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Summary. We examine the structure of motions that can occur in a vertical
magnetic flux tube with a rectangular cross-section. A polytropic stratification is
assumed in the vertical direction. We use a gauged version of Helmholtz’s
theorem, to decompose the perturbations into an irrotational component and a
solenoidal component, which we further split into the sum of poloidal and
toroidal components. These components are identified with p, g and toroidal
modes of a fluid. The normal modes of the tube are determined using a Rayleigh—
Ritz variational technique. Our technique efficiently isolates all the modes to high
orders. We first consider some special cases, in order to highlight some interesting
properties of the modes. Next, we choose a parameter range to study the proper-
ties of oscillations in intense flux tubes on the Sun. Both eigenfrequencies and
eigenvectors are determined. It turns out that for intense flux tubes the funda-
mental is a modified convective mode (g; in our notation), whose frequency is in
remarkable agreement with the fundamental frequency, obtained from a thin flux
tube calculation. For high mode orders, our g modes are essentially slow modes.
The ¢ modes are identified with Alfvén waves and the p modes with modified fast
waves. We also calculate the height variation of the displacement and pressure
perturbations, parallel to the tube axis for the modes. Finally, we discuss some of
the observational implications of our study.

1 Introduction

A principal feature of the solar magnetic field, that has been established by observations, is its
highly structured form. The field is generally confined to intense flux tubes, with field strengths in
the range 1-2 kG at the solar surface (e.g. Stenflo 1973). There exists a hierarchy of structures on
the Sun which, despite their widely differing horizontal dimensions, have similar field strengths.
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Some examples, in order of decreasing radit, are sunspots, pores, faculae and fibrils. The latter,
with diameters typically a few hundred kilometres, are by far the most abundant and the object of
the present investigation. However, our analysis is sufficiently general to be applicable to any
magnetic structure in a stratified atmosphere.

An understanding of the nature and propagation of waves in magnetic structures is of con-
siderable interest, especially as flux tubes are probably important in heating the chromosphere
and corona of the Sun, and more generally of stars. Moreover, the study of waves provides a
powerful diagnostic tool for probing various regions of flux tubes, depending on where the waves
have maximum amplitude. It is extremely difficult, using ground observations, to detect oscilla-
tions in fibrils, chiefly because such observations require extremely good ‘seeing’, typically, for a
few minutes, which is somewhat rare. However, Giovanelli (1975) and Giovanelli, Harvey &
Livingston (1978) have reported detection of fibril waves. More observations are clearly needed
to learn about the detailed nature of oscillations in fibrils. Till these are available, one must rely
mainly on theoretical calculations for understanding physical conditions in fibrils. For sunspots,
however, the situation is more favourable. Oscillations in the umbra of sunspots have been
detected by numerous observers [see Moore (1981) for a review, Lites & Thomas (1985) and
references therein]. Thus an analysis of wave modes in a flux tube would also be applicable to
sunspots, although the present study is chiefly concerned with solar fibrils.

Theoretically, the normal modes of an unstratified plane parallel medium with a uniform
magnetic field are well known (e.g. Ferraro & Plumpton 1966). For an ideal fluid, initially at rest,
these are the usual fast, slow and Alfvén modes. The inclusion of gravity greatly complicates the
analysis and a straightforward classification is possible only under certain idealized simplifica-
tions (Lighthill 1967). Qualitatively, one expects the introduction of an extra force to generate an
additional mode, which in the present case is driven by gravity. The normal modes are sensitive to
the interplay among the forces of pressure, gravity and magnetic field, thus rendering a general
analysis fairly difficult. Nevertheless, many authors have examined the behaviour of magneto—
acoustic—gravity waves (MAG for short). The earlier investigations (McLellan & Winterberg
1968; Bel & Mein 1971; Nagakawa, Priest & Wellck 1973) used a local analysis, which is
meaningful for wavelengths which are less than the local pressure scale height. Local dispersion
relations and their applicability have been critically discussed by Thomas (1982). Much work has
been done on extending the previous analyses of MAG waves to the non-local analysis case (e.g.
Antia & Chitre 1978; Schwartz & Bel 1984; Zhugzhda & Dzhalilov 1984). An assumption, which
1s implicit in these studies, is that the magnetic field is unbounded in the horizontal direction.
Some progress has been made in understanding the normal modes of structured magnetic fields
(i.e. flux tubes) by using a thin flux tube approximation (Defouw 1976; Roberts & Webb 1978;
Spruit & Zweibel 1979; Spruit 1982; Hasan 1986), which neglects variations in physical quantities
transverse to the direction of the magnetic field. Although, this approximation is often adequate
below the photosphere, it breaks down in the upper layers, where the radius of the flux tube
becomes comparable to or even greater than the local pressure scale height. Furthermore, it gives
incomplete information on the modal structure. It provides a reasonable estimate to the low-
frequency magnetogravity modes, but automatically excludes the Alfvén and fast modes. In the
present examination we shall not employ this approximation.

The modes of a magnetic slab, without gravity, have been investigated amongst others by
(Parker 1974; Cram & Wilson 1975; Wilson 1979; Wentzel 1979; Roberts 1981a, b; Edwin &
Roberts 1982, 1983; Cally 1985a,b). A general analysis for a stratified medium (i.e. including
gravity) does not appear to have been carried out in the context of solar fibrils. The interaction of
gravity with magnetic fields is likely to be important in the upper convection zone of the Sun and
may be responsible for flux tube formation (Parker 1978; Webb & Roberts 1978; Spruit 1979;
Hasan 1984a, b).
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We use a variational technique following Chandrasekhar (1964) and Sobouti (1977a, 1981),
which has the advantage that it permits from the very outset, a natural decomposition of the
perturbations into pressure (p), gravity (g) and Alfvén () modes. This considerably simplifies the
task of mode classification. We shall make a few simplifying assumptions, so as to highlight the
physical nature of the modes. In particular, we treat only body oscillations and exclude surface
waves from the present analysis, deferring them and the use of more general boundary conditions
to subsequent papers.

Our paper is divided as follows: in Section 2 we present the ideal MHD equations, which we
linearize and cast in a form suitable for a variational analysis. In Section 3, we generate suitable
decompositions for the perturbed quantities into p, g and ¢ components, derived from scalar
potentials, and consider specific forms for these potentials in Section 4. The variational technique
is outlined in Section 5, which transforms the equations into a generalized eigenvalue problem.
Some properties of the matrices, which appear in the final equations, are discussed in Sections 6
and 7. Analytic solutions are presented in Section 8. The numerical technique and results for a
stratified medium are given in Section 9, followed by an application to intense flux tubes in
Section 10. Section 11 consists of a discussion and some observational implications of the resuits
and the final Section 12 has concluding remarks.

