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ABSTRACT

We examine the equilibrium structure of vertical intense magnetic flux tubes on the Sun. Assuming cylin-
drical geometry, we solve the magnetohydrostatic equations in the thin flux-tube approximation, allowing for
energy transport by radiation and convection. The radiative transfer equation is solved in the six-stream
approximation, assuming gray opacity and local thermodynamic equilibrium. This constitutes a significant
improvement over a previous study, in which the transfer was solved using the multidimensional gener-
alization of the Eddington approximation. Convection in the flux tube is treated using mixing-length theory,
with an additional parameter «, characterizing the suppression of convective energy transport in the tube by
the strong magnetic field. The equations are solved using the method of partial linearization. We present
results for tubes with different values of the magnetic field strength and radius at a fixed depth in the atmo-
sphere. In general, we find that, at equal geometric heights, the temperature on the tube axis, compared to the
ambient medium, is higher in the photosphere and lower in the convection zone, with the difference becoming
larger for thicker tubes. At equal optical depths the tubes are generally hotter than their surroundings. The
results are comparatively insensitive to a but depend upon whether radiative and convective energy transport
operate simultaneously or in separate layers. A comparison of our results with semiempirical models shows
that the temperature and intensity contrast are in broad agreement. However, the field strengths of the flux-

tube models are somewhat lower than the values inferred from observations.
Subject headings: MHD — radiative transfer — Sun: atmosphere — Sun: magnetic fields

1. INTRODUCTION

It is well known that the surface magnetic field of the Sun
occurs in the form of discrete flux tubes with field strengths
typically in the 1-2 kG range (see review by Stenflo 1989 and
references therein). High-resolution observations of the solar
photosphere have revealed considerable information about the
properties of magnetic elements (Dunn & Zirker 1973; Mehl-
tretter 1974; Muller 1983; Title et al. 1992). Recently, several
semiempirical models have been developed for intense flux
tubes, using Fourier transform-based observations of high
spectral resolution (e.g., Keller et al. 1990; Zayer et al. 1990; see
also the review by Solanki 1990). These have helped greatly in
providing much insight into physical conditions within flux
tubes. In order to make meaningful comparisons with observa-
tions, it is important that the theoretical models achieve a level
of sophistication such that they capture the essential physics of
processes occurring in intense flux tubes. The purpose of this
paper is to propose refinements which would contribute in this
direction.

Our investigation is a continuation of earlier work by Hasan
(1988, hereafter Paper I) and Kalkofen et al. (1986) on the
equilibrium structure of intense flux tubes. In Paper I, self-
consistent model calculations were presented for the structure
of a vertical thin flux tube, taking into account energy trans-
port by radiation and convection. The motivation of these
calculations was mainly to provide a “time-averaged ” model
atmosphere in a flux tube (neglecting flows), which could also
be used as the initial state in stability and time-dependent
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calculations. The spirit of this paper is similar to that of Paper
I, except that we used a more refined treatment of radiative
transfer in the present analysis.

Magnetostatic models of intense flux tubes were first devel-
oped by Spruit (1976). The temperature structure inside the
flux tube was determined by solving a heat transport equation
(in two dimensions) with a diffusion coefficient that included
contributions from radiation and convection. These models
were not self-consistent because the momentum and energy
equations were treated separately. Nevertheless, they provided
a qualitative understanding of flux tubes and also demon-
strated that the horizontal size (i.e., tube radius) and heat
exchange with the ambient medium play an important role in
determining the temperature structure of the tube. The influ-
ence of radiative transfer on the thermal structure of flux tubes
was examined by Ferrari et al. (1985), Kalkofen et al. (1986,
1989), and Fabiani Bendicho, Kneer, & Trujillo Bueno (1992).
However, convective energy transport was neglected in these
studies. The contributions due to both radiative transfer (in the
Eddington approximation) and convection were considered in
Paper 1. Self-consistent magnetostatic models of flux tubes in
cylindrical geometry with rotational symmetry were con-
structed by Steiner & Stenflo (1989). These had the advantage
of providing a more realistic treatment of the horizontal tem-
perature and field variation. However, they were limited
(similar to the other models mentioned above) due to the
neglect of convective energy transport. Recently, Pizzo, Mac-
Gregor, & Kunasz (1993) have attempted to incorporate the
convection zone in two-dimensional transfer calculations.
Although this allows them to extend the previous calculations
to deeper layers, their treatment has the drawback that the
temperature structure is a priori specified in the convection
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zone, and the deep and shallow layers are essentially thermo-
dynamically decoupled. Also, the transition layer, in which
both radiative and convective transport operate simulta-
neously, is excluded in these calculations. We shall show that
this can introduce errors in the computed temperature profiles
and also on the intensity contrast.

In the present investigation, we use a quasi-two-dimensional
treatment to model radiative transfer in a flux tube. The advan-
tage of this approach is that it incorporates heat exchange
between the tube and the ambient medium using a more
refined treatment of transfer and at the same time allows for a
continuous transition from radiative transport in the photo-
spheric layers to convective transport in the deeper regions.
We should point out that there are several other studies which
have modeled flux tubes using, however, a time-dependent
approach. For instance, Hasan (1984, 1985, 1990, 1991) has
examined the structure of a tube when dynamical effects are
taken into account, within the framework of the thin flux-tube
approximation. Time-dependent two-dimensional slab models
for flux sheaths have also been constructed by Deinzer et al.
(1984), Grossman-Doerth, Knolcker, & Schiissler (1989),
Knolker, Schiissler, & Weisshaar (1988), and Knolker &
Schiissler (1988). The time-dependent studies reveal the pres-
ence of oscillatory flows within the tubes and downflows in
their immediate periphery. However, since the magnitude of
these flows is quite small, it seems reasonable as a first approx-
imation to neglect their effect in order to obtain an “average”
atmosphere in a tube, in the same spirit as Paper I. Further-
more, the time-dependent calculations, particularly with a rea-
listic treatment of radiative transfer, require enormous
amounts of computer time. Using the technique that we
describe in the ensuing sections, it is possible to construct flux-
tube models for a large range of parameters with modest com-
puting requirements.

