarith-
mically spaced ones in the wings. Furthermore, the max-
imum frequency ZTmax is chosen such that the condition
(Tmax)T < 1 is satisfied. We have typically 70 points in
the interval [0, Zmax]-

To test the correctness of our three iterative methods,
we compared the emergent solutions with those of the per-
turbative type method developed in Nagendra et al. (2002),
for an optically thin (T" = 10) slab and a relatively thicker
(T = 10°) one. In Nagendra et al. (2002), the radiation field
is represented by the two Stokes parameters I and ) and
there is no azimuthal Fourier decomposition of the angle-
dependent PRD functions. For the thin slab, the model
parameters are (T,a,e,7,I'r/T'r) = (10,1073,107%,0,1)
and for the thick slab they are (T,a,e,r,I'g/Tr) =
(10%,1073,10%,0,0). We have found that our new itera-
tive methods yield emergent solutions that are in very good
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Fig. 3. Maximum relative change of the Stokes I source vector component (¢3)™ and of the surface polarization ¢p as a function of

the iteration number. Slab model with parameters (T, a, ¢, 7, 'n/Tr) = (2x10*,107%,107*,0, 0) are used. The panel (a) corresponds
to the FABFA method and the panel (b) to the core-wing method for angle-dependent PRD. The panel (c) corresponds to the
scattering expansion method. Different line types are: solid - (cJ)" and dotted - cj.

agreement with the results of the perturbation method used
in Nagendra et al. (2002, differences in the ratio Q/I are
at most 6%).

To study the convergence properties of the core-wing,
FABFA, and scattering expansion methods, we introduce
the quantities

(SE)m (1) = (SB),.(ra)| }
— . (38)
So)m (ra)

with n the iteration index, 74 a depth-grid point, and

(Cg)n = MaXry,z,u {

S ) = 5 (S5 )l + 1K) (as)] - (39

The (cg )" yield the maximum relative change from one
iteration to the next for each component Sg . We also in-
troduce

2

\Prt — Py,
¢” = max L
P T, { |P£L[j—1|
where P = /I is the degree of linear polarization at the
surface. The quantity ¢ measures the progress of iteration
on the surface polarization of the radiation field. For the
ALT type methods, the convergence is tested using the cri-

terion

(40)

¢" = max [(¢9)", c}] <1075 (41)

In the asymptotic regime of large n, the components Sg

are slave modes of the component SY, so all the (cg )™ have

more or less the same behavior as (c3)" (see Nagendra et

al. 1998). For the scattering expansion method, we perform
two iteration tests, a first one on (c§)™ when calculating the
component Z9 with an ALI method (first stage), and then a
second one on ¢y, when calculating the components 1'22 (sec-
ond stage) with the iteration formula given in Eq. (36). The

iterations are stopped when (c§)" and ¢} become smaller

than 1078,
Figure 3 shows the variations in (c§)" and ¢} ver-
sus the iteration number. The model parameters used are

(T,a,e,r,Tg/Tr) = (2 x 10*,1073,107%,0,0). The panel
(a) corresponds to the FABFA method, and the panel (b) to
the core-wing method. The convergence behavior of these
two new ALI methods is nearly similar to the standard
Polarized ALI (PALI) methods (Nagendra et al. 1999). The
approximation introduced for the core-wing method (see
Eq. (22)) does not seem to affect the speed of convergence
significantly. We also find that the speeds of convergence
are about the same for angle-averaged and angle-dependent
PRD. The main parameters that can affect the speed of
convergence are the optical thickness of the line (there be-
ing faster convergence for optically thin than optically thick
lines), and the frequency grid, coarser grids leading to faster
convergence (Olson et al. 1986). The panel (c¢) of Fig. 3
shows the variation in (cj)” and ¢ for the scattering ex-
pansion method. The number of iterations in the second
iteration stage is clearly small (~ 60) compared to the first
iteration stage (~ 140).

To illustrate the convergence properties of the ALI
methods, we show in Fig. 4 the convergence history of the
four components of § at z = 0 calculated with the core-
wing method. To reduce the number of lines, every fourth
iteration solutions are plotted. We note that Sy for z = 0
satisfies the /e law at the surface. As the slab is not op-
tically very thick (T' = 2 x 10*), S has not fully reached
unity at the mid-slab. All the other components 822 go to
zero at the mid slab. In the wing frequencies, say =z = 4,
the rate of convergence for all the four components of § is
quite large (figure not shown here).

