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Summary. We examine the linear stability of cool flux tubes in the
solar chromosphere which are initially in radiative equilibrium.
Owing to the presence of carbon monoxide, there exists a narrow
region near the temperature minimum where the temperature
gradient becomes steep enough to drive a convective instability.
We use the thin flux tube equations and include in a simple manner
radiative heat exchange with the ambient medium. Initial states of
constant f§ (where f§ is the ratio of gas to magnetic pressure) are
considered. We present results for various values of f. It is found
that for f < 5.7 the tube is overstable with periods in the range 300—
600s. At f=5.7 a bifurcation occurs into two purely growing
modes. We calculate growth rates, eigen-vectors of the fundamen-
tal modes and examine phase relationships. It is suggested that
overstable oscillations should invariably be associated with cool
flux tubes. These oscillations transport energy and can thus change
the thermodynamic structure of flux tubes. We conjecture that the
CO overstability may be responsible for spicules.

Key words: hydromagnetics — convection — Sun — chromosphere —
magnetic fields — flux tubes — overstability — oscillations

1. Introduction

The observation by Noyes and Hall (1972) and Ayres and
Testerman (1981) of low radiation temperatures (7', ~#3500K) in
the infrared rotation-vibration bands of carbon monoxide (CO)
have reinvoked a discussion on the structure of the solar
atmosphere and its energy budget. The emperical model of Ayres
and Testerman (1981) based on low spatial resolution in CO
possesses at low temperature at the top of the chromosphere and
no temperature rise there, thus markedly differing from standard
models of the solar atmosphere (e.g. HRSA, Gingerich et al., 1971
or VALC, Vernazza et al., 1981). Recently, Deming et al. (1984),
from observations of the hydroxyl radical (OH) in the quiet Sun,
found very low temperatures as well. They also conclude like Ayres
(1981, 1984), that the solar atmosphere is inhomogeneous laterally
i.e., it possesses a cool component with little chromospheric
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heating which emits molecular lines and a hot component, the
chromospheric network, with strong non-radiative heating, but
without molecular lines.

Estimates of the radiative energy involved in the CO bands
were made by Ayres (1981). He demonstrated that the cooling due
to CO lines outweights energy losses in all other spectral ranges
and is of the order of the chromospheric heating requirements
estimated so far (e.g. Vernazza et al., 1981). It is thus obvious that
models describing the energy budget of the chromosphere of the
Sun and of late type stars in general must include the effects of CO
and possibly of other molecules as well.

Early attempts to treat energy balance in atmospheres in
radiative equilibrium, including CO lines, failed (Gustafsson et al.,
1975; Kneer, 1983). Near the temperature minimum of standard
emirical models, where the A4v=1 vibration transitions of CO
reach optical depth unity, the RE calculations were destabilised.
Kneer (1983)conjectured that this is not a mere coincidence, but
rather that the formation of CO molecules prevents atmospheres
from reaching RE and is thus responsible for the onset of motions
and ultimately for the heating of chromospheres. Muchmore and
Ulmschneider (1985), on the other hand, criticized Kneer’s
argument and demonstrated that RE can be reached in the
presence of CO. They also constructed mechanically heated
chromospheres using time dependent solutions of the hy-
drodynamic equations in plane parallel geometry. They concluded
that insufficient heating leads to cool chromospheres dominated
by CO cooling, whereas strong heating leads to chromospheres too
hot for the formation of CO.

Furthermore, Kneer (1984a,b) obtained a variety of RE
models with some interesting properties due to the presence of CO:
(a) CO molecule formation is of autocatalytic nature, i.e., self
amplifying because it leads to the formation of more molecules and
to enforced cooling due to line radiation. (b) The dissociation
energy of CO is high and thus the opacity in the CO lines is
extremely temperature sensitive. (c) Consequently, once CO has
formed, the temperature drops very steeply to about 2000 K and all
models become convectively unstable i.e., V4> V,4. (d) Many of
the atmospheres are bistable i.e., for the same parameters two
solutions can be found.

