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1. Introduction 

Thrbulence is as ubiquitous in nature as it is elusive. The fact, that it is not mere randomness . ' merits more exploration. Coherent structures, correlated motIons and wcll- defined patterns are 
observed on a variety of spatial and temporal scaJes in otherwise turbulent media. Organized states 
of matter and motion can be seen in, convection cells, cloud complexes, tornados, cyclones, zonal 
flows on planetary surfaces, the Red Spot of Jupiter, solar and stellar granulation, spiral patterns 
of galaxies and perhaps ourselves! The universality of its( turbulence) existence has inspired the 
investigators to look for universal characteristics such as the large Reynolds Number, a consequence 
of the large nonlinearity. The dimensional arguments of a la Kolmogoroff to delineate the spectral 
distributions has proved to be another rewarding route to pursue this otherwise forbidding field. 
The Taylor Relaxation hypothesis is a further attempt to understand the evolution of any nonlinear 
system in terms of its global properties such as the invariants. The macroscopic turbulence is often 
modeled using ideal magnetohydrodynamics. We determinc the spectra of the velocity and the 
magnetic field fluctuations within the framework of the two fluid picture including specifically the 
Hall effect. It is shown that the HaJl magnetohydrodynamics (HMHD) supports three quadratic 
invariants viz the total energy, the magnetic helicity and the generalized helicity. The nonlinear 
states depart fundamentally from the Alfvcnic state challenging the much believed concept of the 
equipartition of the kinetic and the magnetic energy densities. Using the dimensional arguments "a 
la Kolmogoroff', we derive the spectral energy distributions corresponding to the three invariants. 
These distributions are stringed together by invoking the hypothesis of the selective dissipation which 
has proved its efficacy in the two- dimensional hydrodynamic turbulence. We apply the results to 
three different situations namely: (i) the solar wind spectra, (ii) the solar atmospheric turbulence, 
the solar granulation, and (iii) the laboratory experiments. 

The model reproduces in the inertiaJ range the three branches of the observed solar wind mag­
netic fluctuation spectrum - the Kolmogorov branch 1-5/ 3 steepening to j- 0 1 with 0:1 ~ 3-4 on the 
high frequency side and flattening to r l on the low frequency side. These fluct.l1at.ions are found to 
be associated with the nonlinear Hall-MHD Shear Alfven waves. The spectrum of the concomitant 
whistler type fluctuations is very different from the observed one. Perhaps the relatively stronger 
damping of the whistler fluctuat.ions may cause their unobscrvability. 

The additionaJ structure imparted to the spectral laws (by the inclusion of the generalized 
helicity) allows us to reproduce, remarkably well, the essentials as well as the details of the observed 
spectra of the motions and the magnetic fields of the solar atmosphere on the scales of a few thousand 
kilometers. . 

In a recent study, the properties of the large scale tllrbulencc have been investigated theoretically 
and ClCperhnentally concluding that the kinetic energy spectrum goes as k l/3 at large spatial scales 
and citing a few examples for the existence of such a spectrum in natural systems. We showed that 
the 1/3 spectrum for the kinetic energy is a direct consequence of the magnetic hclicity invariant 
of the Hall- MHD turbulence. We present the simultancous kinet.ic and magnctic ellcrgy spectra 
and propose the vcrifimtioIl of the latter in the laboratory and natural systems. The paper ends 
with some possible future directions of research in this fidei. The esscntials of the Hall- Magnetohy-
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drodynamics (HMHD)have been presented in section 2. The key aspects along with a discussion of 
the quadratic invariants, are summarized in Section 3. In Section 4, the respcctive spectral energy 
distributions are derived. The spectral distributions so obtained are then compared and contrasted 
with the inferred distributions on the solar wind ( section 5), solar granulation ( section 6) and the 
laboratory experiments ( section 7). Naturally the new element, the generalized helicity, and its 
consequences will spell the departure of this work from the previous literature. 

2. Hall-MHD system 

In the HALL-MHD, comprising of the two fluid Model, the electron fluid equation is given by 

men. [a~e + (Ve.~)Ve] = -~Pe - en" [E+ ~Ve x B] 

Assuming inertialess electrons (me -+ 0), the electric field is found to be: 

1 1 
E=--V"xB--~p •. 

c nee 

The Ion fluid equation is : 

mini [a~i + (Vi.~)Vi] = -V'Pi + eni [E + ~Vi X B] 

Substitution forE from the inertialess electron Eq. begets: 

The magnetic Induction Eq. becomes: 

aB 7ft = -cV' x E = ~ X (Ve x B), 

where B is seen to be frozen to electrons. 
Substituting for Ve = Vi - J jen, one gets: 

~~ = V' x (Vi - ~) x B. 

We see that B is not frozen to the ions, ne = nj = n. 

(1 ) 

(2) 

(3) 

(4) 

(5) 

(6) 

The Hall term dominates for (nec)-l J X B ~ Vi X B/c or L:.:; MAc/Wpi and T ~ wci 1, where 
L is the length scale, Wpi is the ion plasma frequency and Wei is the ion cyclotron frequency. The 
Hall term deeouples electron and ion motion on ion inertial length scales and ion cyclotron times. 
Hall effect does not affect mass and momentum transport but it does affect the energy and magnetic 
field transport. 