The plan of the paper is as follows: in § 2, we describe the
model and present the relevant equations. Section 3 discusses
the numerical procedure. The results are presented in § 4, fol-
lowed by a discussion in § 5. Finally, in § 6, the main conclu-
sions of the study are summarized.

2. EQUATIONS

The model that we use has been described in detail in Paper
I; however, for the sake of clarity we briefly summarize its main
features. We consider a vertical flux tube of circular cross
section and adopt a cylindrical coordinate system. Further-
more, we assume axial symmetry, and for simplicity adopt the
thin flux-tube approximation to treat the magnetostatic equa-
tions. To lowest order, the relevant equations for a thin flux
tube are

dp

2 =PI m
B2
P+ =Pes (V)]
V-F=0, 3

where z, the vertical coordinate is measured positive into the
Sun, p is the density of fluid in the tube, p is the pressure, B is
value of the magnetic field, F is the energy flux, and the sub-
script e refers to the external atmosphere. The quantities,
which refer to the atmosphere inside the flux tube, are evalu-
ated on the tube axis. The radius of the tube a is determined
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from the magnetic flux conservation condition,
Ba’=®, 4

where @ is the magnetic flux, which is constant with z. The
temperature T is related to the pressure and density through
the ideal gas law,

p=pRT/y,, ®)

where R and ﬂg are the gas constant and mean molecular
weight, respectively.

2.1. Energy Transport

Following Paper I, we assume that energy transport occurs
solely through radiation and convection (we neglect extra
heating). We use the same expression as in Paper I for the
convective flux, which was obtained using a mixing-length for-
malism (Cox & Giuli 1968, pp. 281-325) with an additional
parameter o. The latter characterizes the suppression of con-
vection in the tube due to the strong magnetic field. Following
Spruit (1976), we neglect the radial component of the convec-
tive energy flux within the tube. Further details can be found in
Paper 1.

We now present details of the radiative transfer. Unlike
Paper I, we do not adopt the Eddington approximation, but
instead consider the mean radiation field to have contributions
from rays emanating in several directions. We retain the
assumptions of LTE and a gray atmosphere. In this approx-
imation, the transfer equation for a single ray in a plane corre-
sponding to a fixed aximuthal angle ¢ is (e.g., Mihalas 1978)

2
;4,2,,6—‘]2'"=J,,,—S m=1,...M), (6)
ot
where u,, is the cosine of the angle that the ray makes with the
z-axis, T denotes the vertical optical depth, S is the source
function, m is an index denoting a specific ray, M is the total
number of rays, and J,(¢) is related to the specific intensity
I(y,,, ¢) in the direction (u,,, ¢) through

Jm(¢) - I(“m’ ¢) +21(_':um’ 4)) . (7)

We neglect scattering, in which case S becomes the Planck
function. The geometrical and optical depths are related
through

dt = kdz, (8)

where k is the Rosseland mean opacity per unit distance.

The boundary conditions used with equation (6) are no
incoming radiation at the top boundary and a specific intensity
in the upward direction at the lower boundary given by the
diffusion approximation. These choices are reasonable if the
upper boundary of the atmosphere is situated in layers where
the optical depth is very small and the lower boundary is
located sufficiently deep in the atmosphere where the optical
depth is very large. Following Mihalas (1978), the boundary
conditions can be written as

i m g m=1,.. M), =0, o)
ot

2

o o =—Jm+1; (m=1,...M), T»ls (10)
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where

oS
1$=S+ﬂmg (n

is the specific intensity entering in the direction m at the lower
boundary. The mean intensity and J and radiative flux Fy are,
respectively,

1 2n 1
J=4—j d¢f dul(p, ¢), (12)

T Jo -1

2rn 1

F = 4nf dd)f dpnl(p, ¢) . (13)

0 -1

The mean intensity and radiative flux are related through

V. Fg=4nkp(S —J). (14)

Substituting equation (13) into equation (3), and remembering
that the convective flux has only a vertical component, we find
that the energy equation becomes

OF
22 _dnkp(J - S) =0, (15)
0z
where F,, is the z component of the convective flux. We
assume that the total vertical flux is specified at the lower
boundary.

3. NUMERICAL PROCEDURE

The numerical procedure that we adopt to construct the
equilibrium atmosphere is based on the partial linearization
method of Auer & Mihalas (1968) as modified by Gustafsson
(1971). Details can be found in Paper I. Starting from an
assumed atmosphere, the method basically uses Newton-
Raphson iteration to calculate corrections to various quan-
tities until convergence is achieved.

For reasons of consistency, we first use this method to con-
struct the atmosphere outside the tube. Since there are differ-
ences in the way that the external and internal atmospheres are
calculated, it is convenient to treat them separately. We shall
confine ourselves mainly to the treatment of radiative transfer.
The formulation for treating convection is the same as in
Paper 1.

3.1. External Atmosphere

We assume that the external atmosphere is plane parallel, so
that the spatial variation is solely with respect to z. We disre-
gard the influence of the flux tube on the ambient medium.
Equation (3) can be integrated to give

FR. +F =Fo, (16)

where F denotes the constant solar flux. It is easy to show
from equation (13) and the transfer equation that the vertical
radiative flux for a plane-parallel atmosphere is given by

.
ot
where the integration over polar angle has been replaced by a
quadrature-based formula with weights a,, (Chandrasekhar
1960). The azimuthal integration in this case is trivial. We shall
henceforth drop the subscript z and tacitly assume that the flux
refers solely to the vertical component.