2 Equations

Let us consider a single flux tube of rectangular cross-section extending vertically into the solar
convection zone. We adopt a Cartesian coordinate system with the z axis parallel to the tube axis
and pointing into the Sun. For convenience we choose the origin at one of the tube corners, with
z=0 at the base of the photosphere. Let the tube have sides a, b and d in the x, y and z directions
respectively. Furthermore, we assume that the flux tube has a uniform field B (constant with
depth) and that the field outside the tube is zero. From the principle of flux conservation, the
cross-sectional area must also be constant with depth.
The ideal MHD equations are

0,
a—i+div(gv)=0 (1)
dv 1
— =0g—VP+ —curl BXB 2
0~ =08 L (2)
P
(P, 3)
dt \p”
div B=0 4)
1 oB
curl E=—- = (5
C
1
E+;(VXB)=0 (6)

where the unknowns are g, v, P and B, which refer to density, velocity, pressure and magnetic
field respectively. The constants g, ¢ and y represent the acceleration due to gravity, the speed of
light and the ratio of specific heats respectively.

We have assumed (see equation 3) that all changes occur adiabatically and that the medium has
infinite electrical conductivity.
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2.1 EQUILIBRIUM EQUATIONS

Initially (at t=0), let us assume a polytropic fluid in the flux tube, which is in hydrostatic
equilibrium. Furthermore, we assume that all equilibrium quantities depend only on z, apart
from B which we assume to be constant both in direction and magnitude. Thus, in equilibrium we
have

ap
ar _ 7
1; 98 (7)
1+1/n
P=P, (3) (8)
Qo

where n is the polytropic index and the subscript ‘0’ refers to values at z=0. From equations (7)
and (8), we have

z n
0=0o [1+ (n+1)h] )

where h=Py/g,g is the scale height of the atmosphere at z=0. The temperature T follows from
equations (8)—(9) and assuming the ideal gas law to be

T=T, [1+ (10)

z
(n+)h |
We relate physical variables inside the flux tube with those in the external medium by assuming
that the total pressure at the interface (the planes x=0, a and y=0, b) is continuous, so that

BZ

P+—=pP,. (11)
87

Thus, by specifying both P and B, we automatically determine P,, the external pressure at the
interface. If we assume, furthermore, that the gas outside is also in hydrostatic equilibrium, it
follows that

0=0. (12)
and
1 z —(n+1)
Te=T{1+ - [1+ ] } (13)
B (n+1)h

where =87 P,/B?. In this case, the gas outside has the same density, but a higher temperature
than the gas inside.

2.2 LINEARIZED EQUATIONS
Let &(x, f) denote a small Lagrangian displacement of a fluid mass element from its equilibrium

position. Equations (1)—(6) after linearization yield

Qﬁ =-F(S) (14

ar?
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with

1
F(&)=Vo6P—-5pg— i curl SBXB (15)

1
dp=—-pdivg—¢-Vo (16)
OP=—yPdivE—¢£-VP 17)
OB=curl (£ xXB) (18)

95
_d 1

V=", (19)

Jf denotes the Eulerian perturbation in the variable f. On multiplying equation (14) by £* and
integrating over the volume initially occupied by the flux tube, we obtain

1

wZJ’dx .f*-p§=fdx 5*-F(§)=f dx [5*-V6P—§*-g69—- py &* - curl (5B><B] (20)
4

where we have assumed & to have a time dependence proportional to exp (iwf).

An integration by parts of the first and last terms on the right-hand side of equation (20) and
using equation (7) yields

fdx f*-F(§)=jdx [—div é*éP—f*-Edp+éE-curl (§*XB)}
0 4z

+de n~[§*6P+-1—§Bx(§*xB)] (21)
4

where n is a unit normal pointing outward from the surface S. From equations (16) and (17) and
noting that for a polytrope P=P(g), we have

dap
OP=—Jp—aPdiv¢ (22)
do
where
dpP
amy-2% (23)
P do

Substituting equation (22) into equation (21). We have

1 dP 1
fdx 6*-F(§)=fdx (— — Jo* dp+aP divE* divE+ —§B*-5B>
o do 4z

+de [(n-f*) oP+ 1 n-£*)(B-6B)— 1 (B-n)(f*-dB)] (24)
4 4

where we have used equations (16) and (18). The volume integral on the right-hand side of
equation (24) is symmetric with respect to & and & *. On the planes z=0 and z=d, we assume that
£,=0 and therefore the contributions to the surface integrals from these surfaces is zero.* At the
interface of the flux tube and external medium we assume the boundary condition given by
equation (11), which must hold both in the equilibrium and perturbed states. Thus, equation (11)

*See note added in proof.
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must also be valid for the Lagrangian changes associated with the displacement &. This yields
_ 1
—-yP d1v§+£-‘—B-[5B+(§-V) B]=¢£-VP, (25)
v

where we have neglected the Eulerian change in P.. Substituting equation (25) into the last
integral in equation (24) yields

de (n-g*)[amiB.curl (§XB)]=f dS (n-£%) £-V (PB—B—Z —P>=0
4 87

by virtue of equation (11).
Thus, the frequency w can be determined by solving the following equation

w—wis=0 (26)
where
5= f dx 0" ¢ (27)
w=w(1)+w(2)+w(3) (28)
w(1)=f dxl ar do* S (29)
o do
w(2)=f dx aP div £* div & (30)
w(3)= 1 f dx 6B*-6B. (31
4

From equation (27), s is symmetric and positive definite (9>0).Therefore, we may write
w*=w/s. From equation (29), w(1) is symmetric and positive (dp/dp>0). It can be zero if and
only if 8o =0, which is possible if o£ is solenoidal. Thus, w(1) contributes positively to w?. From
equation (30), w(2) is symmetric and positive for convectively stable fluids, i.e. when
a=y—(P/g) dP/dp>0. 1t is zero for convectively neutral fluids (¢=0) and also for solenoidal
motions (div £=0). For convectively unstable fluids (¢ <0), w(2) contributes negatively. Thus the
contribution of w(2) to w? may be positive, zero or negative. From equation (31), w(3) is
symmetric and positive, unless dB=0, when it vanishes. Therefore, w(3) also contributes
positively to @?. The sum wis symmetric, thus ruling out either damping or overstability. There is,
however, the possibility of dynamical instability if the fluid is convectively unstable.

From the point of view of dynamics, separation of w into three terms has an interesting
interpretation. Linear motions of the magnetized fluid are driven by three forces of distinct
nature: (a) pressure forces acting through w(1), (b) buoyancy forces acting through w(2), and (c)
magnetic forces giving rise to w(3).

