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The improved virtual orbital-complete active space configuration interaction �IVO-CASCI� method
is extended to determine the geometry and vibrational frequencies for ground and excited electronic
states using an analytical total energy gradient scheme involving both first and second order
analytical derivatives. Illustrative applications consider the ground state geometries of the benzene
�C6H6�, biphenyl �C12H10�, and alanine dipeptide �CH3CONHCHCH3CONHCH3� molecules. In
addition, the IVO-CASCI geometry optimization has been performed for the first excited singlet
�1B2u� and triplet states �3B1u� of benzene to assess its applicability for excited and open-shell
systems. The D6h symmetry benzene triplet optimization produces a saddle point, and a descent
along the unstable mode produces the stable minimum. Comparisons with Hartree–Fock, second
order Möller–Plesset perturbation theory, complete active space self-consistent field �CASSCF�, and
density functional theory demonstrate that the IVO-CASCI approach generally fares comparable to
or better for all systems studied. The vibrational frequencies of the benzene and biphenyl molecules
computed with the analytical gradient based IVO-CASCI method agree with the experiment and
with other accurate theoretical estimates. Satisfactory agreement between our results, other
benchmark calculations, and available experiment demonstrates the efficacy and potential of the
method. The close similarity between CASSCF and IVO-CASCI optimized geometries and the
greater computational efficiency of the IVO-CASCI method suggests the replacement of CASSCF
treatments by the IVO-CASCI approach, which is free from the convergence problems that often
plague CASSCF treatments. © 2010 American Institute of Physics. �doi:10.1063/1.3290203�

I. INTRODUCTION

Since gradient approaches are extremely useful tools in
quantum chemistry, considerable effort has been devoted to
the development of analytic derivative approaches for an in-
creasing array of ab initio methods.1,2 Gradient methods fa-
cilitate the routine study of equilibrium geometries, transi-
tion states, intrinsic reaction coordinates �IRCs�, vibrational
frequencies, energy relaxation processes, and dynamics of
molecular systems by determining the derivatives of the
adiabatic potential energy surface�s� �for both ground and
excited states� of a molecule with respect to the nuclear co-
ordinate�s�. Analytic derivatives also provide important ap-
plications to the calculations of various electrical and mag-
netic properties where the derivatives are taken with respect
to the external field.

The seminal work of Pulay in developing a practical
method for evaluating analytical gradients3 of the SCF en-

ergy has opened fresh avenues for the study of molecular
force fields.4 Subsequent extensions by Pople et al.5 of this
approach treat contributions to the correlation energy by
implementing analytical gradients for the second order
many-body perturbation theory �MBPT� method. Genuinely
important breakthroughs in the early 1980s enabled simpli-
fied gradient calculations for correlated many-body methods,
including the state-of-the-art Z-vector technique of Handy
and Schaefer2 for eliminating the terms involving derivatives
of the molecular orbital �MO� coefficients in MBPT and
coupled cluster �CC� methods.6 These developments essen-
tially provide the foundation for tremendous progress, culmi-
nating in the genesis of theoretical methods for evaluating
the gradients, for example, of the MBPT energy all the way
through fourth order.7–12 The study of analytic derivatives for
CC methods13 has recently culminated in analytic gradient
theories for equations of motion CC14 and propagator
approaches15 that are appropriate for specialized studies of
excited electronic states and certain open-shell systems.