We linearize equations (1), (6), and (13) with respect to T, p,
and J,, similarly as in Paper I. Let us divide the integration

M
FR,z = 477: Z amﬂtzn (17)
m=1
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region in the z-direction into a grid with points located at z,;
k=0, 1, ... N. Using finite differences to approximate the
derivatives, the equations can be cast in the following block
tridiagonal form for the corrections dJ,,, 6T and dp:

B, —Co . ) . ) X,
A, —B, C, . . ) X,

where A,, B, C, are matrices of order (M + 2) x (M + 2), D,
and X, are column vectors of order M + 2 with X, = (6J,,
8J,, ... 8Jy, 0T, 8p)”. The detailed structures of the block
matrices are similar to those given in Appendix A of Paper I.
Equation (18) is solved using standard methods to determine
the corrections X,, k=0, 1, ... N for a fixed vertical flux,
assuming a specified pressure p, at z = z, and the discretized
form of the boundary conditions, equations (9)—(10). Starting
from an initial guess atmosphere, which we take to be the
combined models of Vernazza, Avrett, & Loeser (1976) and
Spruit (1977, pp. 26-34), equation (18) is solved until the cor-
rections become sufficiently small, similar to the procedure
followed in Paper 1. The Saha equation is solved after each
iteration to determine the degree of ionization and various
thermodynamic quantities such as the mean molecular weight
and specific heats. We determine the opacity by combining the
tables of Kurucz (1992) for the upper layers of the atmosphere
with those of Rogers & Iglesias (1992) for the deeper regions.

3.2. Flux-Tube Atmosphere

The atmosphere in the flux tube is also generated iteratively.
We initially assume that the internal and external temperatures
are equal at the same geometric level. The density and pressure
inside the tube are lower at each height than the ambient value
by the factor B/(f + 1), where B = 8np/B>. For the starting
solution B is almost constant with depth. The mean intensity
on the tube axis is determined by solving, at various depths, the
transfer equation for several rays at different angles. We now
describe the method used for calculating the mean intensity
inside the flux tube.

3.2.1. Mean Radiation Intensity on the Tube Axis

In order to determine the mean radiation intensity on the
axis of the tube, we need to solve the transfer equation along
several rays, which emanate from the external atmosphere and
traverse the tube at different inclinations. In the most general
case, the solution of the transfer equation can be cumbersome,
but it becomes tractable if we assume that the radiation field
possesses azimuthal symmetry about the tube axis. A useful
way to resolve the angular variation of the radiation field is to
solve the transfer equation in several planes, tangent to various
concentric radial shells, about the tube axis, similar to that
used by several authors (e.g., Steiner & Stenflo 1989; Stone,
Mihalas, & Norman 1992). We first describe the method for
solving the transfer equation in a single plane or flux sheath,
whose axis is parallel to the tube axis. In each flux sheath, we
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have to take into account the fact that the ray path includes
both the internal and external atmospheres.

We use a ray construction, in which all rays pass through the
flux sheath axis. Consider a single ray coming from the bottom
of the external atmosphere and crossing the axis. Typically,
this ray will have two intersections with the tube boundary. In
order to determine J,, at a fixed level on the axis, we need to
know the source function S and opacity k at each point along
the ray. In the external atmosphere, S and x depend only on z,
whereas within the sheath they depend on both z and x, the
horizontal distance from the axis. We assume that inside the
tube, S and k vary linearly with x from their values on the axis
to those in the external medium. Once J,, is determined in this
fashion by solving the discretized form of equation (6), along
with the boundary conditions given by equations (9) and (10),
the mean intensity on the axis of the plane J is found from the
quadrature,

M
J= Y anJ,.
m=1

At points close to the top and bottom boundaries, there is only
one intersection with the tube wall of a ray crossing the axis.
This occurs when a ray reaches the levels z, or zy inside the
tube. For such rays, the solutions proceed similarly as before,
except that the boundary conditions on J,, are now applied
inside the tube.

The off-axis mean intensity can be determined using a
method similar to the short characteristic method (Kunasz &
Auer 1988). Having obtained the radiation intensity on several
tangent planes, it is a simple matter to do the azimuthal inte-
gration, which can be reduced to a quadrature. Following O.
Steiner (1993, private communication), we use a trapezoidal
rule to carry out the azimuthal integration.

In this paper, we are basically interested only in determining
the mean intensity on the axis of the tube. To resolve the
azimuthal variation, we follow Stone et al. (1992) and consider
a set of planes very close to the tube axis. It turns out that for
thin flux tubes, like the ones we are considering, the degree of
azimuthal anisotropy close to the axis of the tube is extremely
small (less than 3%), so that it is sufficient, in the present
context, to treat a single planar cut through the tube axis,
about which the radiation field can be regarded as symmetric.
This also implies that the radial component of the radiative
flux Fg, is zero on the axis. Away from the axis, Fg, is in
general nonzero. However, we do not compute its value off-
axis.

3.2.2. Temperature and Pressure on the Tube Axis

In order to determine the temperature and pressure on the
tube axis, we linearize equations (1) and (15) with respect to T
and p, assuming that J is known. We take the upper boundary
of our integration domain to lie in layers where there is no
convection, so that the energy equation (15) reduces to

J—-8=0.

The lower boundary is taken to lie in optically thick layers
where the diffusion approximation holds and J — S — 0, and
equation (15) integrates to

F.=Fyy,

where F,, is the vertical convective flux at the lower boundary
of the tube. We take F,,, = aF o, where a denotes the convec-
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tive efficiency parameter within the tube (following Paper I, we
assume that a is constant). At the top boundary we assume that
the pressure is specified as follows:

__bo
Po—ﬂ0+11’e,

where B, the value of § at z = z,, is an input parameter. Thus
B, is automatically fixed as well by equation (2).

The linearized equations for the flux tube have the same
structure as equation (18), except that A4,, B,, C, are 2 x 2
matrices, and D, and X, are column vectors of order 2. The
latter have the form X, = (8T, dp,)T. Once the temperature and
pressure are obtained, the magnetic field and radius are deter-
mined from equations (2) and (4), respectively. We then calcu-
late the state of ionization and hence various thermodynamic
quantities. Opacities are found as before by interpolating from
tables. The transfer equation is again solved to determine J,
and the procedure is repeated until convergence is achieved. In
practice, about 20 iterations are generally sufficient to reduce
the maximum temperature correction below 1 K.