3. HMHD, nonlinear solution, invariants 

It is well known that the Alfvenic state is an exact solution of the nonlinear MHD [11. This prompts 
one to speculate if a similar kind of an exact solution exists for Hall MHD (HMHD), a system which 
encompasses MHD, but can sustain a much richer spectrum of plasma states not accessible to MHD. 
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In the Alfvenic units with the magnetic field B normalized to an ambient field, the velocity 
V normalized to the corresponding Alfvcn speed, time and space variables, respectively, measured 
in units of the ion gyroperiod W;l = mc/qBo, and the ion skin depth Ai = c/wpi, where Wpi = 
(4trcfn/m;)1/2 is the iGn plasma frequency. the following dimensionless equations 

constitute Hall MHD. 

8B at = V x [(Vi - V x B) x B] , 

8(B + V x Vi) = V x [Vi x (B + \l x Vi)] , 
at 

(7) 

(8) 

Notice that in Eq. (8), obtained by taking the curl of the ion force balance equation, the 
pressure gradient term 'Vp/n has disappeared because it has been assumed to be a perfect gradient 
(by invoking an equation of state p = pen), for example}; the pressure has not been neglected. 

We will, first, recount the essential elements of the recently found fully nonlinear wave sustained 
by Hall MHD [2]. This arbitrary amplitude wave contains the standardAlfvenic ( Whistler) nonlinear 
state as its long (short ) wavelength limit. The most important aspect of this wave is the wave­
number dependent relationship 

(9) 

between the fluctuating magnetic field B and velocity fields V along with the incompressibility 
condition f3 ~ 1. 

The proportionality factor turns out to be 

[ k (k2 )1/21 
a± = -2 ± 4" + 1 J ' (10) 

yielding the nonlinear dispersion relation 

w = ak., (11) 

where k. is the projection of the wave vector along the ambient field Bo = Boes. 

As stated earlier, in the limit k « 1, the MHD Alfvenie state 

(12) 

with k independent relationships for both the co- and the counter propagating waves, is dutifully 
recovered. 

For Ie ~ 1, it is easy to recognize, in analogy with the linear theory, that the (+) wave is the 
shear-cyclotron brarlch, while the (-) represents the magneto-sonic-whistler mode. The frequency 
of the (+) wave approaches some fraction of the ion gyro frequency (normalizing frequency) - it is 
only when k and Bo are fully aligned (k . e. = ±1) that the wave reaches the cyclotron frequency 
asymptotically. The fluctuation relation given by Eq. (9) will provide a crucial element in the 
construction of the kinetic and magnetic energy spectra. 

The HMHD equations (7-8) may be manipulated to extract the well-known invariants [3], 

Total Energy E = ~ f (V2 + B2)d3x = ~ L \Vk12 + IBkl2 , (13) 
10 

Magnetic Helicity HM = ~ fA. Bd3x = i I: :2 (k x Bk) . B-Ic, (14) 
. 10 
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Generalized Helicity H G ~ ! (A + V) . (B:r. V x V)d3:t 

= 1 " [ik X BIc] . 2' 7' k2 + V k • [B -Ie - 1k x V -k] , (15) 

where A is the vector potential. Notice that HG & HM arc combinations of the kinetic and the 
cross helicities. 

Since the relationship between V Ie and B k in HMHD were just now shown to be k dependent, 
it is expected that the current spectral predictions will be substantially different from those of the 
standard MHD (where V k and Bk have identical spectra) particularly in the range k > 1 when the 
Hall term in Eq. (6) dominates. The introduction of the Hall term, which brings in an intrinsic scale 
( the ion skin-depth) removes the MHD spectral degeneracy and generates new sca.le-specific effects. 

4. Spectral energy distributions 

In order to derive the spectral energy distributions we resort to the Kolmogorov hypothesis according 
to which the spectral cascades proceed at a constant rate governed by the eddy turn over time 
(kV k)-I. For eE denoting the constant cascading rate of the total energy E, Eq.(13) along with 
Eq. (9) yields the dimensional equality 

(16) 

The omnidirectional spectral distribution function WEek) (kinetic energy per gram per unit wave 
vector V[ /k), then, takes the form 

(17) 

Consequently Eq. (9) yields: 
(18) 

where ME(k) = BVk is the similarly defined omnidirectional spectral distribution function of the 
magnetic energy density. 

The cascading of the magnetic helicity H M (e H being the cascading rate for helicity) produces 
a different dimensional equality 

resulting in the following different kinetic and magneti~ spectral energy distributions: 

WH(k) = (2eH)2/3 (a)-4/3k- l , 

MH(k) = (0!)2WH(k). 

Finally, the cascading of the generalized helicity with a constant rate eo gives 

(kVIe) [O.5g(k)Vf] = ca' 

g(k) = (0+ k)2k- l , 

(19) 

(20) 

(21) 

(22) 
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leading to the spectral energy distributions : 

WaCk) = C2eG)2/3 [g(k)t2/3k-5/ 3, (23) 

and 
MaCk) = (a)2WaCk). 

