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ABSTRACT. The point spread functions used for doing 
photometry on two-dimensional stellar images are described. 
Analytical functions used for this purpose are discussed and 
it is indicated that amongst them modified Lorentzian fits the 
best to the observed stellar profile. The computer programs 
presently used in crowded stellar region for accurate 
photometry are also described. 

INTRODUCTION 
Stellar photometry is essentially a low resolution 

spectroscopy. But its utility for astrophysical investigations can be 
judged from the fact that nowadays there are some 75 different 
photometric systems which are designed to measure a wide variety of 
features in the stellar energy distribution. Photoelectric photometry 
(i.e. use of photomultipliers) provides accurate photometric 
observations (-0.01 mag). To overcome its limitation of observing only a 
small part of the sky at a time, astronomers use 2-dimensional (D) 
detectors where a number of program stars or an extended object located 
within a small region of sky (- many arc minutes to a few degrees for 
photographic plates and a few arc minutes for electronic detectors) can 
be observed at the same time and hence, it is a more efficient way of 
using telescope time. Also, such obervations are not affected by 
temporal variations in the instrumental response or in the transmission 
of earth's atmosphere. One uses microdensitometers to digitize the 2-D 
images if they are recorded on detectors like photographic and 
electronographic films/plates. However, direct 2-D digital images can be 
obtained by using solid state detectors like charge-coupled devices 
(CCD). Before measuring the stellar magnitudes, these images have to be 
calibrated. Here only the procedure used for doing stellar photometry on 
calibrated 2-D digital images are discussed. 
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ME'lIDDS OF STEILAR PIIOTCMETRY 
It is well known that on 2-D stellar images, fainter the star 

smaller the diameter i.e. diameter of a stellar image can represent 
approximately its brightness. However, for doing relatively accurate 
stellar photometry on 2-D digital images, there are several ways ranging 
from simply measuring the central density to the complex analysis of the 
stellar image (see stetson 1986). The main methods may be divided into 
the following three groups: 

1. Where a Single one dimensional intensity profile is produced 
and then compared with the profiles from other images. For example, one 
can fit 1-D Gaussian profile of the form B+A exp [-1/2(x-x o /Rx)2] and 
form an index ~G = AR • Here A is the amplitude and R is the profile 
half width. x x 

2. Where the pixel values around entire star image are summed over 
and some apprqpriate base values are subtracted. The well known example 
of this group is to do aperture photometry on 2-D digital images. 

3. Where the 2-D empirical or analytical functions are fitted to 
one star image and compared with that from other stars. 

Second type methods suffer from the drawback of conventional 
photoelectric photometry that the area of sky around the star has to be 
included with equal weight anq a comparison area of sky has to be 
measured. They introduced noise and possible contamination of field 
stars and variable background. There is still a gain over photoelectric 
photometry, however, as considerably smaller measuring apertures for 
both can be used than are needed for photoelectric photometry, where the 
aperture must be large enough to contain image dancing due to seeing 
variations and telescope tracking errors. Smaller apertures allow 
smaller· corrections for the sky, resulting in relatively precise 
measurements, as well as better separation of program stars from close 
neighbours. Also, the sky observations are strictly simUltaneous with 

·the stellar observations, reducing photometric errors .caused by short 
term variability of the sky. First type method overcome these problems, 
but at the cost of only using a small area of the image and thus 
throwing away a lot of information. Third type methods have the 
advantages of both methods. For this, one should know the 2-D brightness· 
distribution produced in the detector by the image of a star i.e. point 
spread function (PSF) and it is the topic of next section. 

PROFILE OF TIlE STAR MID <nmJTER PROGRAMS 
One expects to get optics diffraction limited star images only 

with the space telescope if its optical surfaces have no other 
aberrations. In such idealized situation, diffraction of a point source 
(i.e. star image) by the primary mirror of a radius R with an axially 
symmetric obstruction (secondary mirror and assembly) of radius mR and 
effective focal length of the telescope f, will give rise to the 
following type of radial intensity distribution 10.,)') at the focus (see 
Linfoot & Wolf 1953): 
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For ground based imagery the vagaries of seeing and guiding are such 
that star images are no more diffraction limited and hence, above type 
of function cannot represent the star image profile. King (1971) has 
constructed such profile of a star image from its central peak out to a 
radius of six degrees. The profile has a central core, an exponential 
drop, and extended inverse-square aureole. The physical origin of these 
separate parts of the profile is not clear. Actually, it is determined 
by various phenomena of atmospheric refraction and both atmospheric and 
instrumental diffraction and scattering. Atmospheric turbulences causing 
image motion and blurring are supposed to yield a Gaussian intensity 
profile at the focus. Instrumental aberrations may arise due to 
irregular small deviations from the ideal shape of the optical surfaces. 
All these indicate that an exact derivation of the mathematical function 
which can represent correctly the PSF of a star image is not an easy 
task. For simplicity, Gaussian PSF of the following form are used: 

I(x,y ,xo ,y 0) A e - (x-xo/Rx) 2 e - (y-yo/Ry) 2 + B 

In Figure 1a, we have plotted the observed star image profile from a CCD 
frame i.e. number of counts against radius in pixels (1 pixel = 0.36 
arcsec). This figure which is in agreement with Franz (1973) shows that 
Gaussian distribution cannot represent satisfactorily the observed star 
image profile. Actually it fails to fit the peak as well as the tail 
part of 'the stellar image. Efforts to find a better PSF have been made 
by several people and are stHI on. A brief account of some of them are 
given here. They may be mainly divided into the following two groups: 