Equation (14) or its equivalent variational form (26) constitute a generalized eigenvalue
problem. In the next section, we use a ‘gauged’ version of Helmholtz’s theorem to decompose &
into one irrotational component, one ‘weighted solenoidal’ poloidal component and one solenoi-

dal toroidal component. These components can be identified with p, g and toroidal modes of a
fluid.
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3 Decomposition of Lagrangian displacements

Let {(x, ) denote a linear displacement in the fluid, which need not satisfy equation (26). The
collection of all such displacements will belong to a Hilbert space H. We define the inner product
in Hof { and £’ as

© 5')=f dx 0¢* - ¢"; ¢, ¢'eH (32)

where the integration is over the volume of the flux tube. This inner product is the same as s

(equation 27). By a suitable gauge transformation, ¢ can be decomposed using Helmholtz’s
theorem as follows (Sobouti 1981)

0i=—pVy,+curl A, div A=0 (33)

where y,(x) is a scalar potential and A(x) is a divergence-free vector potential. The reason for
inclusion of g in equation (33) will emerge when we discuss orthogonality in H. The decomposi-
tion in equation (33) is unique and complete.
The solenoidal vector A can be split further into toroidal and poloidal components:
=curl (ky,)+curl curl (ky,), where k is a unit vector along the z direction. This decomposition
isnot unique. It is complete, however, in the sense that any solenoidal vector can be broken in this
manner. Consequently, we can write

{=¢,+ 8 +¢ (34)
where
0y X, X, )
:——V = — —_— y -_ , —— 35
é}; e <6x ay 0z (35)
1 1[0%, o% (32 az> }
=~ curl curl (ky)=~ [ =%, =%, - —=+— 36
£ 0 url curl (k) 0 [axaz aydz ax? 9y? s (36)
1 1 d d
&=- curl curl curl (ky,)= - <—-—-— Vi, — Vi, 0). (37)
0 o ay ox

The irrotational motions §, are associated with substantial changes in pressure and density, and
are driven by forces arising from their imbalance. Therefore, the ¢, motions constitute the
dominant components of acoustic or p modes.

For {, motions div (0¢,)=0. We shall refer to them as ‘weighted’ solenoidal or for brevity only
as solenoidal fields. They are poloidal as well. In a fluid of uniform density and pressure or in
convectively neutral fluids (dP/do=[dP/dg]..), these displacements do not disturb the
equilibrium state and remain neutral motions. For a stratified fluid that is convectively non-
neutral, however, they induce weak perturbations and give rise to g or convective modes.

Motions of the type ¢; are toroidal in the sense that they are confined to the x—y plane. With or
without the ‘weight’ o, they are solenoidal, div(o¢)=div({;)=0. They do not perturb the
equilibrium (even for a stratified medium) and are, therefore, neutral in the absence of magnetic
forces. In the presence of a magnetic field, however, toroidal motions induce restoring Lorentz
forces, which give rise to Alfvén waves.

So far we have introduced several trios, namely {w(1), w(2), w(3)}, {{,, {z. -} and {p modes, g
modes, ¢t modes}. There is a close one-to-one correspondence between the members of these
trios. It is tempting to suggest a group structure and to consider them as equivalent representa-
tions of one another in the group theoretic sense of the word. One of us (YS) is exploring this
analogy further, and the results will appear elsewhere.
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3.1 ORTHOGONALITY OF p, g AND { DISPLACEMENTS
An immediate conclusion to follow from equations (34)—(37) is the subdivision of the Hilbert

space H into three orthogonal subspaces H,, H, and H,, with elements ¢, ¢, and ¢, respectively.
The orthogonality of H, with respect to H, and H, is seen from

f dx gg“;,“{g,;—-f dx Vy - curl A=f dx x; div curl A=0. (38)
The orthogonality of H, with respect to H, is seen from
1 PyF 9 Py¥ 9
dx ol = | dx— |- —"5% —Viy+ ££ — V2 )=O. 39
f SRS f 0 ( 0xdz dy & dydz ox & (39)

That the integral in equation (39) vanishes follows from an integration by parts and noting that
o is independent of x and y.

4 Ansatz for the scalar potentials

We consider displacements, which have vanishing normal components on the boundaries, i.e. on
the planes z=0, d; x=0, a and y =0, b. At the lower boundary (the plane z=d), this choice may be
reasonable, if the bottom of the tube is sufficiently deep, so that the density is high enough. The
assumption of perfectly reflecting boundaries, however, is not crucial to the analysis and has been
made primarily for mathematical convenience.

4.1 ANSATZ FOR THE p MOTIONS
We assume the following choice for the scalar p potential

i (L) " s (@) cos <’£fz> cos (’&)
X7 =\ abd a b d )

It is convenient to normalize all lengths by some fixed quantity, say /,. Let [,=d/x, and redefine
Xp as

., 2 32
y k= (—) cos (i'x) cos (j'y) cos (kz) (40)
T

where i’=i(d/a) and j' = j(d/b). Henceforth, the primes on i and j will be dropped. The integers i
and j turn out to be the horizontal wavenumbers of an eigensolution & of equation (14). Due to
the stratification in the z direction, however, the third integer k is not a wavenumber. A super-
position of terms with different k is required to construct an eigensolution. For brevity, only the k
designation is retained. Using equations (16)—-(18) and (35) yields

{k= <g> 3/2 [i sin (ix) cos (jy) cos (kz), j cos (ix) sin (jy) cos (kz),

4
k cos (ix) cos (jy) sin (kz)] (41)
div £k=(2+j2+k?) yk (42)
2\ 312
Opk=—p div {§~ (;) o'k cos (ix) cos (jy) sin (kz) (43)

2 32
OBk=— (;) Blik sin (ix) cos (jy) sin (kz), jk cos (ix) sin (jy) sin (kz),

(i%+j?) cos (ix) cos (jy) cos (kz)] . (44)
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where o' =do/dz. The displacement {% satisfies the boundary conditions. The completeness of
the set {{§} in the subspace H,, follows from the completeness of the trigonometric functions used
in equation (40). This set will be used as a basis for H,. Note, however, that the s2t is not
orthonormal in the sense of equation (32).