The energy spectra derived from the three invariants can be pieced together by using the expe­
rience gained from 2-D turbulence [4, 5 J. It essentially boils down to placing the spectrum with the 
highest negative exponent of k at the highest k-end, and the one with the lowest negative exponent 
of k at the lowest k-end. The differential dissipation of the different invariants is the diktat behind 
this recipe. The poly-pronged kinetic and magnetic energy spectra can then be constructed. 

5. Modeling solar wind spectra 

Solar wind is a continuous, radial, supersonic outflow of plasma from the solar atmosphere and 
extends to the farthest reaches of the solar system to merge eventually with the interstellar medium at 
the earths orbit, electron- proton plasma with some trace elements has a density of 5-10 particles/cc, 
temperature", 100,000 K and velocity V '" 300 km/s. With small deviations from radial flow", 
10 km/s, it is collisionless, inhomogeneous and turbulent on several time and spatial timescales. The 
source of energy is the million degree solar corona; solar gravity is inadequate to hold the corona in 
static equilibrium. Chapman [6] suggested that geomagnetic storms are caused by plasma ejected at 
'" 1000 km/s from the solar flare. Biermann [7J proposed that sun is continuously emitting particles 
causing ionization and pointing away of cometary tails. First theory by Chapman, considered an 
extended corona with energy transfer only by conduction. 

Hydrostatic equilibrium, however is no good! The electron density is too large to merge smoothly 
with the interstellar medium. Parker [8) suggested that the corona could not remain in static equi­
librium but must be continually expanding since the interstellar pressure cannot contain a static 
corona. The continual expansion is called the solar wind. This was also known from comet observa­
tions but the properties predicted by Parker were confirmed by the satellites Lunik III and Venus I 
in 1959 and by Mariner II in the early 1960s. The main assumptions of Parker's model are that the 
outflow is steady, spherically symmetric and isothermal. 

Due to solar rotation, the magnetic field lines are drawn into Archimedian spirals. Average field 
at the earth is 5 nanotesla with spiral angle of 45°' with the radial. The direction either towards 
or away from the sun remains constant for several days. Transition is very abrupt. So inward and 
outward sectors are separated with a thin transition region. Fluctuations exist on three major scales: 
11 year solar cycle related variations and fast stream slow stream interactions due to solar rotation; 
transient disturbances originating on the sun and propagating out; e.g. Solar flare caused blast 
wave with energy '" 1032 erg. On hours or less scales are the waves and turbulence in the plasma; 
e.g. AIMn waves fluctuations have power law spectra k-P, p'" 5/3 along with other values. Key 
Observations of the solar wind turbulence: 

1. velocity, density, magnetic field, and temperatures vary in time; 

2. MHD accounted for fluctuations reasonably well, particularly Shear Alfven waves, believing 
that the magnetosonic waves are damped by kinetic effects; 

3. Alfven waves are found always propagating outwards from the Sun; 

4. similarity between power spectra of the magnetic fluctuations and the spectrum of velocity 
fluctua.tions for an isotropic magnetofluid as well as fluid turbulence; 
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5. turbulence driven by Stream- Shear Instabilities despite difficulties due to exact solutions, 
absence of evolution of Alfven waves etc. It is not all Alfvcn; 

6. Voyager and Helios provided observations from 0.3 to > 30 AU; 

7. reduced spectra are obtained by averaging over the two directions perpendicular to the solar 
wind velocity (V)j spectra are a function of the wavenumber along V. 

The spectral energy distributions of the vclocity and the magnetic field fluctuations in the solar 
wind are now known in a wide frequency range- starting from much below the proton cyclotron 
frequency (0.1 - 1 Hz) to hundreds of Hz. The inferred power spectrum of magnetic fluct.uat.ions 
consists of multiple segments- a Kolmogorov like branch (ex ]-5/3) flanked, on the low frequency end, 
by a flatter branch (oc ]-1) and, on the high frequency end, by a much stecper branch (ex ]-<>', 01 ~ 
3-4), [9-14]. Attributing the Kolmogorov branch (ex ,-5/3) to the standard inertial range cascade, 
initial explanations invoked dissipation processes (in particular, the collisionlcss damping of AlfVen 
and magnetosonic waves [14], to explain the steeper branch (oc ]-Ol', ~l ~ 3-4). However, a recent 
critical study has concluded that damping of the linear Alfven waves via the proton cyclotron 
resonance and of the magnetosonic waves by the Landau resonance, being strongly k (wave vector) 
dependent, is quite incapable of producing a power-law spectral distribution of magnetic fluctuations 
[15]; damping mechanisms lead, instead, to a sharp cutoff in the power spectrum. Cranmer and 
Ballogoeijen [16] have however, demonstrated a weaker than an exponential dependence of damping 
on the wave vector by including kinetic effect.s. However, it is still steeper than that required for 
explaining the steepened spectrum. 