In the present investigation, we examine the stability of a
magnetically structured atmosphere in radiative equilibrium, We
neglect mechanical and all other external non-radiative forms of
heating in the magnetic structure or flux tube. However, we include
heat exchange between the tube and the ambient medium. We shall
limit ourselves to a linear analysis, deferring a nonlinear treatment
to subsequent work.
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For purposes of mathematical tractability we shall work within
the framework of the thin flux tube approximation, which has been
extensively applied to model intense flux tubes in the photosphere
and convection zone (Defouw, 1977; Roberts and Webb, 1978;
Spruit, 1979a; Webb and Roberts, 1980a,b; Hasan, 1984a,b;
Hasan and Schiissler, 1985). Recently, this approximation has also
been applied to flux tubes in the chromosphere (Herbold et al.,
1985). Admittedly, this approximation becomes tenuous in tlre
upper layers of the atmosphere where the horizontal dimension of
a flux tube exceeds the local pressure scale height. Nevertheless, we
retainitasitleads to considerable mathematical simplicity in that it
permits a one dimensional treatment of the problem.

We shall allow for radiative heat exchange in the horizontal
direction using Newton’s law of cooling with Spiegel’s expression
(in the optically thin approximation) for the cooling time constant
and a Planck mean opacity.

This optically thin treatment is not correct in those layers where
we have strong contributions from CO to the opacity i.e., at low
temperatures where the optical depth in the CO lines can become
large. However, a rigorous treatment would require an inclusion of
the radiative transfer equations for the relevant opacities, which
would render the system of equations as complicated as the
nonlinear equations to be treated in the future.

In the next section we describe the equilibrium model
atmosphere, the stability of which we shall investigate in Sect. 3. In
Sect. 4 we present results for the eigenfrequencies of the flux tube

- along with some of the associated eigenvectors, which is followed
by a discussion. Finally, some of the observational implications of
the study are pointed out.

2. The equilibrium model

Parts of the model calculations have been described elsewhere
(Kneer, 1984b) and a detailed description will be given in a
separate paper. In this section we shall briefly describe the
assumptions and methods used to calculate the equilibrium.

For the external atmosphere we assume a plane parallel RE
model in hydrostatic equilibrium i.e.

[KV(JV—-SV)dv=0, 1
dpldz= — og, (2

where x, is the absorption coefficient at frequency v, J, is the
mean intensity, S, is the source function (we assume LTE, thus
S,=B,(T)), ¢ is the density, p is the gas pressure and
g=2.736 10*cms ™2 is the gravitational acceleration. As absorbers
we take H™ and CO. For the H™ bound-free transitions we adopt
the cross-section from Geltman (1962) and for the free-free
transitions the polynomial approximation given in Auer et al.
(1972). For the CO lines at 4.6 u, opacity distribution functions
were calculated with approximations to the oscillator strengths
given by Kirby-Docken and Liu (1978) and with CO energy
levels from Roh and Rao (1974). The abundances 4, =4 10~ * and
A, =8 10™* were adopted from Ayres and Testerman (1981). The
integral in Eq. (1) was approximated by a sum of 5 frequency
points below 1.64 u, 4 frequencies between 1.64x and 4.6u and 5
frequencies for the CO line opacities.

To calculate the ionisation equilibrium, we adopt the Saha
formula for He and the metals with standard abundances and an
analytic non-LTE solution for the hydrogen Lyman continuum
(Kneer and Mattig, 1978). In addition, we allow for the LTE
formation of H, and H; molecules according to Mihalas’ (1967)
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procedure. H, is abundant at low temperatures and is taken into
account also in the calculation of the specific heats (Mihalas, 1967;
Cox and Giuli, 1968).

The mean intensities J, are obtained from the differential
equations in the Eddington approximation

1d*J
X% J BT
3 gz =R B ®
with the upper and lower boundary condition

1 dJ

rdr, “
and

1 dJ -

= V3H,=—-J,+1} )

/3 dr,
respectively. Here, " is the radiation from below and is given in
the diffusion limit by

1/7/3 05,
k, 0T

dT

I =B(T
C=BD)+ =

6

The temperature gradient is obtained from frequency integration
of Eq. (5) as

dT| [V/3H— [(B(T)—J,)dv]
== )
z 1/x,) 9B, dv
fare) 57

With the Eddington flux H=0¢Tg/4n Eq. (7) ensures that the
correct amount of energy is transported through the lower
boundary (Auer, 1971). We use T,;=25950K for reasons that
follow.