4.2 ANSATZ FOR g MOTIONS

In what follows g, the density at z=01is introduced to keep the dimensions of {, the same as that of
¢,- Using the same normalization for length as the previous section, we choose

2\ 32
JE= (;;) 0o cos (ix) cos (jy) sin (kz) (45)

3
$k= (;%) / %) [—ik sin (ix) cos (jy) cos (kz), —jk cos (ix) sin (jy) cos (kz),

(12+j2) cos (ix) cos (jy) sin (kz)] (46)

div §§=‘<g> ” (2 +]'2)Q(%’ cos (ix) cos (jy) sin (kz) (47)
x 0

005=0 (48)

2\32 ko,B /
OBL= (—) 0 {i sin (ix) cos (jy) [k sin (kz)+Q— cos (kz)],
Y o

1
j cos (ix) sin (jy) [k sin (kz)+% cos (kz)],

(475?) cos (ix) cos (jy) cos (kz)}. (49)

It may be noted that dg, vanishes and that div ¢, depends on ¢'. The implication is that ¢, motions
induce no pressure forces. They do, however, contribute to buoyancy and magnetic forces. Thisis
in contrast to g, and div ¢,, which can be fairly large. Like before, {{} is complete in H, and wili
be used as a basis.

4.3 ANSATZ FOR { MOTIONS

In equation (37) and the subsequent equations, only the combination V?y,/¢ and its x and y
derivatives appear. Since g is not a function of x and y, the combination V2y,/o is redefined and
denoted by y,. We choose

2\ 32
yk= (;) sin (ix) sin (jy) cos (kz) (50)
2\ 32

(= <]—r) [j sin (ix) cos (jy) cos (kz), —i cos (ix) sin (jy) cos (kz), 0] (51)

div £5=0 (52)

S0=0 (53)
2\ 32

OBi= (—) B[ = jk sin (ix) cos (jy) sin (kz), ik cos (ix) sin (jy) sin (kz), 0]. (54)
7z
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It may be noted that both dg, and div ¢, vanish, implying that there are no pressure and buoyant
forces. This ensures the neutrality of toroidal motions in the non-magnetic case. The presence of a
magnetic field, however, will drive Alfvén waves, thereby generating ¢ motions. Once again {8}
complete in H, and can be used as a basis set.

5 Matrix representation in H

We give a brief description of the procedure used to construct a solution of equation (26). For
details, the reader may consult Sobouti (1977a, b and 1986). Let &; be a vector in H and denote an
eigensolution of equation (14) or its equivalent (26), corresponding to the eigenvalue w?*=¢;. The
subscript i completely specifies the eigensolution in terms of p, g or t and all three wavenumbers.
Let {{;} be a basis for H, where j has the same meaning as i. Expanding &, in terms of {{}}, we have

‘fz:E ;jzji (55)
j

where Z; are constants of expansion, which will be treated as variational parameters. Substituting
equation (55) in equations (26)—(28) and using a variational technique to minimize the eigen-
values, gives the following matrix equations (Sobouti 1977a)

WZ=SZE (56)

where E is a diagonal matrix, whose elements are the eigenvalues ¢ and Z=[Z;] is the matrix of
the variational constants. The elements of S and W are (using equations 27-30)

Sq:J dx ol ¢; (57)
W;=W;(1)+W;(2)+W;(3) (58)
1 dP
W;(1)= | dx — — dpdg; 59
(1) f X 40 0070 (59)
Wij(2)=f dx aP div {Fdiv & (60)
1
W;(3)= py fdx OB} OB;. (61)

Thus, given a basis {{;}, the S and W matrices can be calculated. A solution of equation (56)
will then consist of finding E and Z. The Z matrix simultaneously diagonalizes S to the unit matrix
and W to E. Thus,

Z'WZ=E, (62a)
2+SZ-=I. (62b)

The proof is straightforward and is given in Appendix Al.

5.1 PARTITIONING OF MATRICES

The basis for H will be partitioned as follows: {¢%|¢% |7} k,I,m=1,2, ... . The various blocks
are given in equations (41), (46) and (51). We partition the matrices of equation (56) into blocks
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specified by pp, pg etc. Thus,
MPP Mpg MP’
M=\ M, M, M, (63)
M, M, M,

where M=E, Z, W, S. Some of the blocks from every matrix are zero as we shall see in the
following section.

6 Block structure and elements of S and W
6.1 THE S MATRIX

Using the orthogonality of ¢, {, and ¢, expressed by equations (38) and (39), we find that S is
block diagonal. Thus,

Spp
S= See : (64)
St
A typical element of the pp block, S, say, is obtained by introducing % and ¢}, into equation (57)

and integrating over the volume of the flux tube. Explicit expressions for the block elements of S
are given in Appendix A2.

6.2 THE W MATRIX

Recalling that W=W(1)+W(2)+W(3), it is convenient to consider each term separately. In
W(1), only the pp block is non-zero as the p displacements are solely responsible for changes in
S¢. Thus,

W, (1)
W(1)= o | (65)
0

Since, div{,=0 the W(2) matrix has no contribution from ¢ motions. Its explicit block form is

pr(z) ng(2) 0
W(2)= ng(Z) ng(2) 01. (66)
0 0 0

Expressions for the block elements are givenin the Appendix A4. We note that each term in W(2)
(from equations A9-A12) is proportional to a. For a polytrope of index n, a=y—(1+1/n). A
convectively neutral fluid is defined as one in which =0 and, therefore, W(2)=0.

The matrix W(3) has the following structure

pr(3) ng(3) 0
W(@3)= ng(3) ng(3) 0 (67)
0 0 W.(3)

where expressions for the block elements are given in A3. The W(3) matrix is wholly due to the
magnetic field and vanishes when B=0.
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Combining equations (65), (66) and (67) gives
W, (1)+W,,(2)+W,,(3) W,(2)+W,(3) 0
W =|W,02)+W,(3) W (2)+W,(3) 0 . (68)
0 0 W,(3)

7 Block structure of E and 2

The matrix of eigenvalues is by definition block diagonal. Thus,

8 (69)
E,

where each block is itself a diagonal matrix. From equations (65) and (66), we find that there are
no mixed pt or gt blocks in either S or W. This means that there is no coupling between toroidat
motions and p or g motions. Therefore, Z has the following structure

ZFP Zl’g 0
2=\ Zy Zy 0 | (70)
0o 0 Zz

Two conclusions follow: the first is that there are pure toroidal modes given by
W, Z,=S,Z,E, (71)

and the second is that the remaining modes have both g and p components, which are solutions of
the following equation

[WPP ng:l |:ZPP ZP8:| — [SPP 0 :| [ZPP ZP8:| I:EP 0 ] ___0 (72)
WHP ng ZSP Zgg 0 Sgg ng Zgg O Eg

Before, attempting a general solution to equations (71) and (72), it is useful to consider some
special cases.

8 Special cases

Let us recall the correspondence between various members of the trios we discussed in Section 3.
Pressure forces are important if the motions are dominated by the irrotational displacement ¢,.
These contribute to W(1). Buoyancy forces, acting through W(2), are most effective when the
displacements are of the solenoidal poloidal type {,. Magnetic forces, which give rise to W(3), are
created by all three displacements ¢, {, and ¢,. It may, however, be noted that ¢, appears only in
W(3), and may thus be considered as generating motions induced purely by Lorentz forces. To
see the interplay of the various terms in W and their relative importance with regard to the mode
spectrum, we first treat some idealized cases.