An alternative possibility, suggested by Ghosh et al. [17], links the spectral break and sub­
sequent steepening to a "change" in the "controlling" invariants of the system in the appropriate 
frequency range. Matthaeus et al. [18] have investigated the anisotropies in the spectral as well as 
in the variances of the 3-dimensional MHD turbulence. Stawicki et al. !19] have invoked the short 
wavelength dispersive properties of the magnetosonic/whistIer waves to account for the steepened 
spectrum and christened it as the spectrum in the dispersion range. In this paper we follow and 
develop these ideas within the frame work of Hall-MHD. We will harness the three well-known invari­
ants of HMHD [20,21]. Using dimensional arguments of the Kolmogorov type, we will first derive the 
fluctuation spectra associated with the velocity and magnetic fields. We then go on to show that in 
different spectral ranges, different invariants control the energy cascade splitting the inertial range 
into distinct sections. The steeper and the flatter spectral branches (together with the standard 
branch), .then, are all sub-parts of the extended inertial range. Invoking the hypothesis of selective 
dissipation, we then construct the entire magnetic spectrum with its three branches and two breaks 
by stringing together three spectral segments each controlled by one of the three invariants. The 
observed frequency spectra of the solar wind are transformed into the wave vector spectra Doppler 
shifted by the Super Alfvenic Solar wind flow. Although the anisotropy of the MHD turbulence 
is now being highly emphasized [18], we model the observed reduced omnidirectional spectra with 
the findings of the isotropic cascade considered in section 4. The primary aim is to highlight the 
crucial contributions of the Hall effect. This, we believe, is being done for the first time. We will, in 
addition, indicate briefly how anisotropy issue can be addressed within the framework of Hall-MHD. 
Our intention is to show that the three spectral distributions derived in Sec. 4. can model the three 
branch spectrum (k- 1, k- 5/ 3 , k- 0l1 al ~ 3 - 4) of the magnetic fluctuations in the solar wind. 

If the turbulence is dominated by velocity field fluctuations ( V% :> BZ) (which happens, 
according to Eq. (9), for (~ « 1), or (k :;$> 1) for 0 ~ (k-1), the spectral expressions under the joint 
dominance of the Hall term and the. velocity fluctuations (k :;$> 1) simplify to 

WEl (k) = (2eE?/Jk- 5/ 3 ,ME, (k) = (2eE)2/3k- ll / 3 . (24) 
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WH,(k) = (2eH)2/3k1/ 3, MHl(k) = (2eH)2/3k-5/ 3, 

WGl(k) = (2eGj2/3k-7/ 3, MG1(k) = (2eG)2/3k- 13/ 3 . 

(25) 

(26) 

In the casc wherein 0: :::: 1 for Ie « 1, one obtains the standard Alfv6nic state with Vk ex: Bk, and 
the corresponding spectra are (suffix 1 is used for the Hall Dominant and 2 for the standard MHD 
limit): 

M(k) = 
WE2(k) 
WH2(k) = 
WG2(k) 

W(k), 
(2ce)2/3 k-5/ 3, 

(2eH )2/3 k-1 , 

(2£G)2/3k- 1• 

(27) 

(28) 
(29) 

(30) 

For the second root of Q ~ k, k :» 1, representing the whistler type fluctuat.ions, we find the 
following spectra: 

We.,(k) = (2ee)2/3k-3, ME..,(k) = (2E:e)2/3k- 1 , 

WH .. (k) = (2cHj2/3k-7/3, MH .. (k) = (2£H)2/3k- 1/ 3 , 

WG .. (k) = (2cG)2/3k-7/ 3 , MG .. (k):::: (2E:G)2/3k- 1/ 3. 

(31) 

(32) 

(33) 

The observed solar wind magnetic spectrum will be generated if we were to string together the 
three branches MEl (k)(oc: k- ll / 3 ), MHI (k)(ex: k- 5/ 3 ), and MH2 (k)(oc: k-1). The rationale as well as 
the modality for stringing different branches originates in the hypothesis of selective dissipation. It 
was, first, invoked in the studies of two-dimensional hydrodynamic turbulence [5]. The idea is that in 
a given k range, the particular invariant which suffers the strongest dissipation, controls the spectral 
behavior ( determined, in tum, by arguments a la Kolmogorov). Thus if the k ranges associated with 
different invariants are distinct and separate, we have a straightforward recipe for constructing the 
entire k-spectrum in the extended inertial range. In 2-D hydrodynamic turbulence, for instance, the 
enstrophy invariant, because of its stronger k dependence ( and hence larger dissipation) compared 
to the energy invariant, dictates the large k spectral behavior. Therefore, the eritire inertial range 
spectrum has two segments- the energy dominated low k, and the enstrophy dominated high k(ex 
k-3 ). The procedure amounts to placing the spectrum with the highest negative exponent at the 
highest k-end, and the one with the lowest negative exponent of k at the lowest k-end. 

The magnetic spectrum M(k) and the kinetic spectrum W(k), constructed by following the 
procedure delineated above, are shown in Fig.(la) for the shear Hall fluctuations (Eqs. 24-26), in 
Fig.(lb) for the whistler fluctuations. (Eqs. 31-33), for the Hall dominated regime and in Fig. (2) 
for the Alfvcnic state (Eqs. 27-30). 