Figure 5 shows the convergence history of the compo-
nents SZ? for £ = 0 and p = 0.025 calculated with the scat-
tering expansion method, for the same atmospheric model
as in Figs. 3 and 4. The dotted lines indicate the single scat-
tered solution. For 87 and 82, the single scattered solution
is very close to the converged solution, while for S a few it-
erations are needed to reach the converged solution. In the
last panel of Fig. 5, we show the convergence history for
the ratio @/I. We have not performed a systematic inves-
tigation of the variation in the speed of convergence with
the slab thickness as was done for CRD in Frisch et al.
(2009), but the calculations that we have performed sug-
gest that the behavior observed with CRD will also hold
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Fig. 4. Convergence history of the four components of the source
vector S for x = 0 and p = 0.025 calculated with the core-wing
method. Same model as in Figure 3. The dotted lines show the
initial solutions (eB for SJ, and zero for all other components).
Since the slab is symmetric about the mid-plane, the results are
shown only for a half-slab, 7 € [0,T/2].

for angle-dependent and angle-averaged PRD, namely, a
very good approximation to the emergent polarization is
provided by the single scattered solution for optically thin
slabs (T < 10) and optically very thick ones (T > 2 x 109),
but is not reliable for intermediate optical thicknesses. As
shown here, the problem can be cured by considering higher
order terms in the scattering expansion. For example, for a
very strong line such as Ca14227 A the (/I profile can be
fitted fairly well with a single scattered solution (Anusha
et al. 2010), although the line core is somewhat underesti-
mated. The fit could probably be improved by considering
higher order terms in the scattering expansion.

In terms of computing resources, in particular comput-
ing time, the three iterative methods behave quite differ-
ently. In Table 1, we present the CPU time requirements for
the three iterative methods in the case of angle-dependent
PRD. The CPU times spent in specific parts of the com-
putational process are listed, for each of the methods. The

model used is the same as in Figs. 3, 4, and 5. Since the com-

putation of the azimuthal Fourier coefficients F&Q) are com-
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Fig. 5. The scattering expansion method. The three upper pan-
els show the convergence history of the components 8(2;, forz =0
and p = 0.025. The last panel shows the convergence history of
the ratio @/I. In all the panels, the dotted lines represent the
single scattered solution. The same slab model as in Figs. 3 and
4 is used.

mon to all the three iterative methods, they are excluded
when estimating the CPU time requirements. The comput-
ing time for F&Q) can be huge (several hours) depending on
the frequency and angle grids. For each method, the last
but one column in Table 1 gives the number of iterations
multiplied by the CPU time per iteration. This number of
iterations is smaller than the results presented in Fig. 3 be-
cause we have applied the Ng acceleration to all the three
iterative methods.

The scattering expansion method requires the construc-
tion of a scalar A* operator needed to calculate ZJ in the
first stage of the method. The computation of A*, Z9, and
the single scattered solution [Ié](l) requires roughly 3/20th
of the total computing time. Thus, most of the time is spent
in calculating the higher order terms in the scattering ex-
pansion. For the core-wing method, almost the entire CPU
time is spent in the iterative cycle itself. Each iterative cy-
cle is about 20% shorter than the time per iteration of the
scattering expansion method. In addition, a larger number
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Table 1. CPU time requirements for the iterative methods after the calculation of the azimuthal coefficients F%IQ ) ,@=0,1,2. The

coeflicients Fl(g)

are not needed because the model used has I'g /T'r = 0; it is the same as in Figs. 3, 4, and 5. The computations

are performed on a Sun Fire V20z Server, 2385 MHz, with a Single-core AMD Opteron processor.