8.1 UNSTRATIFIED AND NON-MAGNETIZED MEDIUM

Absence of gravity implies a fluid with uniform density and pressure. Buoyancy is absent and the
only non-vanishing contribution in W comes from W(1). On evaluating the various integrals in
W(1) and S, we obtain the following dispersion relation (see Appendix A4 for details)

w?=1*c? : (73)
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where [ and ¢, respectively denote the wavenumber and sound speeds given by I>=i?+j>+ k? and
ct=yP,/0,. Equation (73) is the usual dispersion relation for acoustic waves, which are driven by
pressure forces. The frequencies increase with mode order, since high mode orders imply steeper
pressure gradients. Solenoidal motion of g and ¢ remain neutral.

8.2 UNSTRATIFIED AND MAGNETIZED FLUID

In addition to W(1), we must now also consider the contribution due to W(3). The W matrix in
equation (68) takes the following form

W,(1) W,(3) 0
W=| Wy, (3) Wi(3) 0 ‘ (74)
0 0 W(3)

It is readily seen (see A4) that the dispersion relation is
(0*—Kv))(w*—wH*(cHv)+ Kk civ?) =0 (75)

where v, is the Alfvén speed given by v,=B/4r0,. Equating the first factor in equation (75) to
zero yields the usual dispersion relation for Alfvén waves. These are pure ¢ motions, uncoupled
from the rest, with frequencies which increase with mode order. Similar to p motions, the reason
is that the magnetic forces depend on the spatial derivatives of B, which decrease with decreas-
ing wavelength.

Equating the second factor in equation (75) to zero yields the conventional dispersion relation
for fast and slow waves, which correspond respectively to the positive and negative roots given by

X P(c2+v?) iy 4k3c? 26
W= ——— - —
2 V(4 02) (76)

where ¢,=c,v,//c2+v2. In the limit £/l — 0, which corresponds to the slender flux tube approx-
imation, the fast and slow mode frequencies are respectively

P(ci+vi)
2
wi=kck (78)

wi=

(77)

Equation (78) is also the dispersion relation for a slender flux tube (Roberts & Webb 1978), which
suggests that the normal mode is essentially a slow mode propagating with the ‘tube speed’ ¢,. For
both fast and slow modes, the frequency increases with mode number. Slow modes have one
important property in common with g modes of a stratified fluid; in both the dominant component
is the solenoidal poloidal vector &,. Similarly, the fast modes resemble p modes due to a large
contribution from the ¢, component.

9 Stratified fluid

We now consider the general case of a stratified fluid in the presence of a magnetic field. Owing to
the mathematical complexity of the problem it is convenient to attempt a numerical solution to
the generalized eigenvalue problem.

9.1 NUMERICAL METHOD

A Rayleigh—Ritz variational scheme was adopted to solve equations (71) and (72). We approxi-
mate the linear series in equation (55) by a finite number of terms, say #. The matrices entering in
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Table 1. The frequency w? for different modes and orders in an
unstratified magnetized medium, assuming v2/c2=1.5, y=5.3 and

i=j=10.

k
Mode 1 2 3 4 5
g 0.834 3.35 7.58 13.6 21.4
t 1.00 4.00 9.00 16.0 25.0
p 669 677 689 706 729

equations (71) and (72) are truncated to nXn. We solve these equations using standard algorithms
for generalized eigenvalue problems. Briefly, the method consists of using a sequence of unitary
transformations to convert the W and S matrices into quasi-triangular and upper triangular forms
respectively. Eigenvalues (w?) can now be most conveniently extracted. The method also deter-
mines the eigenvectors (i.e. the variational parameters Z). We calculate the integrals, appearing
in the W and S matrices, using Simpson’s rule. In the computations, up to a maximum of 26
variational parameters were used, 13 for each of the p and g terms.

We checked our numerical procedure by firstly treating the case of an unstratified magnetized
fluid, which was discussed in the previous section. Results are shown in Table 1, where w? is
tabulated for the first five modes, assuming y=5/3, v2/c?=1.5 and i=j=10. (Henceforth, we shall
implicitly assume i=j.) Frequencies are in units of wy=Py/l}0o= Jm2Py/d*g,, where lyis the unit
of length and chosen such that ly=d/x. A comparison with equation (75), shows perfect
agreement for all the modes (p, g, t).

In the following sections, we shall consider various cases of possible physical interest.

9.2 STRATIFIED NON-MAGNETIC FLUID

The matrix W has contributions from both W(1) and W(2). When the motions have a large ¢,
component, W(1) dominates, whereas W(2) is important for motions with large ¢,. Due to the
non-vanishing of the off-diagonal block of W(2), there is an interaction between &, and ¢,
motions; one excites the other. The modes exhibit the well-known bispectral feature, which may
be seen in Fig. 1. Plotted is the variation with k (vertical mode number) of w? for both p and g

10 1 1 1 1 i
] A
/4"’6—’
p_ -t
//‘A—’/
U
14 L
3
0 \\ j
10° ; ; ] ; '
%] 1 2 3 4 5 6

Figure 1. Variation of the dimensionless frequency @ with k forn=2.0, h=0.5,i=1and y=>5/3. Solid and dashed lines
correspond to g and p modes respectively.
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Figure 2. Frequency-dependence of g and p modes (solid and dashed lines respectively) with & for an unmagnetized
and almost convectively neutral fluid (n=1.501), assuming ©=0.5, y=5/3 and i=1.

modes assuming £=0.5,n=2,y=5/3 and i=1 (the pressure scale height 4 is measured in units of
ly). The p spectrum has a sequence of increasing frequencies with mode order, for reasons already
explained. The g frequencies decrease with &, accumulating at zero. This is due to the nature of
buoyancy, which is a body force that becomes vanishingly small for perturbations with decreasing
wavelength or increasing wavenumber. Mathematically, the behaviour of p mode and g mode
frequencies is related to the sturmian and anti-sturmian properties respectively of the modes
(Roberts 1985). Toroidal motions remain neutral in non-magnetic fluids.