Notice that the observed solar wind magnetic spectra consisting of the branches k-Oll (0:1 "'" 

3 - 4), k-5/3 and k-1 can be reproduced by stringing the Hall state spectral branches ( Fig.(la)) at 
large k with Alfvenic state branches (Fig.(2)) at small k. The result is displayed in Fig. (3). This is 
rather fortunate because in HMHD it is precisely for large k that the Hall term is domina."J.t while 
for small k, the standard Alfvenic behavior prevails. 

There are three breaks in the spectrum displayed. in Fig.(3). The break at kl is due to the 
change in the nature of turbulence from Alfv6nic (MH.) to the Hall dominated state (MH". The 
other breaks are due to changes in the controlling invariant (in the Hall dominated regime): at k2 
the control is transferred from magnetic helicity HM to the total energy E, and at k3 from the total 
energy E to the generalized helicity HG. The entire spectrum for k > kl is a consequence of Hall 
dominance. 
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Figure 1: (a). Schematic magnetic energy (M) and Kinetic energy (W) spectra (Shear-cyclotron 
mode) for a = k- l in the Hall region (k » 2), (b). Schematic magnetic energy (M) and Kinetic 
energy (W) spectra (Whistler mode) for a = k in Hall region (k »2). 

Figure 2: Schematic magnetic energy (M) and Kinetic energy (W :: M) spectra (shcar-Alfvcn 
mode) for a ::::::: 1 in the Alfvcn region (k « 1). 
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Figure 3: Modeled magnetic energy (M!) spectra along with the corresponding Kinetic (WI) spectra. 
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Figure 4: Modeled magnetic energy (M2) spectra along with the corresponding Kinetic (W2) spectra. 
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We must reiterate that the steepened branches ex k- ll / 3 and k- 13/ 3 are, here, very much a part 
of the inertial rangei they have no connection to the dissipative range invoked in previous studies. 
The break at k2 may lie near the observed break ncar f ~ 1Hz. 

Within the framework of this dimensional Kolmogorov. inspired model, there is another con­
sistent way of constructing the observed magnetic spectrum of the solar wind from the spoctral 
relations we derived. Since the branch k-5/ 3 is common to the Alfvenic and the Hall dominated 
cases one could just as well assume that the change from Alfvenic to the Hall dominated sta.te takes 
place at ks (Fig.(4)) instead of at kl as was assumed for the spectrum of Fig.(3). Notice that due 
to this replacement, the kinetic energy spectrum of Fig.(4) is quite different from that of Fig.(3) in 
the rclevarlt k range. In the literature, ks has been identified with the strong damping region of the 
Alfvcn mode via the proton cyclotron resonance [12, 13,J. 

Thus we find that there arc two pathways of reproducing the observed magnetic spectrum 
depending upon the location of the spectral breaks. In principle, a somewhat detailed knowledge 
of the system would allow one to choose the more likely pathway. One would nccd to find in what 
range of k the standard Alfvcnic description yields to Hall dominance arld to what break in the 
spectrum that k corresponds. The absolute values of thc breaks will, naturally, depend upon the 
numerical values of the parameters of the system. 

Within the frame work of the Kolmogorov hypothesis combined with the selective dissipation 
hypothesis, the positions of the spectral breaks (k2' k3, k4, k6) indicate the scales of energy injection. 
The energy injected at k2 • e.g., will cascade towards large k as k- ll / 3 and towards small k as k-5/ 3 • 

This is analogous to the 2-D turbulence where the energy cascades to small k as k- 5/ 3 and to large 
k as k-3 , a consequence of the two invariants, the energy arld the enstrophy. This applies to other 
breaks at k3, k4 arld kG. The breaks at (kl' ks) , on the other hand, represent smooth transitions 
between the Hall dominantcd and Alfvcn states. The observed solar wind magnetic spectrum (Mil 
(k- ll / 3 , k-5 / 3 , k- I ), in this context, has two scalcsofenergy injcction at (k2, k3) while ki signifies 
the change of guard from Alfvcn (k <t:: 1) to the Hall (k» 1) state; the latter is not a sharp break, 
instead the transition is smooth because MH, (Eq. 25) and MH2 (Eq. (29)) are just limits of the 
smooth function MH(k) of Eq. (21). The break point k2, determined from ME, (k2) = MH, (k2 ), 

takes on the value k2 = (cE/CH )1/3) reflecting the dependence on the injection rates (also the 
dissipation rates) of the two invariants. Similar arguments apply to the spectrum M2. 