Method CPU time (sec) to compute
A A~ 1§ [j,'%] M No. of iteration x time/iteration  Total
Scattering expansion  0.09 - 27 15 36 x 8.13 = 293 335
ALI with core-wing  1.00 - - - 62 x 10.19 = 632 633
ALI with FABFA 1.00 29087 - - 61 x 27.98 = 1707 30795

(b) T =2 x 10
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Fig. 6. A comparison of emergent Stokes profiles at p = 0.11 for angle-dependent (solid lines) and angle-averaged (dashed lines)
PRD functions. Left panel: slab model with parameters (T, a,e,r,I's/Tr) = (10,107%,107*,0,1). Right panel: slab model with

parameters (T, a,¢e,7,Tr/Tr) = (2 x 10*,1072,107*,0,0).

of iterations are needed for convergence. It is the need to
invert the large matrix A~1 (see Eq. (19)) that consider-
ably slows down the FABFA method. We also note that the
time per iteration is about three times as long as with the
core-wing method. The CPU times given in Table 1 cor-
respond to the pure Ry case (Cg/T'r = 0). The inclusion
of collisions does not change the CPU times for different
stages of computational process. The only difference occurs
in the number of iterations required for convergence. The
larger the value of ' /TR, the smaller the total number of
iterations.

For the core-wing and the scattering expansion meth-
ods, the computing time per iteration scales as Ng(N;2N,,),
where N, is the total number of depth points. For
the FABFA method, the total computing time scales as
Ny4(N,2N,)?. For the FABFA and core-wing methods, the
number of iterations can be reduced by using a Gauss—
Seidel decomposition or SOR method instead of a Jacobi
decomposition. In any case, the FABFA method will re-
main slow, by a large factor, compared to the core-wing

10

method. We recall that for the perturbation method used
in Nagendra et al. (2002), the computing time per iteration
scales as Ng(Nz2N,N,), with N, the number of azimuths
needed to describe the azimuthal variation of the Stokes
source vector. The number of iterations required for con-
vergence is around 20.

6. Stokes profiles calculated with angle-dependent
and angle-averaged PRD functions

We compare the Stokes parameters I, ), and the ratio Q /I
calculated with angle-averaged and angle-dependent PRD
functions, for several atmospheric models. The Stokes pa-
rameters calculated with angle-dependent PRD functions
are shown as solid lines and those calculated with angle-
averaged PRD functions as dashed lines. The results are
analyzed with the help of the Ig decomposition, which
may be written as

I(r,z,p) = Ig
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VI +

L 2 2
+ 2\/_(3 1)
Q,m,p) =

—2%(1 - )15 - ?M/l — p?T; - ?(1 +p?)T5 (42)

We recall that the irreducible components Ig depend on

7, =, and u. The contributions of the component 7?2 go to
zero at both the limb and the disk center, for both Stokes
I and Stokes Q.

In Fig. 6, we show the emergent I, Q/I, and @ pro-
files at © = 0.11 for angle-dependent and angle-averaged
PRD functions. The angle-averaged solution is calculated
with the PALI method of Fluri et al. (2003) and the angle-
dependent solution with the core-wing method introduced
here. In the left-hand side panels, T" = 10 and the PRD
used is an equal mixture of ry; and rqy1. In the right-hand
side panels, T = 2 x 10* and the PRD used is pure ri.
Figure 6 clearly shows that the angle-averaged and angle-
dependent solutions may differ significantly and that the
angle-averaged emergent polarization may be smaller or
larger than the angle-dependent one. We now try to ex-
pll%in the reasons for this, by considering the components
5.

In Fig. 7, we show the components Ig corresponding
to the two atmospheric models in Fig. 6. The components
with @ # 0 are zero for the angle-averaged PRD functions.
The components ZJ are essentially equal for the AD and
AA cases when T = 10, while they slightly differ around
z = 3 when T = 2 x 10*. Since Stokes I is dominated by
73, it is also nearly independent of the choice of the PRD
function. Stokes @ consists of the three components 72, 72,

- /J’2)IZ25

(10,1073,107%,0,1). Right panel: slab model with parameters

and Z2. We can observe that Z2 has very different values
in the AD and AA cases, being smaller in absolute value
in the AD case. This is a somewhat unexpected result. The
reason for the difference between the AA and AD results
is the use of RZ(z, u,z'y') in the AD case and the angle-
averaged redistribution function (R44)2 in the AA case.