Single reference �SR� approaches provide a standard tool
for highly accurate computations of small to medium sized
molecules near the equilibrium region of closed shell ground
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electronic states. However, SR methods �truncated at low
orders� have difficulties in treating quasidegenerate situa-
tions, such as bond breaking, transition states, and so on.
When a near degeneracy is present, the wave functions be-
come essentially multiconfigurational in nature, and both dy-
namical and nondynamical correlation contributions are es-
sential to obtain accurate and stable descriptions of the
energy and its derivatives. Consequently, multireference ap-
proaches represent the natural point of departure for treating
quasidegenerate systems.16

Several attempts have been made to formulate efficient
multireference methods17–19 that bypass the inherent difficul-
ties associated with SR treatments because the derivatives of
a molecular potential energy surface with pronounced multi-
reference character �as in excited or transition states� are
more appropriately treated with genuine multireference ap-
proaches. However, the formal implementation of analytic
gradient approaches for general multireference many-body
methods is nontrivial and to our knowledge, only a few stud-
ies consider numerical calculations for the gradient of mul-
tireference wave functions.20–24

Among multireference approaches, the complete active
space self-consistent field �CASSCF� scheme is one of the
most widely used methods for determining the ground and
excited state geometries and vibrational frequencies. This
method is popular partly because it is �a� stable over the
entire potential surface when an appropriate active space is
considered and �b� available in almost all quantum chemistry
packages, including open-source programs. While the
CASSCF method is capable of providing reliable predictions
of the ground and excited state geometries and vibrational
frequencies, the procedure rapidly becomes prohibitive since
the dimension of the CAS grows very rapidly with an in-
creasing number of active electron and orbitals. Moreover,
because the CASSCF method is iterative in nature, compu-
tations with larger active spaces often become plagued with
convergence difficulties. The convergence problems can
partly be mitigated by using a smaller active space, but then
the quality of the zeroth order wave functions may degrade.

To alleviate the problem associated with the CASSCF
step, a number of groups25–30 have proposed the possibility
of avoiding the CASSCF step by using orbitals obtained
from simpler methods to construct the active spaces for use
in subsequent multireference perturbative and nonperturba-
tive treatments. In this connection, Freed and co-workers25–28

demonstrated that the convergence problems of the CASSCF
procedure can be circumvented efficiently by using the com-
putationally inexpensive “improved virtual orbital-complete
active space configuration interaction” �IVO-CASCI� tech-
nique. The IVO-CASCI approach has the benefits that �i� it
does not require iterations beyond those in the initial SCF
calculation, �ii� the variational character of the IVO-CASCI
scheme suggests that the derivatives can be easily obtained
via the Hellmann–Feynman theorem, �iii� it can handle mul-
tireference systems in a balanced manner, �iv� it maintains
size consistency, �v� the IVO-CASCI method provides a
much more accurate description of excited state than the con-
figuration interaction singles �CIS� method, �vi� the energy is
invariant to rotations of orbitals within the same CAS space,

and finally �vii� it does not require full four-index transfor-
mation of atomic orbital �AO� to MO integrals. These fea-
tures provide a unique niche for the IVO-CASCI method that
enables us to treat much larger molecules using the full
“chemical” valence space, which, often, is not possible for
CASSCF calculations. Previous IVO-CASCI computations
for atomic spectra,31,32 global potential energy surfaces,26,27

and electronic spectra of complex molecular systems25,28

clearly indicate the efficacy of the method. Thus, computa-
tional costs of high level methods for the simultaneous in-
clusion of static and dynamic correlation effects �such as
MRMP2,33 multiconfigurational quasidegenerate perturba-
tion theory �MCQDPT�,34 CASPT2,35 and so on� would be
considerably improved by combining them with the IVO-
CASCI scheme.

Recent calculations by Chaudhuri et al.36 combine the
IVO-CASCI approach with multireference Möller–Plesset
perturbation theory33 and MCQDPT �Ref. 34� methods to
append dynamical correlation into the IVO-CASCI energy
and wave function. These recent studies36–39 further demon-
strate that the improved virtual orbital multireference
Möller–Plesset �IVO-MRMP�/MCQDPT approaches offer
very promising tools for investigating geometries and poten-
tial energy surfaces for electronic states that are strongly per-
turbed by intruders and/or that have pronounced multirefer-
ence character. Another approach for skipping the expensive
orbital optimization step is the multireference Möller–Plesset
complete active space configuration interaction method of
Hirao and co-workers29 that involves optimization of only
the expansion coefficients of the full configuration interac-
tion �CI� configurations in an active space.