4. RESULTS

We now present model calculations based on the numerical
procedure described in the previous section. For the sake of
self-consistency, we first use our method to generate the atmo-
sphere in the external atmosphere. We use the same formula-
tion of mixing-length theory as in Paper I to treat convection.
The upper and lower boundaries of our computational domain
are taken at z = — 500 km and z = 2000 km, respectively. We
used 250 grid points with a uniform spacing of 10 km, which is
found adequate to resolve the steepest spatial gradients.

4.1. Temperature Variation with Depth in the External
Atmosphere

Figure 1 shows the temperature variation with depth in the
external medium for various angle approximations. The
numbers beside the curves denote the total number of angles
used in the transfer. We find that the curves for three or more
angles are indistinguishable. The filled inverted traingles corre-
spond to the level where the optical depth is unity. The
maximum difference in temperature between the three- and
four-angle approximations is 10 K and occurs at z & —100. In
view of this, we found that the three-angle or six-stream
approximation was adequate in the treatment of radiative
transfer. For z < 0, convection is absent and the atmosphere is
in radiative equilibrium. Below z = 0, the criterion for the
onset of convection is satisfied, and both radiative and convec-
tive energy transport mechanisms are present. At about z = 50
km (corresponding to a vertical optical depth of about 5; sece
Fig. 2), the opacity becomes sufficiently large that radiative
transport becomes inefficient compared to convection. Inci-
dentally, the transition from pure radiative to pure convective
transport occurs smoothly in a way that the total vertical flux
is conserved (better than a relative accuracy of 0.1%).

4.2. Flux-Tube Geometry and Ray Construction

Figure 2 depicts a vertical planar section of a tube (with the
tube boundary denoted by thick solid lines), corresponding to
o =02, B = 1.0, and a(0) = 50 km, where a(0) is the radius of
the tube at z = 0. Unless otherwise stated, these will henceforth

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...436..355H

No. 1, 1994

SOLAR MAGNETIC FLUX TUBE STRUCTURE 359

TT T T T T T T T T T T T T T

9000

8000

7000

6000

5000

LN B B B N M Ot B B B 3

T, (K)
TI T T T T T[T T T T T T TP T T T T T T [ T Tt

4000

......... | TR S

i

pova by b by e b a

-400 -30

-100 0

z (km)

FiG. 1.—Temperature as a function of z in the external atmosphere for various angle approximations. The numbers beside the curves denote the total number of
angles used in the radiative transfer equation. The filled inverted triangles denote the levels in the external atmosphere where the optical depth is unity.

be the default parameters for all figures. The thin solid and
dotted lines show segments, inside the tube, of the shallowest
and steepest rays used in the six-stream (three-angle) approx-
imation; the intermediate ray has been omitted. Of course, the
full ray construction involves extending the rays until they
reach the top and bottom boundaries. We have not shown in
the figure the ray segments lying outside the tube, and also we
treat only rays passing through the tube axis. Since we have

assumed symmetry about the tube axis, only one of each pair
of rays at a given angle is used in the calculation. The axes on
the right denote the vertical optical depths inside the tube and
in the external atmosphere, respectively. Owing to the reduced
internal gas density, the optical depth scale inside the flux tube
is shifted downward with respect to that in the ambient
medium. These scales can be used for determining the relation
between the geometric and optical depths.

-500

-300

-100

z (km)

100

300

L e e e e e e  HSHLANLANL E S B S S S S B S S e S B S B S Sy S B B B B B B B B

x (km)

|10 4107
1107
110?
J1eqte
T
110
110°
100
200

F1G. 2.—Vertical cross section of the tube for « = 0.2, B, = 1.0, and a(0) = 50 km (the default parameters). The thick solid lines denote the tube boundary, and x
denotes the horizontal coordinate with respect to the tube axis. Thin and solid dotted lines show the ray segments, inside the tube, of the shallowest and steepest rays
used in the three-angle approximation to the transfer equation. The axes on the right correspond to the vertical optical depths on the tube axis and in the external

atmosphere, denoted by 7 and t,, respectively.
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4.3. Temperature Variation with Depth on the Flux-Tube Axis

Figure 3 shows the variation with depth z of the tube tem-
perature T; (solid lines) and its difference with the external tem-
perature AT = T, — T, (dashed lines), assuming default values
for the various parameters. The curves denoted by 3 corre-
spond to three-angle (or six-stream) approximation in the com-
putation of the mean radiation intensity. For purposes of
comparison, we also present solutions (curves annotated as
“Ed”) calculated on the basis of the generalized Eddington
approximation, used in Paper I (for consistency we have
repeated the calculations of Paper I, using the same opacities
and abundances as those used in the present study). The exter-
nal atmosphere for the latter solution corresponds to the single
ray (two-stream approximation), shown in Figure 1. For pur-
poses of focusing on the effect of the transfer on the tem-
perature structure in the tube, we have not added an additional
heating term as was done in Paper 1. Clearly, the generalized
Eddington approximation leads to an atmosphere which is
essentially isothermal in the horizontal direction with respect
to the ambient medium, for z < 0, whereas the present calcu-
lation shows that in these layers, the temperature on the tube
axis is higher than that in the external atmosphere with AT
decreasing upward in the atmosphere. It appears that the pre-
vious treatment overestimates lateral heat exchange in the
upper photosphere but underestimates it in the sub-
photospheric regions. Our results also show that, close to the
upper boundary, the external and internal temperatures tend
to become the same. The reason for this behavior is that in
such layers, a point on the tube axis is bathed mainly in radi-
ation from the external medium, since the optical path length
of the rays intercepted by the flux tube is very small, 5t ~ 1073
(see Fig. 2). These results are influenced to some extent by our
assumption that the external atmosphere is unaffected by the
tube (see Kalkofen et al. 1989). In the layers just above z = 0,
the flux tube is hotter than the external atmosphere at the same
geometric level. The reason for this phenomenon is that,
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because of the lower density in the tube and the exponential
growth of density and hence opacity with depth, the reduced
specific intensity of radiation from shallower layers is more
than compensated by the increased intensity (along the same
ray) from deeper layers (see Kalkofen et al. 1986). This effect
increases with tube radius until the increased radiative flux in
the flux tube in the horizontal and vertical direction is felt by
the external medium and results in a lower temperature than
that of the undisturbed atmosphere. In the subphotospheric
part of the atmosphere (z < 0), the effect of convection with a
reduced efficiency is felt, which lowers the temperature gra-
dient with respect to vertical optical depth, and hence T; < T,
at the same geometric level.