Equation (42) shows that for small values of u, only
72 and 72 contribute to Stokes @ and that @ =~
—(V3/4)(V6I2 + I2). For T = 10, the two terms have
the same sign and when added together give a value of
Stokes @ that is slightly smaller in the AD case than in the
AA case. For spectral lines with a small optical thickness,
the role of PRD is essentially negligible. These lines can
be modeled reasonably well with CRD (Sampoorna et al.
2010). Thus, one may not expect large differences between
angle-averaged and angle-dependent polarization profiles.
For T = 2 x 10*, 72 and Z? are mainly negative, with 72
having a slightly larger absolute value than Z2. When added
together, they give a negative value, but because of the mi-
nus sign, one ends up with a positive Stokes ), which is
however smaller than the corresponding AA Stokes Q.

We now examine how the differences between the AD
and AA polarizations vary with the position on the disk,
the optical thickness T' of the slab, the thermalization pa-
rameter €, the value of the continuum absorption, and the
ratio FE/FR

6.1. Center-to-limb variations

We know that the angle-dependent PRD functions become
azimuthally symmetric at the disk center. Thus we can ex-
pect the AD and AA polarization profiles to become very

11
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Fig. 8. Stokes I and Q/I profiles at the surface for different values of the heliocentric angle computed for the angle-averaged
(dashed lines) and the angle-dependent (solid lines) PRD. The bottom three panels show the absolute difference in @/I between
the AA and AD profiles. The atmospheric model used is (T, a,¢,r,I's/Tr) = (2 x 10*,1072,107*,0, 0).

close to each other when y — 1. This is indeed what we
observe in Fig. 8 where we show the emergent profiles of
Stokes I and the ratio Q/I. In the bottom three panels, we
show the absolute difference between the AA and AD Q/I
profiles. As u — 1, the absolute difference clearly goes to
Z€ro.

We show in Fig. 9 the dependence on u of the com-
ponents Z5 and S5 at the surface. For 8§, the depen-
dence on p comes from the AD redistribution functions
Rg(x,u,a:',u’) (see Eq. (13)). We recall that the source
vector components are independent of u for AA-PRD. For
the components Ig , the variations with p are caused by
the limb-darkening and the p-variation in the source vector
components. In the right panels of Fig. 9, we can observe
that S§ is almost independent of p and we can verify that
85, @ = 1,2, go to zero when p is close to one. The varia-
tion in 8 is rather monotonic, but that of 87 is not. The
component Sj increases towards the disk center, as it is
controlled by the magnitude of ZJ (see dotted lines in S5
panel of Fig. 5). In the left panels of Fig. 9, one can verify
that 73 increases from the limb to the disk center, while
the components 723, Q = 1,2, go to zero at the disk center.

6.2. Effects of the optical thickness T' and thermalization
parameter €

In Fig. 10, we compare the angle-averaged and the corre-
sponding angle-dependent Stokes I, @, and @/ profiles for
slabs with different values of the optical thickness 7' and
the thermalization parameter e. For the angle-dependent
case, the calculations were performed with the core-wing
method. For all the examples shown in Fig. 10, the optical

12

thickness is equal to or larger than 2 x 10*. One can observe
that the ratio Q/I is always smaller for the angle-dependent
than for the angle-averaged PRD functions. This situation
appears to be typical of optically thick lines in isothermal
atmospheres (see also Nagendra et al. 2002).

In the left panels, e = 10~%. The three values chosen for
T correspond to effectively thin (eT' = 2), effectively thick
(' = 200), and semi-infinite like conditions (¢T' = 2 X
10%). The amplitudes of @ /I and Q in the near wing peaks
decrease with increasing T. For @)/I, this is accompanied
by a decrease in the differences between the angle-averaged
and angle-dependent values. In the particular case of T' =
2 x 108, typical features of semi-infinite atmospheres can be
observed. For example, the appearance of double peaks —
one narrow peak in the near wings, and a second broader
one in the far wings — is a typical behavior of /I in strong
resonance lines such as that of the Call K line (see e.g.,
Stenflo 1980; Holzreuter et al. 2006).