It is tempting to consider the case of a convectively neutral fluid (o =0), for which W(2)=0. In
such a fluid, only acoustic (p) modes can occur; the g and ¢ motions are neutral. If a#0, but is
small, g motions are also excited. Up to order a2, however, they remain purely of ¢, type (Sobouti
& Silverman 1978). In the present problem, this can be seen from equation (72), by expanding
W,e, W,, W, and E, in powers of a and retaining only first-order terms. We can, therefore,

8 L

T T T T T

L
9] 1 2 3 4 S 6

Figure 3. Frequency-dependence of g (solid lines) and r (dashed lines) modes with k for a weakly magnetized
(B/47Py=10-%) and almost convectively neutral fluid (r=1.501) assuming #=0.5, y=5/3 and i=1.
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Figure 4. Frequency-dependence of g modes with k, for a convectively unstable fluid (#<0), assuming n=1.0,
h=0.5, y=5/3 and i=1. Solid and dashed lines correspond to B=0 and B?/47P;=0.05 respectively.

conclude that a slightly convectivley non-neutral fluid has pure p and g spectra. The frequency
behaviour is shown in Fig. 2 for n=1.501 and A=0.5 (other parameters remain unchanged).

Let us now consider the effect of a small magnetic field on an equilibrium which is slightly
convectivley non-neutral. Fig. 3 shows the g and ¢t modes for B?/4xP,=1075. The simplest to
understand is the toroidal spectrum, which consists of standing Alfvén waves. We have not
plotted the acoustic or p branch, as it is the same as the unmagnetized case shown in Fig. 2.
However, the g spectrum is completely different than before. It appears, that the introduction of
even a minute magnetic field can entirely alter the w—k dependence. The short-wavelength limit
behaves like the slow spectrum of an unstratified magnetized medium. On the other hand, the
long-wavelength limit is similar to the g spectrum of a stratified unmagnetized fluid. This explains
the peculiar form of the spectrum, in which w? first decreases with k, but subsequently increases
with k, when magnetic forces become dominant. There is no frequency accumulation at zero for
large k.

The case of a convectively unstable medium is also interesting. In the absence of a magnetic
field, it has a sequence of negative eigenvalues (w?<0), with an accumulation point at zero. Fig. 4
shows w? as a function of k for an unmagnetized (B=0) and magnetized fluid (B%/47P,=0.05),
shown in full and dashed lines respectively, assuming n=1.0. We find that a modest field can
completely transform an unstable g spectrum and replace it with a slow spectrum, which is stable.
The stabilizing effect of the magnetic field enters through W(3) (proportional to B?), which is
always positive.

10 Intense flux tubes

We now consider a range of parameters that may be applicable to intense flux tubes on the Sun.
Let us choose the level z=0, to correspond to the height in the photosphere where the (con-
tinuum) optical depth is unity. The polytropic index » is not a constant, but varies from about 1.0
near the surface to about 3.3 at a depth of a few hundred kilometres. In order to compare our
results with those of Webb & Roberts (1978) for a slender flux tube, we take n=2.3, h=0.076,
d=2000km, S=2/y [corresponding to their choice of Ag=—0.3, Ay(0)=Py/0,g=152km and
v%(0)/c¥0)=1], y=1.2 and i=10. The latter value ensures that we are dealing with a tube of
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Table 2. The frequency w?(s~2) for different modes and orders in an
intense flux tube, assuming n=2.3, h=0.076, d=2000km, y=1.2,
F=2/y and i=10.

k
Mode 1 2 3
g —6.04x10-3 ~1.73x10-5 3.40x10-3
t 6.73%x10-¢ 3.63x10-5 8.40x10-5
p 5.37%x10-2 5.93x10-2 6.76x10-2

thickness a, which is much less than its length d. Table 2 shows the eigenfrequencies of the first
three g, t and p modes obtained as a result of using 26 variational parameters (i.e. k., =13). As
already discussed in Section 8.1, the relevant mode which should be compared is the g, mode.
This is essentially a convective mode, modified by the magnetic field with a growth rate
7.7%107%s~!. Webb & Roberts found a maximum growth rate 5.3x10~*s~!, which appears to
be in reasonable agreement with our result, considering that their equilibrium had T=T, in
contrast to o=g,, assumed by us. They, however, briefly discussed, without actual calculation,
the latter case and showed that a sufficient condition for stability is the same as the criterion found
by Gough & Tayler (1966).

Fig. 5 shows a plot of the frequency as a function of the mode number & for the g, f and p modes,
assuming n=1.0 and i=5 (other parameters remaining the same). The branch for the g modes
starts at k=2, as the lowest order mode is unstable. For low orders, the frequencies are well
separated, but as k increases the ¢ (Alfvén) and g branches become practically indistinguishable
(for low values of ). The reason for this is because at high values of k, the g mode is essentially a
slow mode, with a phase speed approximately the Alfvén speed (c;increases with z faster than v,).
Athigh k, the p mode is an acoustic mode travelling with a phase speed ¢;>v,. This explains why
the p branch remains quite distinct from the other two branches. In the actual computations, we
did not encounter practical difficulties in the determination of the g and ¢ modes, when their
frequencies became very close, because we used two separate equations (equations 71 and 72).

We now turn our attention to the behaviour of the eigenfunctions, corresponding to the
eigenvalues shown in Fig. 5. In Fig. 6(a-d), the variation of £,,, &,., 6 P, and 6 P, with depth

w (s

1074

4

103 ,
%] 2 4 ) 8 10 12 14

Figure 5. Variation of w(s~!) with k in an intense flux tube, assuming n=1.0, #=0.076, y=1.2, f=2/y, d=2000km
and /=5. The g, ¢t and p branches are explicitly marked in the diagram.
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Figure 6. Variation parallel to the tube axis with depth z (in units of d) of the (a) vertical displacement in g motions
(&;.), (b) vertical displacement in p motions (&,,), (c) relative Eulerian perturbations in pressure in g motions
(6P,/P), (d) relative Eulerian perturbations in pressure in p motions (6P,/P), assuming the same parameters as in
Fig. 5. The solid and dashed lines correspond to the first and second mode orders.

(measured in units of d) along the z axis are shown for the lowest two orders (k=1, 2). All
quantities are normalized with respect to their maximum values in the interval (0, /7). The main
difference in the behaviour of the displacement &, for the g and p modes is that the former has a
substantial contribution over the entire height range, whereas the latter is more or less confined to
the upper regions of the tube. In the conventional terminology, the g, mode, with no node, could
be identified as the fundamental. It is an unstable g mode, which occurs when N2, where Nis the
Brunt-Viisala frequency, becomes negative. The localization of the p modes to the top layers
of the tube, suggests the presence of a cavity. An acoustic wave propagating downwards into a
region of increasing sound speed, suffers refraction until its vertical wavenumber becomes zero.
Beyond this point, the wave is evanescent, which mathematically corresponds to a sharp decrease
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Figure 6 — continued

in wave amplitude with depth. Acoustic waves, with large horizontal wavenumber (large i), suffer
appreciable refraction and consequently do not penetrate deep layers. We have also plotted the
Eulerian changes in pressure associated with the p; , and g, , modes. It might be noted that all the
eigenvectors are arbitrary to a multiplicative constant. Thus, it is not possible to say anything
about their relative magnitudes. However, by looking at the z variation, we find that the local
phase difference between 6 P and &,, for both modes, changes with z, owing to the stratification.
For the g modes, 6 P and £, appear to be anti-correlated, with the phase difference increasing with
z from about 7z/2, near the top, to some value below 7 in the deeper layers. The variation of 5 P
and &, for the p modes close to the surface appears to be correlated. We can correlate 8 P with ov,,
by recalling that the latter has a phase difference of 7/2 with &,.