The difference equations corresponding to Egs. (2)-(5) are
solved together with Eq. (1) and the upper boundary condition for
the pressure

Prop=2.74 10"?dyncm ~? (8)

on the z scale with a mesh size 4z=10km by means of a partial
linearization scheme. Once we have obtained a self-consistent
model, we calculate the specific heats C, and C,, the radiative and
adiabatic temperature gradients, V4 and V,4 respectively, and the
Planck mean opacity as

- IKVBV(T)dv. ©
[B,(T)dv

Figure 1 shows the dependence of temperature and density with
height in the atmosphere outside the tube, where z = 0 corresponds
approximately to 7549, =1 in the VAL C model (Vernazza et al.,
1981). With T,;~5800K the solution above the temperature
minimum would drop below 2000 K and stay there up to the top of
the model. To have a temperature above 4000 K at the top, we
would require non-radiative heating, which we wish to avoid in the
present investigation. The present solution possesses a jump in
temerature at z=760km of AT ~2700K which reflects the
bistable nature of the system (Kneer, 1984b). We have restricted
the model to heights larger than z=80km, because below this
height the temperature gradient steepens and becomes ultimately
superadiabatic in the subphotospheric layers. These layers are not
of interest in the present study. We assume that at the initial instant
the temperature inside the flux tube equals that outside at each z
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Fig. 2. The variation of C,, #, Va4, Vad» K, and 7, with z in the superadiabatic layer

value. Assuming that the mean molecular weight is approximately
the same inside and outside, the density and pressure inside the flux
tube are lower than the value outside by a factor §/(f + 1), where
B=38np/B? is constant (for more discussion see Hasan, 1984b).

In Fig. 2 we also depict for the interesting height range, in which
the strong temperature depression occurs, the variation of g, the
mean molecular weight, of C,, of V.4, of Vo4, of k, and of the
radiation exchange time constant t,. It is clearly seen that the

temperature gradient is superadiabatic. There are two layers of
strong superadiabaticity: one at z ~650 km where the radiative
temperature gradient is high and the other at z 750 km where the
specific heats become large due to the formation of H, and thus V4
approaches zero. We also see that in the superadiabatic layer z,
drops quite rapidly so that radiative heat exchange may become
quite important here.
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3. Equations

We shall examine the stability of the model atmosphere, described
in the previous section, by solving the MHD equations in the thin
flux tube approximation. Let us consider a flux tube extending
vertically into the chromosphere. Adopting a cylindrical co-
ordinate system (r, 0, z) and assuming axial symmetry, the thin flux
tube equations are obtained by making an expansion about r = 0.
To zeroth order they are (Roberts and Webb, 1978)

0 (e 0 (ov\ _
5;(5)4'&(;)—0, ®)

ov vov op
Q(:’?—t-‘_?z—)__gg_a—z’ &)
B2
P+ g =Pes (10)
T
Op vdp yp (0o vde\  pxr dQ
it T \a T )T e dr | an

where B is the magnetic field, v is the vertival velocity, T is the
temperature, dQ/dt|,,4 is the amount of radiative energy per gram
per unit time lost to the ambient medium, yrand y, are defined as

follows
_(élnp 4 6ln,u)
*r=\gnt),” "~ \oInT/,

_(élnp —1 {0lnu
%e=\glme),  ~\og),
and y=y,C,/C,. Equation (11) is a generalization of the energy
equation given by Webb and Roberts (1980), who generalized their
previous work to include radiative losses. In addition to radiative
losses, we also include the effect of varying ionization. The

subscript e denotes quantities in the external medium. For
dQ/dt| 4 we use Newton’s law of cooling and write

| _C(I.-T)

dit rad T,

(12)

where 1, is given in the optically thin approximation by Spiegel
(1957)

G,
" 160k, T (13)
. In Eq. (13) £, is themean Planck opacity and ¢ is the Stefan-
Boltzmann constant.

Linearizing Eqgs. (8)—(11) about the equilibrium state and
assuming a perturbation with a time dependence of the form
F(2) &, where fis the amplitude of the perturbation, Egs. (8) and
(12) yield

6 —1[. o B\ . iQ NG .
£=T—{M+G@——9v—.l LR (14a)
0o lws 20 By iQ+y 2 g
~ _ 70 . ’ B iQ ]\72A
—p—=.—y’_ﬁ '+ gﬂ——°>ﬁ+. 205 (14b)
Po lws iQ+y 0 B Q+y, &
where
0,8 &
Q=vwr,,C3=vpo/Qo,N§=———;7
0 0
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The subscript 0 denotes quantities inside the flux tube in the
unperturbed state and the primes denote derivatives with respect to
z. The symbols N, and ¢, denote the Brunt-Viiséla frequency and
sound speed in the equilibrium state. We also assume that the
perturbation in the external medium is zero.