In the right panels of Fig. 10, the optical thickness is
T = 2 x 10% As € increases from 106 (effectively thin,
€T = 2x1072) to 1072 (effectively thick, €T = 2 x 10?), the
magnitudes of both I and @ increase because the number
of photons that are emitted increases, as does the strength
of the coupling between the radiation field and the ther-
mal pool. However, the ratio Q/I decreases because the
number of polarized photons is reduced by the thermal-
ization of the radiation field (see e.g., Saliba 1986). For
€ = 107%, the angle-averaged and angle-dependent profiles
display significant differences in the Q/I profiles. This dif-
ference decreases when € = 1072,

We also considered the case e = 0 (conservative scatter-
ing). In this case, there are no internal sources of photons
(eB = 0), but there is an incident field at the lower bound-
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ary I(r =T, z, ) = B. For this model, the primary source
of photons Go(7) decreases towards the surface at 7 = 0.
For the emergent Stokes I and () profiles, the differences
between the angle-averaged and angle-dependent cases are
insignificant. Some differences appear however in the ratio
Q/I around the line center (0 < z < 4).

6.3. Effect of the continuum strength parameter r

All the results shown in the previous figures were obtained
with a continuum absorption set to zero. In Fig. 11, we
show the @Q/I profile for values of the continuum strength
parameter r set to 10~%, 10~%, and 10~%. The atmospheric
model is the same as in Fig. 6b except for the value of r.
When r increases, one can observe a significant decrease in
amplitude of the near wing peak, an effect already inves-
tigated in Faurobert (1988), and a gradual disappearance
of the differences between the angle-averaged and angle-
dependent /I profiles. For r = 1072 (result not shown
here), the differences become essentially zero.

6.4. Effect of the elastic collisions T'g

A change in the value of T'g, modifies the coherency factor
Yeoh defined in section 5, hence the relative contributions of
ry; and rypp. It is well established that the wings of Stokes I
and the linear polarization are quite sensitive to the PRD
mechanism (Nagendra et al. 2002). We show in Fig. 12 the
Stokes parameters I and @, and the ratio @/I calculated
with the angle-averaged and angle-dependent PRD func-
tions with the core-wing method. We show two examples,
I'r/Tr = 1, which corresponds to an even mixture of ry
and 7y, and I'g /T'g = 10, which corresponds to an uneven
mixture of ri; and rir with a dominant contribution from
rir. For D@ we assume the relation D = 0.5Tg. We
can observe that the polarization rate decreases as I'g/T'g
increases, a phenomenon discussed in detail in Nagendra
et al. (2002). The differences between the AA and AD
Stokes I and @ profiles decrease as I'g/T'g increases. For
T'r/Tr > 100, these differences become insignificant.

13
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Fig. 10. The emergent I, Q/I, and @ profiles at u = 0.11 computed for the angle-averaged (dashed lines) and the angle-dependent
(solid lines) PRD. Left panel shows the effect of optical thickness T when e = 10~*. Different line types are : thin lines 7' = 2 x 10*,

medium thick lines T = 2 x 10°, and thick lines T = 2 x 108. Inset in
range. Right panel shows the effect of € for optical thickness T = 2 x 10°.

Q/ I panel shows T = 2 x 10® case for a larger frequency
Different line types are: thin lines e = 1072, medium

thick lines € = 107%, and thick lines ¢ = 0. Remaining common parameters are (a,r, I'n/Tr) = (1072,0,0).
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Fig.11. The emergent /I profiles at u = 0.11 computed for the angle-averaged (dashed lines) and the angle-dependent (solid
lines) PRD. The model parameters are (T,a,¢e,'s/Tr) = (2 x 10*,107%,107*,0). The parameter r takes the values 1078, 107°,

and 10~%.

7. Conclusions

We have investigated the Rayleigh scattering with angle-
dependent partial redistribution (PRD) functions to eval-
uate the reliability of the usual angle-averaged approxima-
tion. The analysis has been carried out for a two-level atom
with unpolarized ground level using the angle-dependent
PRD functions established in Domke & Hubeny (1988);
Bommier (1997a). The scattering medium has been as-
sumed to be a plane-parallel, cylindrically symmetrical,
isothermal slab. For this model, the polarized radiation field
is cylindrically symmetrical (i.e. depends only on the incli-
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nation 6 with respect to the direction perpendicular to the
slab surface) and can be represented by the two Stokes pa-
rameters I and (). The source terms in the transfer equa-
tions for I and () have a complicated dependence on the
angle 6, because it appears in the polarization phase ma-
trix and also in the angle-dependent PRD functions. It was
shown in HF10 that the polarized radiation field can be de-
composed into four components that are cylindrically sym-
metrical and satisfy standard radiative transfer equations.
The source terms still depend on € but in a much simpler
way. Thanks to this decomposition method, we have been
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Fig. 12. The emergent Stokes parameters I and @ and the ratio @Q/I at p = 0.11 computed for the angle-averaged (dashed lines)
and the angle-dependent (solid lines) PRD. The model parameters are (T, a,¢,r) = (2 x 10*,1073,107*,0). The parameter I'r/T'r