Recently, Chaudhuri and Freed40 applied the IVO-
CASCI procedure to determine the equilibrium geometries
and vibrational frequencies of di- and triatomic molecules
using numerically determined energy gradients. Their study
clearly demonstrates that the geometries and vibrational fre-
quencies from IVO-CASCI calculations are generally com-
parable to or better than those provided by CASSCF treat-
ments with the same size of CAS �and other computationally
inexpensive methods� and that the converged IVO-CASCI
geometries are often obtained with smaller CASs than that
required by the CASSCF scheme.40 Given the successes of
the IVO-CASCI numerical gradients, we have developed the
corresponding far more efficient analytic derivative version
that is used here to compute the optimized structural param-
eters and associated properties using both first and second
order analytical energy gradients. This approach is compu-
tationally efficient and robust from the standpoint of numeri-
cal stability. Moreover, it is free from root flipping, intruder
states, size-consistency errors, and other problems associated
with most multireference methods. Our illustrative applica-
tions consider the benzene �C6H6�, biphenyl �C12H10�, and
alanine dipeptide �C6H12O2N2� molecules. These are excel-
lent examples to illustrate the potentiality and reliability of
any electronic structure theory due to multiple interacting
electronic states �an indication for the importance of nondy-
namical correlation�, which complicate the description of
their ground and excited states. Thus, the ground/excited
state geometries of these systems are computed using the
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IVO-CASSCI method with analytically determined energy
gradients. The computed geometries and vibrational frequen-
cies �for benzene and biphenyl� are compared with experi-
ment and with those obtained using the same basis set and
the Hartree–Fock �HF�, MP2, and Becke-3-Lee–Yang–Parr
�B3LYP� �Ref. 41� density functional theories. The systems
considered are not only complex but are also of fundamental
spectroscopic interest. For example, the S0�X 1Ag�
→S1�1 1B2u� transition of benzene is considered as a bench-
mark study in computational chemistry because the vibra-
tional structure of this transition is well documented and be-
cause it is a prototypical system for studying radiationless
transitions.42 The benzene triplet state provides an example
in which symmetry breaking occurs. While the ground state
conformers of alanine dipeptide are not multireference, the
system is central to the development of force fields for pro-
teins.

The numerical implementation for various nontrivial
systems demonstrates that the equilibrium geometries and
vibrational frequencies are well reproduced by the analytic
gradient based IVO-CASCI approach, and, consequently, the
IVO-CASCI approach represents a nice compromise be-
tween the computational efficiency and accuracy with re-
spect to the CASSCF method, which has been well estab-
lished as the method of choice for multireference mean-field
computations of small-to-medium sized molecules.

II. THEORY

In this section, we briefly review only those necessary
details for the evaluation of the analytic energy gradient
with respect to nuclear displacements for CASCI/
multiconfiguration self-consistent field �MCSCF� wave func-
tions because the remaining details may be extracted from
the available literature.43,44

The analytic energy gradient of a CI wave function de-
composes into two types of terms. The skeleton terms reflect
the changes in the AOs, and these contributions have the
same form as the full energy expression, except that deriva-
tive integrals replace the regular integrals. The remaining
terms reflect changes in the MOs and involve the orbital
response coefficients, which are determined by solving the
first order coupled-perturbed Hartree–Fock �CPHF� or
coupled-perturbed multiconfiguration Hartree–Fock �CPM-
CHF� equations, depending upon the reference function em-
ployed in constructing the configuration state function�s�
�CSF�. The essential difference between the CPHF and CP-
MCHF equations is that the derivatives of MO coefficients
are the only unknowns in the CPHF equations, whereas the
derivatives of the MOs and of the CI coefficients are the
unknowns in CPMCHF equations.