Substituting Egs. (14a) and (14b) in the linearized form of Eq.
(9), we obtain after some algebra the following differential
equation for ¢ (Hasan, 1985)

L M N
)+ — — 4+ 9=0, 15
”+Ao”+(%+A9” )
where

1
L:—§+—A0X [AGx,+ (o — D]

T Q4+,

Y1 1 1 > vB 1
M="|-+X(z—=)[+—=(1+%)+-
v Ly 2y 8 2] iQ+4y,
’ 1 _ wZ
~|:—Agxo—y—xo<—+n2X>+(y—X"’)—]
Y Y Y g
C (8
(iQ+)(£,)2 e\iQ Yo

1 ! ﬁ ’
L)

iQ+
Y= Xe B .
+ <—2y—> (1+ﬂ)+(XQ—1) <1+§+A0>:|

2
N=-Za+p+

_ Wy W
W+9yB/2
iQ+y
Ay = ,mP=@p—=1/y+A,and W=—".
0=D0/00& (y )y 0 iQ+7,

In the limit of constant x and constant 7, , Eq. (15) goes over to Eq.
(10) of Webb and Roberts (1980b).

We solve Eq. (15) numerically by approximating the derivatives
by finite differences. This leads to a homogeneous system of
equations, which along with the boundary conditions constitutes a
generalized eigenvalue problem. For simplicity we assume closed
boundary conditions i.e. zero velocity at the boundaries. The
results are not sensitive to the precise choice of boundary
conditions since the amplitude of the perturbation, as we shall see
later on, becomes vanishingly small at the boundaries. The
“eigenfrequencies” w can be found by locating the roots of a
determinantal equation and the eigenvectors can then be de-
termined using the method of inverse iteration (Wilkinson and
Reinsch, 1971, for details on the actual numerical procedure
followed see Hasan, 1985). In general w and ¥ are complex, but in
the adiabatic limit (Q — 00), w* and { are real. Once # is determined,

- ¢ and p can be calculated using Egs. (13) and (14). The temperature

perturbation can be determined using the relationship

T 1 <f @)
r_r(e_, 2 (16)
Ty xr \Po ¢ 90
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4. Results

4.1. Adiabatic case (Q— x)

In the adiabatic case, the frequency appears only as »? (thus w and
— w are both eigenvalues). Equation (15) possesses only solutions
for which w? is real, which corresponds to either purely growing or
purely oscillatory modes. In Fig. 3 the variation of the growth rate
n=1iw with B is plotted for the fundamental mode. For weak
magnetic fields (high B), # is real, which means that the system is
unstable. Decreasing f (i.e. increasing the magnetic field strength)
leads to a decrease in the growth rate. For f less than a critical value
B., n becomes purely imaginary and the flux tube is therefore
stable. We find . ~5.15.

-
L
30 |
20
1.0 |-
|

] ]
0 2 4 6 8 B 10
Fig. 3. The dependence of  on B for the adiabatic case and for the case when
radiative heat exchange is included

4.2. Non-adiabatic case: radiative exchange included

In the general case, # is complex. In Fig. 3, the real and imaginary
parts of n, n,, and #, respectively, are plotted as functions of § for
the fundamental mode. For f < f8,, with f,~ 5.7, the system is
overstable with growth rates typically in the range 150-300s and
periods 5-10 min. At § = §., the system bifurcates into two purely
growing modes. The frequency of the slow mode diminishes very
rapidly with B, whereas the frequency of the fast mode increases
with B. Similar behaviour also occurs for flux tubes in the
convection zone (Spruit, 1979b; Hasan, 1985).