takes the values 1 and 10.

able to construct three different iterative methods of solu-
tion for the calculation of the Stokes parameters. Two are
of the accelerated lambda iteration (ALI) type; they are
generalizations of the frequency-by-frequency (FBF) and
core-wing methods originally formulated for scalar PRD
transfer in Paletou & Auer (1995). The other is a scat-
tering expansion (Neumann series) method developed for
the Hanle effect with complete frequency redistribution in
Frisch et al. (2009).

Crucial ingredients for the three methods are the az-
imuthal Fourier coefficients of order 0,1, and 2 of the angle-
dependent Hummer’s (1962) PRD functions ri1 and rr.
The calculations of these Fourier coefficients is quite time
consuming, in particular for 7y, because very fine grids
are needed to properly represent their sharp variations with
the frequency and inclination of the incident and scattered
beams. Once these coefficients have been calculated, and
also an approximate solution of Stokes I (neglecting po-
larization) is obtained in the scattering expansion method,
the core-wing and scattering expansion approaches both
provide fast and accurate solutions. The scattering expan-
sion method appears particularly interesting in problems of
large dimensionality (very large number of frequency, angle,
and depth grid points).

We have found that the angle-averaged PRD functions
overestimate the emergent polarization rate /I between
10 % and 30 % for slabs with a large optical thickness
(between 2 x 10* and 2 x 10%), the largest differences oc-
curring in the near wing peaks. For optically thin slabs,
the differences are much smaller. We have not considered
semi-infinite atmospheres. As the difference between the
polarization rates obtained with angle-averaged and angle-
dependent PRD functions remain fairly small, the sign of

this difference may easily depend on the particular choice
of the atomic and atmospheric model. It would certainly be
interesting to consider realistic solar atmosphere models as
has recently been done in Sampoorna et al. (2010). The nu-
merical methods we have proposed here are able to do this.
This type of analysis would certainly help us to understand
the discrepancies between observed polarization rates and
theoretical predictions (Anusha et al. 2010).

For the weak-field Hanle effect, the reliability of
the angle-averaged approximation for PRD functions is
clearly questionable, for Stokes () and especially Stokes U
(Nagendra et al. 2002). In the presence of a weak magnetic
field, the polarized radiation field can be decomposed into
a set of six irreducible components. For an angle-dependent
PRD, these components have no cylindrical symmetry, but
a Fourier azimuthal expansion allows one to construct an
infinite set of integral equations similar to the equations
given here (Frisch 2009). The core-wing or a scattering ex-
pansion method applied to a truncated set of these equa-
tions offer some hope in calculating the polarization with a
reasonable amount of numerical work.
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cussions.

References

Adams, T. F., Hummer, D. G., & Rybicki, G. B. 1971, ApJ, 11, 1365

Anusha, L. S., Nagendra, K. N., Stenflo, J. O., Bianda, M.,
Sampoorna, M., Frisch H., Holzreuter, R., & Ramelli, R., 2010,
ApJ, 718, 988

Bommier, V. 1997a, A&A, 328, 706

Bommier, V. 1997b, A&A, 328, 726

15



M. Sampoorna et al.: Spectral line polarization with angle-dependent PRD II

Chandrasekhar, S. 1950, Radiative transfer (Oxford: Clarendon Press)