One would also do well to note that the branch k-5/ 3 exists both in the Alfvcn as well as the Hall 
state but in the former it is associated with the invariance of the total energy E and in the latter, 
with that of the magnetic hcJicity HM. The k- 1 branch, however exists only in the Alfv6n state. 
As expected the entire spectrum is dominated by the Hall effect at large k and the Alfv6n effect. at 
small k arld the energy injection scales lie at the high k end of the spectrum. This is symptomatic 
of the inverse or the dual cascade processes. It is clear that the spectrum of whistler fluctuations 
( Fig.(lb)) cannot account for the observed solar wind magnetic fluctuations. The reason for the 
unobservability of this spectrum may lie in the stronger damping of the whistler waves. It is also a 
well documented fact that out of the two possible types of turbulent f1uct.uat.ions viz Alfv6nic and 

. magnetosonic, it is the former that is more likely to be observed [22J. The shear Alfv6nic fluctuations 
suffer strong damping only when their frequency approaches the ion cyclotron frequency and this 
happens in HMHD only when k is strictly along the ambient magnetic field. Thus in general, the 
Alfvcnic fluctuations suffer less damping than the magnetosonic/ whistler fluctuations.· Although, 
we have, here, presented an isotropic view of the turbulent fluctuations, the polarization of the 
Alfvcnic f111d.uatiom;, i.e. with amplitudes (V, B) perpendicular to the propagation vcctor k and the 
nonlinear nature of the cascade time (kVk) immediately reflects the anisotropy of the turbulence. 
However. we defer the discussion of this issue until a more quantitative model based on the nonlinear 
interactions among the fluctuations is developed and this is underway. By including the physics of 
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the Hall current and the fluid vorticity in two-fluid magneto-hydrodynamics, the steepened part of 
the solar wind spectrum is shown to arise in the inertial range as contrasted with the dissipative 
range invoked in some earlier studies. The steepening in the present model is a consequence of the 
(V, B) relation enshrined in Eq. (9). This exact nonlinear relationship forbids any coupling between 
the right travelling waves with each other or the left travelling waves with each other. However the 
coupling between the left travelling and the right travelling waves remains and this is expected to 
provide a theoretical model of turbulence as in the standard Alfvcnic turbulence [23]. There is 
another way of obtaining the (V, B) relation. This is done by invoking the variational principle 
and the selective decay hypothesis [3} leading to the double Beltrami conditions which reduce to the 
(V,B) relation given in Eq.(9) in the large k limit. We have also shown that this form of the relation 
is obeyed by the shear wa"e in the Hall regime. In a final summary, our Hall MHD model predicts: 
(i) an extended inertial range with k-ll / 3 along with k-13/ 3 at high k-end, and (ii) related but not 
identical spectra for the kinetic and the magnetic fluctuations. However, the issues of anisotropy 
and the detailed nature of cascades through mode interactions at a realistic value of P need to be 
addressed before the model can be taken to represent the reality of the solar wind. It is intriguing 
that Stawicki et al. [24] have attributed the steepening (limited to k-3 ) to the higher dispersion of 
the Alfven waves at large k;:, using the associated time scale and introducing the term 'Dispersion 
range'. In contrast the physics at large k in the framework of Hall-MHD ( Hall currents become 
important even dominant at large k) contributes to steepening in a markedly different way; the new 
non-Alfv6nic relationship between V and B predicting steepening is a consequence of the shear Hall 
mode. It is this high k behavior that dictates related but· different spectra for the magnetic and 
kinetic fluctuations as distinguished from Stawicki et a1. [24] where the two spectra are identical. 
Thus there are at present different ways and approaches of modeling the solar wind spectrum and 
further investigations would provide the clues to the real nature of the solar wind turbulence. 

6. Modeling of solar atmospheric turbulence 

We shall now test the spectral predictions of HMHD against the observations on the velocity and 
the magnetic fields on the solar surface. The existence of velocity fields in the form of convective 
cellular patterns of different characteristic spatial dimensions has been known for a long time. This 
phenomenon known as the solar granulation has been quantified in terms of the spectral energy 
distributions of kinetic energy with a Kolmogorov spectrum k-5/ 3 at small spatial scales which 
flattens to a "" k-O•7 fonn towards larger spatial scales [25, 26J. The hierarchical distribution of 
velocity and magnetic fields on the solar atmosphere with the inferred spectral exponents of the non 
Kolmogorov type (e.g. (1.3), (-1), and (-0.7)) [25-28J cannot be accounted for by those existing in the 
literature (29-31] due to inadequate treatment of magnetic turbulence (in contrast to the inadequate 
treatment of hydrodynamics). This spectrum was modeled by invoking the inverse cascade of energy 
in a helically turbulent medium [27]. More recently, with the availability of the velocity information 
on supergranular scales, the predictions of the inverse cascade model have been further examined 
[32,33]. However, these studics do not address the question of the corresponding distributions of the 
solar magnetic field. Now that the spectral distributions of the solar magnetic field are beginning 
to be inferred from magnetogram observations, it becomes necessary to determine the velocity and 
thc magnetic field distributions in a coupled magneto-fluid medium. Recently Lee et al. [28] have 
reported the magnetit: power spectra of the network and the non-network fields and displayed them 
along with the kinetic energy power spectrum (Fig. 5) in a much wider range of scales and with 
better procedures to take care of the seeing and noise embellishments than the previous attempts 
[30,34]. We find that the spectra MEl (Eq.24) and MH~ (Eq. 29) account very well for the ooscrved 
spectra (Fig. 5) in the range 0.5 Mm- 1 < L < lOMm- 1• We must emphasize that the concurrent 
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existence of k-5/ 3 spectrum for the kinetic energy and k- ll / 3 for the magnetic energy density is 
a result of the inclusion of the Hall term which allows a relationship of the type given in Eq. (9). 
Restricting various branches to their respective regions of validity dC'fined bv the diktats of the 
differential dissipation, our construction for the kinetic and magnetic energy ~pcctra ill the full k 
range is displayed in Fig. 6. 