Let us finally consider the effect of varying the horizontal mode number (i), the polytropic
index (n) and the magnetic field (5) on the eigenfrequencies. The results are presented in Tables
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Table 3. The lowest order frequency w*(s-2) of the g and p modes for
various i, assuming n=1.0 and 8 =2/.

Mode 1 5 10
g —1.88x10-3 —4.93x10-3 —6.01x10-3
D 3.62x1073 1.58x10-2 5.37x102

Table 4. The frequency w?(s-2) of the lowest order g, fand p modes
for various n, assuming #=2/y and i=3.

n

Mode 1.0 1.8 2.3

g —7.66x10-5 —5.70x10-5 —4.93%10-3
t 2.77x10-5 1.10x10-5 6.73%x10-¢
P 1.89x10-2 1.68x10-2 1.58%x10-2

Table 5. The frequency w? of the lowest order g, ¢t and p modes for -
different £, assuming n=1.0 and i=35.

B
Mode 1.5 3.0 10.0
g —6.87x10-5 —-1.17x10+ —1.82%x10
t 3.07%x10-5 1.54%x10-5 4.61x10-¢
p 1.94x10-2 1.68%x10-2 1.51x10-2

3-5. We find that lowering » has a destabilizing effect on the convective modes (i.e. the low-
order g modes), due to an increase in the buoyancy force. However, increasing n or decreasing 8
has a stabilizing influence, owing to a decrease in superadiabaticity (through larger @) and
increase in magnetic field strength respectively. In order to understand the effect of varying n on
the ¢ and p modes, let us note that at a fixed depth in the tube, dg/dn>0and dT/dn<0 (for fixed
00 and Ty), and thus the Alvén speed and sound speeds increase and decrease respectively with
increasing . These, however, are the phase speeds of the tand p modes, thus explaining the trend
in Table 4. We have omitted the ¢ modes in Table 3, since they have no i-dependence (their
frequencies are proportional only to k). The p-mode frequencies are proportional to the total
wavenumber ({i2+j2+ k?) and increase with i. Lastly, increasing the magnetic field (or decreasing
B) increases the Alfvén speed and consquently the frequencies of the ¢ and to some extent of the p
modes (see equation 77).

11 Discussion and observational implications

We have used a gauged version of Helmholtz’s theorem, following Sobouti (1981), to classify the
various types of wave motions that can occur in a magnetized fluid. The decomposition of the
perturbations into p, g and t components has a physical basis (related to the various forces present
in the fluid), thereby, greatly simplifying the task of mode identification. In practical terms,
decoupling the equation for the ¢ modes is greatly advantageous, since the frequencies of the
Alfvén and slow waves can become very close. We should also once again remind the reader that
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the notation p and g does not correspond to the conventional one, as used in helioseismology (see
review by Deubner & Gough 1984 on the conventional p- and g-mode nomenclature), and may
not adequately describe the nature of a MAG wave. It is, however, used because it reflects the
fact that the dominant contribution to an eigensolution, say &,, comes from ¢, motions.

In the analysis, we made a number of simplifying assumptions. We neglected the pressure
perturbation in the external medium, thus eliminating any dynamical coupling between the
medium and the flux tube. This coupling, will in general, not only excite surface modes, but also
alter the spectrum of body waves. The problem for an unstratified medium has been treated fairly
exhaustively by Roberts (1981a, b; see also Roberts & Webb 1979; Edwin & Roberts 1982, 1983;
Cally 1985a, b). For typical photospheric conditions, the essential modification due to inclusion
of the external perturbation, is that the slow body wave propagates with a higher phase speed
(between ¢, and v,) than before. The fast body wave also travels with a higher speed (between c,
and ¢, the sound speeds in the tube and external medium respectively). In addition, there is a
slow surface mode with phase speed lower than c,. If the external gas is only slightly hotter than
the gas inside the flux tube, the fast body wave speed is almost unchanged. Furthermore, when
the flux tube is sufficiently thin, both the surface and body waves have approximately the same
phase speed. It thus appears that neglecting the external perturbation may be a reasonable
approximation for a thin flux tube, which has comparable temperature with the external medium.
A rigorous calculation which treats this effect for the stratified case, would still be desirable.

Another approximation that we made was the assumption of a uniform magnetic field. This
assumption is unlikely to be correct, as we expect the field to increase with depth, so that the tube
narrows in cross-section with depth. Thus, we underestimate the Alfvén speed and neglect the
tension in the field, both of which will change the frequency spectrum. These effects will be
considered elsewhere.

Let us now consider some of the observational implications of our results. We found that for
flux tubes, extending vertically downward from the surface into the convection zone, there exists
typically one unstable mode (g;) with a growth rate of a few hundred seconds. The consequences
of this on the formation of flux tubes, through convective collapse have been explored in detail
elsewhere (Hasan 1984a, b). Higher order g modes are stable with frequencies increasing with
mode number and with values which are close to those of the Alfvén () modes. The p modes have
much higher frequencies, corresponding to periods which are typically of the order of seconds.
Regarding the eigenfunctions, we find that the g modes penetrate deep into the tube and are,
therefore, influenced by physical conditions existing over the entire extension of the tube. The
high i (=5) p modes have a significant contribution from a comparatively smaller height range,
and provide a useful diagnostic for probing the surface layers, similar to the global p modes,
whereas the g modes can reveal information about the deeper layers. The p modes of a thin flux
tube, however, have much higher frequencies than their global counterparts. Unfortunately, it is
difficult using present ground-based observational techniques, to detect oscillations in intense
flux tubes; thus a comparison must await a future date. On the basis of our fairly simple model, it
does not seem worthwhile to make detailed predictions. Nevertheless, we hope that our calcula-
tions provide some worthwhile information on the character of wave modes in intense flux tubes.
We are in the process of refining our calculations by considering an equilibrium stratification
based on a model atmosphere and choosing a tapered flux tube of circular cross-section. The
results of this investigation will be communicated in a forthcoming publication.