4.4. Influence of Radius on Temperature and Vertical Flux in
the Tube

Figure 4 shows the depth variation in the tube of the tem-
perature T; (solid lines) and the total vertical flux F,,, (dashed
lines) for different values of the tube radius, parameterized by
a(0). The external temperature T, is also shown for comparison
as a heavy dashed curve. The filled inverted triangles on the
solid curves denote the optical depth unity levels within the
flux tube. As pointed out earlier, the flux tube is hotter and
cooler, respectively, than the external medium for z < 0 and
z > 0. Figure 4 shows that this difference is larger for thicker
tubes, but it should be noted that the effect of the flux tube on
the external medium has been neglected here. In the layers
z < 0, the increase of T; with a(0) can be understood by looking
at the ray construction in Figure 2. As the thickness of the tube
increases, the influence of the more vertical rays, emanating
from the deep hot layers, is more pronounced on the tem-
perature on the tube axis than that of the horizontal rays from
cooler regions. For z > 0, we have already noted that the inter-
nal temperature is reduced with respect to the surrounding
atmosphere. Now in this region, it is the shallow rays coming
from cooler layers which dominate the temperature structure,
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S : 2004
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FiG. 3.—Variation of T; (solid lines) and T, — T, (dashed lines) with z for the default parameters. The labels 3 and Ed denote the three-angle and the generalized
Eddington approximations, respectively, in the transfer equation. The filled inverted triangles denote the levels in the tube where the vertical optical depth is unity.

Note that no additional heating has been used in the energy equation.
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F1G. 4—Variation of T; (solid lines) and F,,, (dashed lines) with z for different values of a(0), which are used to label the curves, assuming « = 0.2 and $, = 1.0. The
thick dashed curve corresponds to the temperature distribution in the external atmosphere. The filled inverted triangles denote the levels in the tube where the

vertical optical depth is unity.

since the opacity increases very rapidly with depth in this
region. This also is consistent with the 7 = 1 levels moving
downward or the Wilson depression increasing with a(0). For
very large optical depths, radiative energy transport becomes
negligible, and the internal temperature is determined solely by
convective energy transport. Since we have assumed that the
latter is independent of a(0), the various T; curves eventually
merge with one another.

Let us now consider the behavior of the vertical component
of the total flux F,,,. Since the convective flux is zero for z < 0
and is very small in the subphotospheric layers, F,,, can essen-
tially be regarded as the vertical radiative flux Fg ,. The first
point to note is that this flux is not constant with z, reflecting
the fact that we have a two-dimensional medium with a hori-
zontal temperature stratification. We also see that increasing
the tube radius leads to a larger vertical radiative flux, due
mainly to a lowering of the Wilson depression for thicker
tubes.

4.5. Influence of B, on Temperature and Field Strength
in the Tube

Figure 5 shows the variation with internal vertical optical
depth of the temperature T; on the tube axis (solid lines) for
different values of f,, assuming a(0) = 50 km. The variation of
T, with optical depth (in the external atmosphere) is also
shown as a heavy dashed line. The filled inverted triangles
denote the location of z = 0. From the definition of g, it is
clear that the smallest value of 8, corresponds to the strongest
magnetic field strength. The main effect of varying 8, manifests
itself through a change of the internal gas density. The smaller
the value of §,, the greater is the reduction of p inside the tube
with respect to the ambient value. The reduced density leads to
the vertical optical depth scale in the tube being shifted down-
ward with respect to the external medium, so that T, > T, at
equal 7. Decreasing f, leads to a higher internal temperature at

the same optical depth. Also, it should be noted that as S,
decreases, the depth at which the optical depth is unity in the
flux tube increases. This is evident from the location of the
filled inverted triangles.

The dashed curves show the variation of B with 7. We
assume that the pressure and magnetic field at the top bound-
ary are specified. As expected, the magnetic field varies mono-
tonically with 7, with the value at a fixed optical depth
increasing with a decrease in f,.

4.6. Variation of F,,, and B with z for Different f,

Figure 6 shows the variation with z of the total vertical flux
F\, on the axis of the tube (solid lines) and p(z) (dashed lines) for
various values of f, assuming, as before, a(0) = 50 km and
o = 0.2. Let us first consider the behavior of F,,. In the deep
layers (z > 0), where the opacity is very high, the main contri-
bution to F,,, comes from the convective flux, which is assumed
to be independent of B,. However, in the shallower layers,
convection becomes ineffective, and radiative energy transport
dominates. Due to the reduced opacity in the tube (as a result
of the density reduction), radiation from the external atmo-
sphere is channelled into the tube (Canon 1970; Kalkofen et al.
1989). This leads to an enhancement of the vertical radiative
flux, which increases with the degree of evacuation and conse-
quently increases with a decrease in f3,,.

We now turn to the variation of § with z for various values
of f,. From equation (2) it is easy to see that f is constant with
depth if T; = T, at every z. In general, since the internal and
external temperatures are almost the same at each geometric
level in the upper layers of the tube, we expect f to be nearly
constant with z in this region. At z & 0, owing to the tube being
hotter than its surroundings, we expect a small increase in
close to this level. For z > 0, the tube is cooler than the outside,
due to the effect of reduced convective efficiency in the tube,
and this leads to a slight decrease of g with z.
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FIG. 5—Variation with log t of T, (solid lines) and B (dashed lines) for different values of §, for « = 0.2 and a(0) = 50 km. The thick dashed line denotes the run of
T, with optical depth in the external atmosphere. The filled inverted triangles denote z = 0.