1. The analytical methods . 
In this case a mathematical function I(x,y,xo,yo) to describe 

intensity. as a function of 2-D distance from the centroid (xo,Yo) of a 
star are used and its parameters are adjUsted to give the best possible 
representation of actual star ·image profiles in a given frame. Some of 
such functions are given below: 

. a) In most cases· a good description of the PSF on photographic 
plate is given by following function proposed by Moffat (1969): 
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(X-XO)2 + (y-YO)2 S 
A [1 + ------------------ ] R2 

Where A = amplitude, Xo and Yo are the central coordinates; R and S are 
~he shape parameters. This PSF has been extensively used by Buonanno and 
coworkers (see Buonanno et al. (1983» for the stellar photometry. 

b) Lorentzian distribution introduced initially by Franz (1973). 
This function closely approximates the theoretical one expected for a 
telescope with a central obscuration (i.e. secondary mirror and 
assembly) looking through turbulent atmospheric elements which have 
Kolmogorov power spectrum. It has the following form: 

A 
I(x,y,xo,yo) = ---------------------------------

+ [ 
x-xo Y-Yo 12 ( _______ )2 + ( _______ )2 JP 
Rx Ry 

Where A is amplitude and (xo ,y'o) the peak location of the star image. 
Rx' Ry' are the half power width. P is a variable exponent of the form: 

x-xo y-y 0 1/2 P = Po { 1 + ( __ ~ ___ )2 + ( ______ )2 } 

PRx PRY 

Po is the power at the peak location (xo ,Yo) and PRx , P determines the 
rate at which P changes as function of (x,y). The par~¥ters Po, RX,Ry, 
PRx"andPR defines the "seeing". 

c) Mogified Lorentzian is iptroduced by Penny (cf.Penny & Dickens 
1986) to account for the very wide halo around stars. "It has the 
following form: 

I(x,y ,xo'y 0) 

Where 

d l (x l /Rx)2 + (y l /Ry)2 ]112 ; 

d2 = (x l /PRx )2 + (Y1 /PRy )2 ]112 

Xl (x-xo)Cos e'+ (y-Yo)Sin e 

Yl = - (x-xo)Sin e + (y-yo)Cos a and 

43 - [(X-XO)2 + (Y-YO)2 J1/2 1 r3 

Q is small - 0.01, r, is significantly larger than Rx and Ry. Thus there 
is a rotated-elliptical Lorentzian with a wide low circular modified 
Gaussian base. 
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For the stellar photometry in uncrowded region where background is 
constant, one has to simply subtract the background and fit the PSF. 
Gaussian often results in residuals larger than 5% of the peak of the 
profile while Lorentzian leaves residuals that are rarely larger than 
one percent· of the maximum height of the profile. It is only some tenths 
of a percent, in the case of modified Lorentzians. It indicates that 
modified Lorentzian is very close to the true star image profile. This 
is also noticed in Fig.1 where Lorentzian fits better than Gaussian. If 
a star image has high SIN ratio, then magnitude estimates from Gaussian, 
Lorentzian and modified Lorentzian profiles agree fairly well. However, 
they differ significantly if the star has weak SIN ratio. In such cases 
modified Lorentzian being closest to true star image will give the best 
result. 

For photometry in crowded regions where background is variable one fits 
following type of function: 

I(x,y) 
N 
E I(x,y,xoi,Yoi) + Bx + Cy + D 

i=1 

Where (XO.,Yo i ) are the position of ith star. For such type of analysis, 
it is v~ry much essential that adopted PSF should represent the true 
star image profiles. Otherwise, residuals of one star image will affect 
the measurement of the other stellar images. 

computer programes based on analytical PSF, for doing stellar photometry 
on 2-D digital images have been developed and used by several 
astronomers (cf • Peterson et aL 1978; Buonanno et a1. 1983; Penny & 
Dickens 1986; and references therein). The analytical PSF integrates 
numerically over the area of each pixel in a stellar image and hence, 
the adverse effects of finite pixel size in an undersampled image are 
minimized. However, they are relatively time consuming and imperfectly 
formed stellar images require either large number of parameters for 
their description as. in the modified Lorentzian PSF or else one has to 
live with relatively poor measurements. 

2. 'lhe empirical Methods 
The computer programs based on the empirical PSF are RICHFLD 

and VISTA (See Stetson 1986; and references therein). The empirical PSF 
is estimated using bivariate interpolation to estimate intensity values 
at fractional-pixel positions within an observed stellar profile. This 
PSF is then numerically interpolated and scaled to match the observed 
data for each program star. This method is much faster than the 
analytical. one but is poorly suited to undersampled data because in such 
cases assumptions used in the interpolation are not able to provide 
interpolations correct to a few percent and the most severe failure of 
it is near the centre of the profile where most of the photometric 
information resides (Stetson 1986). 
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DAOPHOT computer program by Stetson (1986) uses a model for the PSF 
which attempts to overcome the limitations of both the analytical and 
empirical methods and exploit the best aspects of them. The principles 
on which this program works have been described extensively by Stetson 
(1986). It defines the PSF on the basis of a 2-D look up table 
containing brightness values actually observed within the profiles of 
bright stars and hence, it is an empirical PSF. To overcome the 
limitations of empirical methods i.e. to improve the accuracy of 
interpolation, an analytical Gaussian PSF as a first approximation to 
the actual stellar profile is used and empirical corrections are made 
for the observed residuals of the actual stellar profile from the best 
fitted Gaussian. This residual has much smaller amplitude, and hence the 
interpolation procedures can provide the desired accurate interpolation. 

If one is not interested in very accur~te photometry of either faint 
stars or located in crowded region, anyone of the above methods is 
suitable. However, for accurate photometry one has to use either 
modified Lorentzian type analytical functions or DAOPHOT type programs. 
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