As noted by Yamaguchi et al.,44 the explicit evaluation
of the first derivatives of the MO and CI coefficients is not
necessary for the determination of the first derivative of the
MCSCF energy. This simplification also applies for closed-
shell or restricted open-shell HF functions. However, the
evaluation of the second derivative of the HF/MCSCF en-
ergy requires knowledge of the first order variations in the
MO and CI coefficients �but not for the HF wave function�

with respect to nuclear displacements. In contrast, the deriva-
tives of the CI coefficients generally require the computation
of MO derivatives because the MOs are not variationally
optimized in the CI procedure. At this juncture, we empha-
size that the IVOs are variationally optimized, although they
are determined by a unitary transformation instead of an it-
erative procedure.

The following �Sec. II A� provides a minimal basic de-
scription, which suffices to introduce the IVO-CASCI
method for the general reader. The methods for the evalua-
tion of the analytic energy gradient for a CASCI/MCSCF
wave functions are described in Sec. II B.

A. Generation of improved virtual orbitals

One portion of both the IVO-CASCI and CASSCF pro-
cedures effectively involves a CASCI computation, where
the CAS comprises all configurations with filled core, empty
excited orbitals, and the remaining electrons distributed
among the active valence orbitals in all possible ways. The
CASSCF orbitals are optimized for a single state or for some
weighted average of several states, while the IVO-CASCI
orbitals do not require optimization to achieve at least a com-
parable accuracy. The reasons for this counterintuitive be-
havior are as follows: a CI computation of dimension D is
well known to provide rigorous upper bounds to the energies
of the D lowest electronic states,45 but, of course, accurate
bounds are expected only for the lowest few of these states,
which fortunately, are generally the states of interest. How-
ever, the use of orbitals optimized for one �or for the average
of a few� states generally yields a poor representation of the
other states, and this feature is partially responsible for the
poor convergence of the CASSCF procedure as the dimen-
sion of the CAS grows. Our alternative approach involves
directly choosing orbitals that simultaneously provide a good
representation for several of the lowest lying electronic
states. This procedure has previously been followed in Hv

�Ref. 16� computations where the CAS orbitals are defined
as comprising the highest occupied orbitals �perhaps, only
for certain symmetries� in the SCF approximation to the
ground �or a low lying� state and a set of the lowest lying
IVO orbitals constructed from the remaining unoccupied
space in the basis set. This IVO approach is designed to
maximize the accuracy of the first order Hv approximation,
which is equivalent to a CASCI, for the low lying electronic
states in order to minimize the required perturbative
corrections.27 Earlier Hv computations use a computationally
complex sequence of SCF computations to obtain the IVOs,
but more recently they employ a simple direct method for
generating the IVOs for several common situations.25 The
significant improvement in computational efficiency for de-
termining the IVOs is one important feature contributing to
the packageability of the IVO-CASCI method and its use for
geometry optimization.

Since the basic philosophy of generating the IVOs is the
same for both restricted and unrestricted HF orbitals, we
only present the restricted HF case, which is used herein.
When the ground state of the system is a closed shell, we
begin with the HF MOs for the ground state wave-function
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�0=A��1�̄1�2�̄2¯�n�̄n�, where A is the antisymmetrizer.
Let the indices i , j ,k , . . . refer to the occupied HF MOs ��i�
and u ,v ,w , . . . to unoccupied HF MOs. All the HF MOs are
determined by diagonalizing the one electron HF operator
1F,

1Flm = ��l�H + 	
k=1

occ

�2Jk − Kk���m
 = �lm�l, �1�

where l and m designate any �occupied or unoccupied� HF
MO and �l is the HF orbital energy. The operator H is the
one-electron portion of the Hamiltonian, and Jk and Kk are
Coulomb and exchange operators, respectively, for the occu-
pied orbital �k.