4.7. Influence of o on the Temperature and Vertical Flux
in the Tube

Figure 7 shows the effect of changes in the efficiency of con-
vection in the tube on the internal temperature and the net
vertical energy flux distributions as functions of the internal
optical depth, for two values of «, 0.2 and 0.8, assuming f, =
1.0 and a(0) = 50 km. Changing « from 0.2 to 0.8 has almost a
negligible effect on the temperature distribution (solid curves).
In the photospheric layers and above, this is obvious because
the dominant transport mechanism is radiation. However, in

the deeper layers, where radiative energy transport is negligibly
small (owing to the extremely large opacity), we have a flux-
conserving atmosphere. Therefore, the energy equation can be
integrated with respect to z to yield

Fc,z=Ftot=Fbot=aFO’

where we have assumed that the horizontal component of the
convective flux is zero. Thus, varying o essentially alters the
value of the total vertical flux in the convection-dominated
part of the atmosphere (which must be constant), as can be
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FiG. 6.—Variation with z of F,,, (solid lines) and B (dashed lines) for different values of f, for a = 0.2 and a(0) = 50 km
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F1G6. 7.—Variation of T; (solid lines) and F,,, (dashed lines) with log t for different values of a for f, = 1.0 and a(0) = 50 km

seen from the dashed curves in the figure, corresponding to
F ... However, since the latter depends upon a high power of T,
changing the energy flux by a factor of 4 leads to only a small
change in the internal temperature of the tube. It should also
be noted that the departure of the total vertical flux from a
constant value demonstrates the importance of two-
dimensional effects (due to radiative heat exchange between the
tube and the surrounding medium).

5. DISCUSSION

5.1. Treatment of Radiative Transfer

The purpose of the present investigation was to improve the
earlier analysis used in Paper I by using a more realistic treat-
ment of radiative transfer. In Paper I, radiative transfer was
modeled using the Unno-Spiegel generalization of the Edding-
ton approximation, as adapted to a thin flux tube. Although
this method allows both vertical and horizontal heat transport
to be considered, its validity, particularly in the optically thin
layers, is questionable. We found from § 4.3, by a comparison
with a more careful treatment of transfer using a multistream
approximation, that the generalized Eddington approximation
overestimates the effect of lateral heat exchange in the optically
thin part of the atmosphere, by giving essentially identical
internal and external temperatures. However, in the optically
thick layers, this approximation is much better. From a com-
putational point of view, the calculation in the multistream
approximation is much more cumbersome than that in the
Eddington approximation, as each iteration involves solving
the transfer equation along 3N rays. Furthermore, since it is
not practical to linearize J, the convergence is much slower
than that obtained in Paper I. Another difference with Paper I
is that we do not use an additional heating term in the energy
equation. This term was used earlier to match the temperature
structure in the layers above z = 0 with empirical models.
However, from a physical point of view it is difficult to justify
the extra energy input being the cause of the temperature dis-
crepancy with empirical models; this more likely reflects the

error in the angle and gray approximations. Indeed, increasing
the number of angles, as we have seen from Figure 1, leads to a
higher temperature in the photospheric layers. This effect satu-
rates for three or more angles. Although the temperature is still
somewhat lower than that of the empirical models (the
maximum difference is less than 300 K), we decided, neverthe-
less, not to include the additional energy heating in our
models.

A relevant question in the present context is how the radi-
ative transfer accounts for the cylindrical geometry. It would
appear that the results we have obtained would also be valid
on the axis of a flux sheath, with the same horizontal and
vertical variations of physical variables. This appears to be
true, in the special cases that we have treated of tubes, which
are sufficiently thin and where the internal atmosphere varies
linearly with horizontal distance from the axis. However, in
general, this is not valid, particularly away from the axis, so
that the azimuthal variation needs to be explicitly taken into
account. Let us now try and assess the error made in using a
single planar cut to compute the mean radiation intensity on
the tube axis. Figure 8 shows the variation with z of AJ; o/J; ,,
[assuming default parameters except for a(0) = 100 km], where
AJio=J(z0)—Jfz, 1), J; o = J{z, 0), and J;, = J{(z, r). The
latter is the mean intensity on the axis of a tangential plane at a
radial distance r from the tube axis. The axial intensity was
computed using a single plane, whereas for the off-axis inten-
sity, we used four equidistant planar cuts, which were then
used to resolve the azimuthal variation. In Figure 8, the two
curves correspond to different locations of the outermost
tangential plane (whose distances in kilometers from the tube
axis are denoted by the numbers beside the curves). We find
that the maximum difference in the mean intensities does not
exceed 3% at any value of z, which corresponds to an infinitesi-
mal change in the temperature. Increasing, the number of
tangential cuts above four does not have any discernible influ-
ence on the results. It thus appears that for the case of thin flux
tubes that we have examined, using a single plane to compute
the mean radiation field appears to be justified.
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FiG. 8—Variation of AJ; ,/J; , with z for two different locations of the radial distance (in km) from the tube axis (used to label the curves) at which the off-axis

mean intensity is calculated, assuming f, = 1.0 and a(0) = 50 km.

5.2. Comparison with Semiempirical Models

It is useful to compare our results with those of semi-
empirical models. Figure 9 shows theoretical internal tem-
perature profiles as functions of optical depth in the flux tube
(solid curves), denoted by a and b corresponding to B, = 1.0
and B, = 0.5, respectively. The dotted and dashed lines corre-
spond to the network and plage models of Solanki & Brigljevic
(1992) (hereafter SB), whereas the vertical bars denote the
range of temperatures for various semiempirical models com-
puted by Zayer et al. (1990). It is clear that for log t < —2, the
theoretical models are somewhat cooler than the SB models
and fall on the lower range of the Zayer et al. (1990) models.
For —2 <log 7 < —0.5, model b, corresponding to f, = 0.5,
appears to lie within the range of the semiempirical models, but
model a is still too cool. However, for —0.5 < log © < 1, model
a exhibits better agreement with semiempirical models
(excluding the plage model), whereas model b appears to have
somewhat higher temperaures in layers greater than optical
depth unity. In these layers, both models are much hotter than
the SB plage model.