The flat part of the observed network field spectrum and the positive exponent part (1.3) of 
the non-network field spectrum still remain to be modeled. For Q ::::: k and thus B k == k V k for the 
whistler type fluctuations we find the magnetic spectrum from the magnetic helicity cascade as well 
as from the cascade of the total energy to be: 

MH IX k, (34) 

for the choice of the inverse of the cascade time k(V k/VA)n/71I+", where n tends to 1 and (m + n) 
tends to O. 

This shows that in this region V k ::::: VA· The corresponding kinetic spectrum is 

(35) 

The observed exponent (1.3) for the magnetic spectra MH and the corresponding kinetic energy 
spectrum is WH ex: k-O•7 could be approximately taken to agree with the theoretically derived 
exponents (1) and (-1) respectively. We must recall that at large k where Q ~ k- 1 applies, the 
relation between the kinetic and the magnetic spectral energies is W B ex k2 ME in contrast to the 
relation at small k where WB ex k-2MB. Now the flat part ("'ex: kO) of the network field obtains 
for (m/n) = -1/2 corresponding to the cascade time scale Vk 2/VA; it can also used by invoking 
the interaction between Alfv6n wavepackets. The kinetic energy spectrum WH ex k- 2 • The entire 
spectrum with its various branches are exhibited in Fig.(6). The impressive reproduction of the 
observed spectra from this theoretical model comes with a prediction - the kinetic energy spectral 
branch corresponding to the flat part of the non network magnetic field goes as (ex k-2 ). This 
range is yet to be observationally investigated. There are additional issues such as the nature of 
the spectra when the magnetic field may be dominant and the presence of anisotropy if any. These 
can be addressed as and when the need and the motivation provided by the observations become 
compelling. 

Is it merely fortuitous that the incompressible Hall MHD appears to reproduce the observed solar 
spectra? How is it that the collisional solar photospheric plasma honours the invariance of the energy 
and the kinetic and the magnetic helicities and their attendant consequences? We do not claim a deep 
enough comprehension of this system to really answer these questions but plausibility arguements 
could, perhaps, be advanced. The Kolmogorov law of (-5/3) seems to hold for gravitationally 
stratified astrophysical plasmas in a variety of situations including the solar atmosphere. One reason 
is that the velocity fields are small compared to the sound speed and the motions are essentially 
incompressive. In a magnetized plasma this condition can be described in tcrms of plasma beta being 
greater than unity as it is on the solar surface. In other words the plasma is stratified/compressive 
but the turbulence that determines the spectrum, is incompressive. We must also point out that the 
solar photospheric plasma is partially ionized with electron density = 10-4 of the neutral density at 
the photosphere and this fraction increases,as the tcmperature increases towards the chromosphere. 
It is found that the electron-ion collision frequency is smaller than the electron- neutral collision 
frequency which is larger than the ion - neutral collision frequency by the factor (miTe/meTi)O.S [36, 
37]. This implies that the photospheric plasma is indeed a three fluid plasma and electrons and ions 
form two distinct fluids and hence the Hall MHD. 

The Hall scale LH = )";/MA at which the inductive term (V x B)/c becomes equal to the 
Hall current term (J x B/nce) in the generalized Ohm's law turns out to be ~ O.5km for the solar 
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Figure 5: Schematic spectral regimes of the network field spectrum (r N (k» and those of the 
non-network field spectrum (r n-N(k) found in the present study. These are compared with the 
schematic Power spectrum of Dopplerogram E(k)j [25aj,[28j. 
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Figure 6: Power spcctra of kinetic energy (W) and magnetic energy (M) for network eN) and 
nOll-network (nN) fields. 
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(b) 

k-

Figure 7: a) Schematic magnetic energy (M) and Kinetic energy (W) spectra in the Hall state for 
Q+ -. 11k, (k ~ 1). b) Schematic magnetic (M) and Kinetic (W) spectra in the Hall state for 
Q_ -. -k, (k ~ 1). 

photosphere [36, 38] where MA ~ 4 X 10-3 is the Alfven Mach number and the ion skin depth 
Ai ~ 2.4cm for photospheric electron density n ~ 1014cm-3. 

The Hall scale LH is much smaller than any observed velocity and magnetic scale (;::: 1000km). 
However, in the double beltrami states, the scales of the field variations are determined by a joint 
action of the ion skin length and the constants a and b- which in turn, are to be evaluated from 
the values of the constants of motion. For a system in which the velocity field is relatively large, 
one of the effective scale lengths can be several orders of magnitude larger than Ai . The point is 
that the Hall term ( coupled with the fluid vorticity term) introduces a singular perturbation in the 
standard MHD and even though it may have a small coefficient multiplying it, it can and does have 
a profound effect on the system dynamics. 