Domke, H., & Hubeny, I. 1988, ApJ, 334, 527

Dumont, S., Omont, A., Pecker, J. C., & Rees, D. E. 1977, A&A, 54,
675

Faurobert, M. 1987, A&A, 178, 269

Faurobert, M. 1988, A&A, 194, 268

Faurobert-Scholl, M. 1991, A&A, 246, 469

Fluri, D. M., Nagendra, K. N., & Frisch, H. 2003, A&A, 400, 303

Frisch, H. 2007, A&A, 476, 665

Frisch, H. 2009, in ASP Conf. Ser. 405, Solar Polarization 5, ed. S. V.
Berdyugina, K. N. Nagendra, & R. Ramelli (San Francisco: ASP),
87

Frisch, H. 2010, A&A, 522, A4l (HF10)

Frisch, H., Anusha, L. S., Sampoorna, M., & Nagendra, K. N. 2009,
A&A, 501, 335

Holzreuter, R., Fluri, D. M., & Stenflo, J. O. 2006, A&A, 449, L41

Hummer, D. G. 1962, MNRAS, 125, 21

Landi Degl’Innocenti, E. 1984, Sol. Phys., 91, 1

Landi Degl’Innocenti, E., & Landolfi, M. 2004, Polarization in
Spectral Lines (Dordrecht: Kluwer)

Manso Sainz, R., & Trujillo Bueno, J. 1999, in Solar Polarization, ed.
K. N. Nagendra, & J. O. Stenflo (Boston: Kluwer), 143

McKenna, S. J. 1985, Ap&SS, 108, 31

Milkey, R. W., Shine, R. A., & Mihalas, D. 1975, ApJ, 202, 250

Nagendra, K. N. 1988, ApJ, 335, 269

Nagendra, K. N. 1994, ApJ, 432, 274

Nagendra, K. N. 2003, in ASP Conf. Ser. 288, Stellar atmosphere
modeling, ed. I. Hubeny, D. Mihalas, & K. Werner (San Francisco:

ASP), 583
Nagendra, K. N., Frisch, H., & Faurobert-Scholl, M. 1998, A&A, 332,
610

Nagendra, K. N., Frisch, H., & Faurobert, M. 2002, A&A, 395, 305

Nagendra, K. N., Frisch, H., & Fluri, D. M. 2003, in ASP Conf. Ser.
307, Solar Polarization, ed. J. Trujillo Bueno & J. Sanchez Almeida
(San Francisco: ASP), 227

Nagendra, K. N., Paletou, F., Frisch, H., & Faurobert-Scholl, M. 1999,
in Solar Polarization, ed. K. N. Nagendra, & J. O. Stenflo (Boston:
Kluwer), 127

Nagendra, K. N., & Sampoorna, M. 2009, in ASP Conf. Ser. 405,
Solar Polarization 5, ed. S. V. Berdyugina, K. N. Nagendra, & R.
Ramelli (San Francisco: ASP), 261

Olson, G. L., Auer, L. H., & Buchler, J. R. 1986,
J. Quant. Spec. Radiat. Transf., 35, 431

Paletou, F., & Auer, L. H. 1995, A&A, 297, 771

Rees, D. E., & Saliba, G. J. 1982, A&A, 115, 1

Saliba, G. J. 1986, PhD thesis, Univ. of Sidney

Sampoorna, M., Nagendra, K. N., & Frisch, H. 2008b,
J. Quant. Spec. Radiat. Transf., 109, 2349

Sampoorna, M., Nagendra, K. N., & Stenflo, J. O. 2007a, AplJ, 663,
625

Sampoorna, M., Nagendra, K. N., & Stenflo, J. O. 2007b, ApJ, 670,
1485

Sampoorna, M., Nagendra, K. N., & Stenflo, J. O. 2008a, AplJ, 679,
889

Sampoorna, M., & Trujillo Bueno, J. 2010, ApJ, 712, 1331

Sampoorna, M., Trujillo Bueno, J., & Landi Degl’Innocenti, E. 2010,
ApJ, 722, 1269

Stenflo, J. O. 1980, A&A, 84, 68

Trujillo Bueno, J., & Fabiani Bendicho, P. 1995, ApJ, 455, 646

Trujillo Bueno, J., & Manso Sainz, R. 1999, ApJ, 516, 436

Vardavas, I. M. 1976, J. Quant. Spec. Radiat. Transf., 16, 1

Wallace, L., & Yelle, R. V. 1989, ApJ, 346, 489

16