Table 1 shows various quantities for four values of g, and
different values of a(0), the radius at z = 0. The magnetic flux is
denoted by ®, and zy, is the Wilson depression in the tube, i.e.,
the geometric depth corresponding to optical depth unity. The
corresponding temperature and magnetic field strength are
denoted by Ty and By. Finally, the last column denotes the
intensity contrast # of the tube with respect to its surroundings.
This was calculated by determining the ratio of the emergent
internal and external intensities at the top of the computa-
tional domain for a vertical ray. Owing to numerical difficulties
associated with problems of convergence, the full range of a(0)
values could not be considered for models with , = 0.1 and
Bo =0.5.

We find that the temperatures corresponding to B, = 1.0
agree better with semiempirical models. The models corre-
sponding to f, = 0.5 and B, = 0.1 are too hot. On the other
hand, the field strength found from semiempirical models

favors a value close to B = 2000 G (Zayer et al. 1990), which
would suggest a value of B, close to f, = 0.1. However, the
temperature discrepancy for such low values of 8, would be
even worse. On theoretical considerations, there appears to be
no known physical mechanism that could yield such large field
strengths in intense flux tubes. Convective collapse, which is
widely thought to be the process for concentrating the photo-
spheric field to kilogauss stregnths, generally produces fields of
around 1300-1400 G at = = 1 (Hasan 1984, 1985).

Let us now turn to a comparison of the intensity contrast #
with semiempirical models. For network models, SB find that »
1s in the range 1.1-1.5. This agrees better with the models
corresponding to f, = 1.0 than with S, = 0.5. The agreement
would be even better for larger values of B,, but then the
discrepancy between the field strength from theoretical and
semiempirical models would be even worse. The contrast
values for i, = 1.0 are in good agreement with those found by
Koutchmy (1977), viz., n & 1.6-2.0. These were derived from
intensity measurements and image restoration. A similar range
of values was found by Muller & Keil (1983) and Auffret &
Muller (1991). In the method of SB, only properties of the flux
tube enter the determination of the contrast, while the intensity
measurements have contributions from the ambient medium,
owing to the limitations of spatial resolution. Thus, the values
based upon the latter method give lower limits to the true flux
tube intensity, although being somewhat higher than those
found by SB. We should also point out that the values of #
given in Table 1 are broadly similar to those calculated theo-
retically by Grossman-Doerth et al. (1989) for a tube with slab
geometry.

In plages, SB find # less than 1 (typically ~ 0.85), which is in
disagreement with our calculations. The reason for this could
possibly lie in the fact that plages may contain, in addition to
facular points, a substantial number of small pores not detect-
able using Fourier transform spectroscopy (FTS) with low
spatial resolution. As SB have pointed out, their determination
of n is an average over all magnetic features contained in the
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F1G. 9.—Comparison with semiempirical models of the theoretically com-
puted temperature profiles (solid lines) in the tube as a function of the internal
optical depth for B, = 1.0 (curve a) and B, = 0.5 (curve b), assuming a = 0.2
and a(0) = 50 km. The dotted and dashed lines correspond to the network and
plage models of Solanki & Brigljevic (1992). The vertical bars denote the range
of values in the Zayer et al. (1990) models.

field of view of the observation. It appears, therefore, that there
are some uncertainties regarding the observational determi-
nation of the continuum contrast of small-scale flux tubes (see
also the discrepancy between the results of SB and those of
Schiissler & Solanki 1988). Very high spatial resolution (less
than 075) would be desirable to settle this question.

5.3. Influence of the Sudden Turn-on of Convection

In § 1 we mentioned that equilibrium two-dimensional flux-
tube models, with radiation and convection operating in differ-

TABLE 1
VARIOUS QUANTITIES IN A FLUX TUBE FOR DIFFERENT VALUES OF
Bo AND a,
a(0) o Zy Tw By,

Bo (km) (Mx) (km) (K) (&) n
01......... 50 1.4 x 107 90 8789 2104 4.04
0l......... 100 5.5 x 107 94 8786 2127 4.04
05......... 50 1.2 x 107 52 7526 1638 221
05......... 100 4.8 x 10'7 55 7483 1664 2.18
05......... 200 1.9 x 10'8 63 7468 1769 2.18
1.0......... 50 1.0 x 107 37 7024 . 1360 1.71
10......... 100 4.1 x 107 41 7014 1393 1.69
10......... 200 1.6 x 108 47 6990 1442 1.69
1.0......... 400 6.6 x 10'8 55 6975 1504 1.68
30......... 50 73 x 10*¢ 18 6482 914 1.25
30 ...t 100 29 x 10*7 21 6456 933 1.24
30......... 200 1.2 x 10'® 24 6423 966 1.23
30......... 400 4.7 x 10'8 28 6394 1001 1.22