The Hall dynamics as distinct from the Alfvenic dynamics allows states in which the kinetic 
energy and the magnetic energy are not equipartitioned. Our experience with solar spectra fitting 
appears to support the absence of equipartition in the range of spatial scales considered here. It 
would be instructive to examine this feature on larger spatial scales such as those of supergranula­
tion and the giant cells. There are additional issues of the existence of a large scale magnetic field 
and the ensuing anisotropy as well as the physical model of the Hall-MHD turbulence in terms of 
the Hall-Alfven and other waves along with the confirmation of the Kolmogorovic results by direct 
numerical simulations which must be addressed in order to take this study to its logic~ conclusion. 

7. Laboratory experiments 

Recently, the universality of the large scale turbulence with the kinetic energy spectrum going as k1/ 3 

has been concluded from the laboratory experiments on MHD turbulence [39J. Evidence iI). favor of 
such a spectrum has also been seen in convective atmospheric boundary layer [40, 41 J along with the 
usual Kolmogorov spectrum k-5/ 3 • The Cirrus clouds [42J ha.ve too been observed to support k1/ 3 
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Figure 8: Schematic magnetic energy (M) and Kinetic energy (W == M) spectra in the Alfven state 
(k« I). 

spectrum. While some of the spectral predictions of the Hall-MHD found ratification in the solar 
turbulence, the 1/3 kinetic energy spectrum could not be tested due to lack of observations on those 
scales. Although the 1/3 spectrum has been theoretically derived invoking the conservation of the 
total energy flux (39) in a given volume, we show tha.t the Hall-MHD with its new features offers a. 
better alternative. We observe that the spectral branch k1/ 3 of the kinetic energy spectrum origi­
nates from the magnetie helicity invariant HM under the dominance of the Hall effect (k » 1) as 
well as that of the kinetic energy (V Ie» BIe) for 0+ -+ l/k, and it should operate in large spatial 
scale regime as dictated by the hypothesis of selective dissipation. In the Alfven regime(k « 1} the 
corresponding spectral branch WH.(k) ex (k-1). There are two breaks in the spectra displayed in 
Figs.(7a,7b) and one break in Fig. (8). They are due to the change of the controlling invariant: at 
kl' the control is transferred from magnetic helicity H M to the total energy E and at k2, from the 
total energy E to the generalized helicity Ha. Within the framework of the Kolmogorov Hypothesis 
combined with the selective dissipation hypothesis, the positions of the spectral breaks indicate the 
scales of energy injection. The energy injected at k2' e.g., will cascade towards small k as k-5/ 3 and 
towards large k as k-7/ 3• Similarly the energy injected at kl will cascade towards large k as k-5/ 3 

and towards small k as k1{3. This is also in agreement with the conclusions of the papers 1 and 
2. The k1/ 3 spectrum in given in [35) is derived by invoking the constancy of the total energy flux: 
in the entire volume (k-3 ) i.e. dimensionally (kV/c)(V/c2)(k- 3 )== constant. In contrast our deriva­
tion relics on the global invariant H M. Although the two approaches are dimensionally identical, 
the underlying physics is very different. Additionally our small spatial scale spectra also show the 
steepened k-7/ 3 branch comparable to the spectral branches A, Band C of [lJ. We propose that the 
measurement of the concomitant magnetic energy spectrum which should carry much less energy 
than the kinetic spcctrum (Vk ~ BIe ) may shed light on the type of the controlling invariant. 
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8. Conclusion 

The distinguishing features of the Hall-turbulence model, and the.main ingrcciients of calculations 
are: 

1. use of Hall instead of ideal MHD, 

2. exploitation of the generalized helicity a$ an invariant in addition to the total energy and the 
magnetic helicity, 

3. the surmise that the relations (Eqs. (9)) between V and B provided by the nonlinear solutions 
of the Hall-MHD equations operate at large or small k depending upon the predominance or 
othcrwise of the velocity field vis a vis the magnetic field, 

4. Kolmogorovic dimensional arguments are used to derive various spectra from the cascading of 
the invariants, 

5. differential dissipation of the invariants is invoked in order to fix the relative positions of various 
spectral branches, 

6. the solar spectra are modeled by invoking the fact that on the solar surface the hydrodynamic 
motions are dominant (much greater energy in kinetic energy fluctuations as compared to the 
magnetic fluctuations) so that ~ ~ k-l(k) apply at large (small) k, 

7. the cascade time scale is a combination of the hydrodynamic and the Alfven timescales. 

8. the difference between the network and non-network magnetic field spectra may be due to the 
relative contributions of the hydrodynamic and the Alfven time scales. 

In fact since the velocity and magnetic fluct.uations are related through ~, there are no purely 
hydrodynamic or magnetic timescales. The laboratory detection of the kinetic spectra with 1/3 
exponent is amply accounted for by the Hall turbulence model. The dimensional basis of this model 
need to be given a sound theoretical base in the ncar future. 

Acknowledgments: The authors thank Dr. Baba Varghese for his help in the preparation of this 
manuscript. 
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