Figure 4 shows the variation of the normalized velocity
amplitude with height. It can be seen that the largest values of ¥
occur in the height range 650—750 km (shown by vertical arrows and
henceforth to be referred to as layer A). Outside this region, ¥ drops
fairly rapidly becoming negligibly small close to the boundaries.
The reason why the dominant contribution to ¥ comes from layer A
is that the temperature gradient is large here and V4 is reduced
owing to the formation of H, molecules so that V > V4. The large
superadiabatic gradient is responsible for driving the modes of the
system. As we move away from this layer, the temperature gradient
becomes small and the amplitude of the perturbation decreases. In
the figure several curves, corresponding to different 8, are shown.
It should be borne in mind that the amplitude in each curve is
normalized with respect to the maximum value for that particular
case. What, however, can be discerned is that the spatial extent of
the region, where 0 is large, increases with decreasing f, although
the absolute magnitude of ¥ is likely to decrease with § (Hasan,
1984a,b). The extent of the region into which the disturbance
generated in layer A penetrates is larger for smaller . This extent
depends roughly upon the tube speed which is inversely pro-
portional to f.

Figures 5 and 6 show the variation of T and § as functions of
height. The amplitudes are largest where the degree of super-
adiabaticity is largest. The sign of the perturbation depends upon
the sign of the initial velocity perturbation. Let us assume that the
latter is positive (i.e., we have an upflow in the tube). We consider
first the convectively unstable case f =7, for which T and § are
real. In this case, T and § are positive and negative respectively in

10 F — Re (v)
e === Im(v)
08 | ¥ umpinT
a £ adiabatic
0.6
04 |-
0.2 — L‘al"‘
7 7
OF—————— - SOt P - SR e
- L ! : t '
' 900 800 700 600 z(km 500

Fig. 4. The variation of the normalized velocity amplitude ¢ with height. The vertical arrows denote the superadiabatic region
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Fig. 6. The variation of §/g, (arbitrary units) with z

layer A and have opposite signs outside this layer with a
discontinuity at z=750km and z=650km. The velocity and
temperature perturbations are in phase in A and 180° out of phase
outside A. In the stable case (i.e. in the adiabatic limit), T'and § are
pure imaginary with opposite signs in layer A and the outside
region. Velocity and temperature perturbations for this case are
90° out of phase. Let us now turn our attention to the overstable
case, for which T and ¢ are in general complex. We see that the real
and imaginary parts of the perturbations have different signs in A
and the outside layers. Furthermore, in each layer the real and

imaginary parts have opposite signs. The phase relationships are
not so straightforward and are plotted in Fig. 7. In the layers
outside A, the phase difference between velocity and temperature
remains fairly constant around —90°, but in A varies markedly
with z.

Figure 8 shows the variation of p (normalized), the amplitude
of the pressure perturbation, with height. Unlike T'and g, p exhibits
a continuous behaviour. In the convectively unstable case p is pure

real, in the stable case it is pure imaginary and in the overstable case
it is complex.
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A general remark may be in order here. We find that the
absolute maximum amplitudes for T, § and p decrease with . For
the velocity, the dependence on f cannot be deduced, as the
solution of Eq. (15) does not give ¥ uniquely, since any constant
multiple of 7 is also a solution of the equation. However, as already
pointed out, ot seems reasonable to expect that the maximum
amplitude should decrease with .

600 500

z (km)

-5. Discussion

The results in the preceding section support earlier conjectures
(Kneer, 1983, 1984) that the presence of CO can produce extremely
steep gradients which can drive a convective instability. When
radiative heat exchange is omitted, the flux tube is either stable or
monotonically unstable depending upon how strong the magnetic
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field in the initial state is. Decreasing f§, or increasing B, has a
stabilizing effect as is well known (for more details see Spruit,
1979a and Hasan, 1984a). In the general case, the flux tube is either
unstable for large enough f or overstable. Overstability is due to
radiative heat exchange which permits the transfer of energy from
the external medium into the oscillations. An interesting feature of
the solutions is the existence of a critical value of f at which a
bifurcation occurs from overstability to instability with two
branches. The latter do not represent different harmonics of the
same mode, but are rather two different types of modes. This can
be clearly seen by looking at the corresponding eigenvectors, which
show the absence of nodes within the flux tube. Comparison with
the adiabatic case allows us to identify the top branch as a
convective mode modified by radiative exchange. The lower
branch appears to correspond to a new mode introduced by the
inclusion of radiative exchange (more details will appear in Hasan,
1985).

Another interesting feature of the results is the fact that the
temperature and density perturbations have different signs in layer
A and in the outside region. In region A where d7/dz <0, an
upflow brings hotter material upwards, and if there is approximate
pressure balance with the surroundings, this material should be less
dense. At the left interface between A and the outside region where
the temperature gradient reverses sign, the opposite situation
prevails. This is also the cause of the discontinuity in the
temperature and density perturbations.