Note—T,, and By, are the temperature and magnetic field values at the
Wilson depression zy,.
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ent layers, have been constructed by Pizzo et al. (1993).
Actually, the convective flux in their models is zero, since they
assume an adiabatic temperature stratification in layers where
the Schwarzschild criterion for the onset of convection is satis-
fied. This is at best an approximation to the real situation,
since, even though the magnetic field is likely to reduce the
efficiency of convective energy transport within the tube, it
seems unlikely that convection will be totally suppressed, at
least in the regions close to optical depth unity. Let us consider
the artificial situation in which we allow radiation and convec-
tion to operate in separate layers and examine how the atmo-
sphere determined in this way differs from one in which both
mechanisms operate simultaneously. Figure 10 examines the
influence of the sudden turn-on of convection on the internal
temperature of a flux tube. The solid curves, denoted by a and
b correspond respectively to continuous and discontinuous
transitions between predominantly radiative transport and
convective transport, for « = 0.2, f = 1.0, and a(0) = 200 km.
The dashed and dotted curves denoted the temperature dis-
tributions corresponding to curves a and b, respectively. We
locate the transition layer z,,,, for case b just below the level at
which the Schwarzschild criterion is satisfied. For consistency,
we follow this prescription also for the external atmosphere. In
the calculations, z,,,, was 20 km and 50 km, respectively, for
the external and internal atmospheres. The inverted triangles
denote the Wilson depressions in the tube, located at z = 41
km and z = 47 km, respectively, for models b and a. We find
that the models with the discontinuous transition are signifi-
cantly hotter in the layers below z = 0 and have an intensity
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F1G6. 10.—Comparison of T; as a function of z (solid lines) for continuous
(curve a) and discontinuous transitions (curve b) between radiative and convec-
tive energy transport, for f, = 1.0 and a(0) = 200 km. The filled inverted tri-
angles denote the locations where the optical depth is unity. The dashed and
dotted curves denote the variation of T, corresponding to cases a and b,
respectively. The corresponding transition levels for case b are at z = 20 km
and z = 50 km for the external and internal atmospheres, respectively.
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contrast which is about 12% higher than that of the contin-
uous models. We also find that the differences are further
enhanced for thicker flux tubes. For instance, when a(0) = 400
km, the error in the contrast is about 20%. Physically, this is
understandable because as the radius of the tube increases,
heat exchange between the tube and its surroundings becomes
ineffective close to z = 0. In the layers for which 7 > 1, the
vertical radiative flux cannot be entirely balanced by the lateral
radiative flux, owing to the sharp rise of opacity and, conse-
quently, a nonvanishing vertical convective flux is required to
conserve energy. As the tubes become thicker, the transition
layer where the radiative and convective fluxes have compa-
rable magnitudes also becomes bigger, leading to the discrep-
ancy mentioned above.

5.4. Limitations of the Thin Flux-Tube Approximation

Let us briefly comment on the limitations of equilibrium
solutions, using the thin flux-tube approximation. Broadly
speaking, our results can only be applied to tubes which are
sufficiently narrow, so that the magnetic tension forces can be
neglected. Steiner & Pizzo (1989) found that for tubes with
a(0) < 100 km, the field lines computed using the exact magne-
tostatic and thin flux-tube solutions were practically indistin-
guishable. For thicker tubes, however, the neglect of the
tension led to the radius, computed using the thin flux tube
approximating, being overestimated. The error in radius for a
tube with a(0) = 200 km was about 15% at z = — 500 km but
almost negligible for z < —200 km. Another inherent assump-
tion in the present treatment is that we neglect the effect of the
flux tube on the surroundings. In reality, the presence of the
flux tube will influence energy transport in its immediate sur-
roundings. The main effect of this is a cooling of the adjacent
exterior and the generation of a circulation flow there (Deinzer
et al. 1984, Grossmann-Doerth et al. 1989).

5.5. Stability of Flux-Tube Models

Lastly, let us briefly discuss the stability of our models.
Owing to the expansion of the tubes with height, the magnetic
field lines are concave with respect to the ambient medium. It is
well known that such a configuration is susceptible to the flute
or interchange instability. Meyer, Schmidt, & Weiss (1977)
showed that if the tubes are sufficiently thick, then this insta-
bility can be stabilized by buoyancy. However, for thin tubes
some other mechanism is needed, such as a whirl flow around
the tube (Schiissler 1984). The magnitude of the whirl velocities
needed for stabilization for flux tubes in the solar atmosphere
has been studied in some detail by Biinte, Steiner, & Pizzo
(1993), and Biinte, Hasan, & Kalkofen (1993). In addition to
the interchange instability, there is also the question of convec-
tive stability of the present models. On the basis of earlier
linear adiabatic studies (Spruit & Zweibel 1979) the instability
can be suppressed for a flux tube (with the same temperature
stratification as the external medium) for g < 1.5. However, the
presence of heat exchange between the tube and the ambient
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medium, could lead to overstable oscillations, no matter how
strong the field (Hasan 1986). We defer a thorough exami-
nation of this problem to a subsequent investigation.

6. CONCLUSIONS

We have computed static equilibrium models of intense flux
tubes in the solar atmosphere for a wide range of input param-
eters. On the basis of our investigation, we can draw a number
of important conclusions. These are the following:

1. The thermodynamic properties of the flux-tube atmo-
sphere are very sensitive to radiative energy transport in the
photospheric layers of the tube. Therefore, care is needed in the
treatment of radiative transfer to accurately model the atmo-
sphere in the tube.

2. At equal geometric levels, the atmosphere in the tube is
generally hotter in the photosphere and cooler in the convec-
tion zone than the ambient medium. This temperature differ-
ence increases as the tube becomes thicker. However, at equal
optical depths, the tubes are always hotter than their surround-
ings.

3. The total vertical energy flux on the axis of a tube is not
constant with height, but increases from the convection zone to
the photosphere. The maximum occurs at the base of the
photosphere. On the other hand, 8 exhibits only a weak height
dependence.

4. The stratification in the tube is fairly insensitive to the
convective efficiency parameter a. However, it does depend
upon whether there is a continuous or abrupt transition of
energy transport from radiation to convection.

5. A comparison with semiempirical models shows that the
theoretically computed temperature profiles and the intensity
contrast are in broad agreement for network models, but the
magnetic field strengths are somewhat lower. Models which
have larger field strengths are too hot compared with observa-
tions.

In summary, we have attempted to provide equilibrium
models of flux tubes which can be used as inputs for more
extensive studies involving linear stability and time-dependent
behavior. Also, we expect that the sophistication of radiative
transfer is sufficient to make meaningful comparison with
observations.
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