12 Concluding remarks

The purpose of this study was to delineate the type of motions that can occur in a stratified flux
tube. We have used a convenient technique which allows a natural classification of the modes.
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Our p modes are associated with motions that are mainly irrotational. The g and ¢ modes
correspond to solenoidal motions which are poloidal and toroidal respectively. We considered
some special cases to study the property of the different modes. In the absence of a magnetic field,
the p and g modes can be identified with modes that are mainly pressure- and gravity-driven
respectively. However, when a magnetic field is present, a straightforward interpretation of p and
g modes is not always obvious. The former can usually be considered as a gravity-modified fast
mode and the latter as a gravity-modified slow mode at high frequencies. At intermediate
frequencies, the g modes can exhibit a peculiar behaviour, when they neither resemble pure
gravity nor slow modes. For low mode orders and weak magnetic fields, the g modes behave as
conventional gravity modes. In the short-wavelength limit, however, gravity plays only a subsidi-
ary role and the g modes are essentially slow wave for all mode orders. The t modes can always be
identified with Alfvén waves.

We have considered a range of parameters, typical of conditions in the sub-photospheric layers
of the Sun. This allows us to approximately determine the frequencies and the height variation of
the perturbations in intense flux tubes. Such information is potentially important as a diagnostic
for finding out more about physical conditions in such tubes. Although, it is still premature to
make predictions on the precise frequencies that one could detect in fibrils, our study gives a
broad range of values in which the actual observations would lie. Calculations, that are presently
underway, are likely to provide values that could be used as a basis for comparison.
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Appendix
Al DIAGONALIZATION OF W AND S BYZ

We prove the assertion that a matrix Z exists, which simultaneously diagonalizes Wto Eand Sto |
(i.e. equations 62a, b).
Left multiplication of equation (56) by Z* gives

Z*WZ=2+SZE. (A1)
The Hermitian adjoint of equation (56) is
Z*W=E*Z"*S, (A2)

where we have used the property that W and S are real. Inserting equation (A2) in equation (A1),
yields

E*Z2*SZ-2*SZE=0. (A3)
A diagonal element ii of equation (A3) is
(ef —€)(Z2*SZ);=0

since E and E* are diagonal. This leads to the relation £ =¢;, so that ¢;is real. Next, let us consider
an off-diagonal element ij of equation (A3)

(8,’" 51)(Z+SZ),J= 0.
If £;#¢;, we conclude that
(2+82),=0. (A4)

In the degenerate case, £=¢; and the conclusion does not follow. There is, however, enough
freedom to impose it within the subspace of the degenerate eigenvalues by, say, a Schmidt
orthogonalization. This proves relation (62b). Substituting this relation in equation (A1) gives
the other relation (62a). Q.E.D.
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A2 MATRIX ELEMENTS OF S

We can carry out the x and y integrations that appear in equation (57) analytically. Usmg
equations (41), (46) and (51) gives

2 7T
Spp == 00 f £ [(2+7?) cos (kz) cos (Iz)+Kl sin (k2) sin (I2)] dz (AS)
T 0o Qo
2 T
SK == (+7%) 00 f % [kl cos (kz) cos (Iz)+(i%+)?) sin (kz) sin (I2)] dz (A6)
0
W_2 . T
Si == (2+j%) 00 | — cos (kz) cos (Iz) dz. (A7)
n 0 Qo

A3 MATRIX ELEMENTS OF W

Performing the integrations in equations (59), (60) and (61) and using equations (40)—(54) yields

2 [ dP y
Wﬁé(l) = fo 0 % [(i2+j2+k2) cos (kz)+% k sin (kz)]

X [(i2+j2+12) cos (Iz) + %’ I sin (lz)] dz (A8)
W’;ﬁ,(Z) =;2; (z'2+j2+k2)(i2+j2+[2)J'ﬂ aP cos (kz) cos (Iz) dz (A9)
0
W"l g(2)=—— (z’z+]2+k2)(12+]2) gof aP %; cos (kz) sin (I2) dz (A10)
0
Wap(2)=Wp(2) (A11)
we(2) = 2 (2+/2)? 03 f " ap Q—I;sin (kz) sin (Iz) dz (A12)

T 0 Y
Wp(3) = %i P+ (2+]*+K) Oy (A13)
Wh(3) = - B—z - (@4 f (%)

X {k sin (kz) [l sin (Iz) + % cos (lz)] +(i2+j?) cos (kz) cos (lz)} dz (A14)
Wi(3)=Wke(3) (A15)
WE(3) = Bi; (2+ )kl f i} <@> 2 {[k sin (kz) + ¢ cos (kz)] [1 sin (Iz) + ¢ cos (lz)]

21 0 Y o o

+(i%24j?) cos (kz) cos (lz)} dz (A16)
WHG) = (247 Kby (a17)
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A4 DISPERSION RELATION FOR AN UNSTRATIFIED FLUID
For an unstratified fluid, the z integrals appearing in S; and W, where i, j=p, g, t become

trivial. The only non-vanishing elements are W’;L(?:) given by equation (A13), W¥(3) given by
equation (A17) and

Wi (2)=(+>+k*)? yPy Su (A18)
N - o W

Wpe(3) = We,(3) = e (B4 (242 + k%) ko (A19)
kl BZ 24 T2\ (72472 2 2

We(3) = ZJ—I (P47 (2 +j2+K?) K26y (A20)

Sk=00(i+j*+k?) Sy (A21)

Sgg=0o(i2+))(I2+*+k?) Sy (A22)
¥=00(i+J?) S (A23)

From equations (71) and (72), we find that the condition for a non-trivial solution is

(Wpp = @S ) (Weg— ?S0) = W W, =0 (A24)

and

W,—a?S,=0 (A25)

where W,,=W,,(2)+W,,(3), W,=W,(3) and W,,=W,,=W,(3). On substituting equations
(A13) and (A17)-(A23) in (A24) and (A25), we obtain the following relations

[w* =M X2+ v2)+kH i) =0 (A26)
(0*=k*2)=0 (A27)
where c¢z=yP,/p, and v2=B?/4mp,. For an unmagnetized fluid, B=0 and equation (A26) yields

the following relation

w* =l (A28)

Note added in proof

The vanishing of the third surface term of equation (24), (B -n) (£ 0B), can best be seen through
the ansatz of Section 4. This expression vanishes on the flux tube on account of n-B=0. It
vanishes on the planes z=0 and d for p and ¢ motions on account of the ansatz of equations (41),
(44) and (51), (54). It vanishes for g motions if o' =0 on these planes; see the g ansatz of equations
(46) and (49). For the sake of simplicity, however, we have left out this last refinement in our
calculations for polytropes.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1987MNRAS.228..427H