Let us now consider energy transport in the flux tube. To
second order, the kinetic energy flux is zero. The time-average
(over the period of an oscillation) enthalpy flux at some height
~@C,{vT), where ¢ is an average mass density and the brackets
denote a time average. (There is no first order contribution as
(v) =0). In the adiabatic limit for g < g, # and T are out of phase
by 90° and (vT) =0. However, in the general case, (vT) = dT
cos[¢p(v) —¢(T)] is finite and the oscillations can transport
energy.

We would briefly like to dwell on some of the limitations of our
theoretical analysis. For mathematical convenience we used a thin
flux tube approximation and modelled radiative exchange with the
ambient medium using a mean Planck opacity. Although these
approximations are not strictly valid, they still allow us to gain
insight into the physical processes that occur in the flux tube.
Furthermore, they also give us approximate information on the
periods and growth rates of the overstable oscillations and also on
the phase relationships between the different variables.

6. Observational implications

We have found that the existence of a superadiabatic temperature
gradient in the flux tube can drive a convective instability provided
that the equilibrium magnetic field is not too strong. The critical
value of the field (in the general case) can be determined from the
condition B, ~5.7 to be approximately 20-40 G in the region of
interest (about 150 km above the temperature minimum). Thus,
flux tubes initially in radiative equilibrium will collapse if the initial
field is not strong enough. Collapse will lead to field intensification,
which tends to quench the instability. The final state that is likely to
result is one with overstable oscillations similar to intense flux
tubes in the convection zone (Hasan, 1984 b; Spruit, 1979a). Owing
to redistribution of energy by overstable oscillations, the thermo-
dynamic structure in the final state is likely to be different from the
initial state. On qualitative grounds we would expect the
temperature profile to be smoother and the temperature minimum
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to be raised compared to the cool material outside the flux tube. A
quantitative examination of this problem is currently under
progress and the results will be communicated in a forthcoming
paper.

The periods of the overstable oscillations found by us
(5-10min) lie in the range of typical lifetimes and periods of
(sub-)photospheric and chromospheric periodic and non-periodic
processes, but an order of magnitude shorter than those found by
Muchmore and Ulmschneider (1985). This apparent discrepancy
could be due to the fact that the latter authors used a purely one-
dimensional analysis, thus neglecting the effects of a convective
instability.

We have found that the phase difference between velocity and
temperature oscillations in general varies with height. In the stable
layers, the phase difference is around 90° i.e., close to the adiabatic
value, since radiative exchange is not so dominant in these layers.
However, in layer A it differs markedly from 90°, varying from
about 25° to 140°. Unfortunately, there are at present no
observations with which a comparison is possible. The obser-
vations of phase lags in the chromosphere by Lites and Chipman
(1979) refer to the average atmosphere and not to discrete
structures of the type we have considered. Thus, a comparison of
our theoretical results with observations must await a future date.

It is tempting to speculate here on the relevance of the CO
overstability to the spicule phenomenon. Recently, it has been
suggested (Hollweg, 1984; Parker, private communication) that
spicules may be produced by oscillations that strikes the botton of
flux tubes and are then trapped within them like in a resonance
cavity. We conjecture that spicules may be the result of a resonance
between the overstable oscillation produced in subphotospheric
layers and the oscillations related to the CO overstability. The
periods of the two oscillations appear to be comparable. However,
a detailed quantitative analysis is needed to substantiate this claim
and is deferred to a subsequent paper.

7. Conclusions

The aim of the present investigation was to examine the linear
stability of cool flux tubes in radiative equilibrium. We found that
the stability of the tube depends upon f, i.e. on the strength of the
magnetic field in the equilibrium state. For purely adiabatic
perturbations, the tube is stable for § < 5.15. However, when heat
exchange is included the flux tube is overstable for f < 5.7 and for
larger § a bifurcation into two purely growing modes occurs. The
faster of the two modes is an ordinary convective mode modified
by heat exchange, whereas the slower one appears to be a new
mode owing its existence to the inclusion of radiative exchange. We
have calculated eigenvectors of the fundamental modes and also
derived phase relationships between different physical quantities.
We suggest that cool flux tubes should invariably be associated
with overstable oscillations, which lead to a redistribution of
energy and to a modification of the thermal structure of the tubes.
It is conjectured that spicules may be related to the CO
overstability.
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