An excited state HF computation would provide a new
set ��� of MOs that produce the lowest possible energies for
the low lying singly excited ��→� state,

��� → �� = A��1�̄1�2�̄2 ¯ ����̄� 	 ���̄�� ¯ �n�̄n� ,

�2�

corresponding to an excitation of an electron from the orbital
�� to ��, where the + and 
 signs correspond to triplet and
singlet states, respectively. The new MOs ���� and ���� may
be expressed as a linear combination of the ground state
MOs ��i ,�u�. If, however, the orbitals are restricted such
that the ���� are linear combinations of only the occupied
ground state MOs ���� and the ���� are expanded only in
terms of the unoccupied ��u�,

�� = 	
i=1

occ

a�i�i; �� = 	
u=1

unocc

c�u�u, �3�

then the new orbital set ��� ,��� not only leaves the ground
state wave function unchanged but also ensures the orthogo-
nality and applicability of Brillouin’s theorem between the
HF ground state and the ��→� excited states. In addition,
this choice also benefits from using a common set of MOs
for the ground and excited states, a choice which simplifies
the computation of oscillator strengths, etc. However, we
avoid the computationally laborious reoptimization of the oc-
cupied orbitals by setting ���������, i.e., by choosing a�j

=��j, thereby simplifying enormously the procedure for gen-
erating the IVOs. Hence, the coupled equations determining
the coefficients a�j and c�� reduce to a single eigenvalue
equation of the form F�C=C�, where the operator F� is
given by

Fvw� = 1Fvw + Avw
� , �4�

where 1F is the ground state Fock operator and the additional
term Avw

� accounts for the excitation of an electron out of
orbital ��,

Avw
� = ��v� − J� + K� 	 K���w
 . �5�

The minus sign in Eq. �5� applies for 3��→� triplet state,
while the plus sign is for the singlet 1��→� state.26,46 The
corresponding transition energy is

1,3E�� → �� = E0 + �� − 1F��, �6�

where E0 is the HF ground state energy and �� is the eigen-
value of F�C=C� for the �th orbital.

Special care is required for systems where the highest
occupied HF MOs are doubly degenerate. In order that the
���� retain molecular symmetry, the construction of F� must
be modified from Huzinaga’s scheme. If �� and �� are the
highest occupied degenerate HF MOs, then the matrix ele-
ment Avw

� in Eq. �6� is replaced for these degenerate systems
by Avw

�,�, where

Avw
�,� = 1

2 ��v� − J� + K� 	 K���w


+ 1
2 ��v� − J� + K� 	 K���w
 . �7�

B. Formal structure of the first order energy gradients

Before presenting the formal structure of the first deriva-
tives of the electronic energy, we emphasize that the working
equations for the energy gradients have been discussed at
length by several pioneers in this field.1,5,44,47 Our working
approach for evaluating the first derivatives of the electronic
energy is closely related to the one summarized by Yamagu-
chi et al.44 in their review article, so some details from their
approach are omitted for brevity.

Let �I�r ,R� be the CASCI eigenfunction of the nonrel-
ativistic Born–Oppenheimer Hamiltonian Helec�r ,R� for a
system of n-electrons and N-nuclei in the space of the zeroth
order reference functions �K�r ,R� ,K=1, . . . ,M, i.e.,

Helec�r,R��I�r,R� = Eelec
I �R��I�r,R� , �8�

where r and R are the electron and nuclear coordinates, re-
spectively, and where �I�r ,R� is given by

�I�r,R� = 	
I

M

CI�R��I�r,R� , �9�

with

	
I

M

CI
2�R� = 1. �10�

The �k�r ,R� are symmetry adapted CSFs and CI�R� are the
corresponding CI coefficients. The CSFs �I�r ,R� can be ex-
pressed in terms of Slater determinants containing orthonor-
mal MOs �k�r ,R�,

�I�r,R� = 	
k

m�
k 1
�N!

	
P

N!

�− 1�PP��1�1��2�2� ¯ �k�N�� ,

�11�

where P is a permutation operator and m�
k are the Clebsch–

Gordan coefficients. Further, the MOs can be written as lin-
ear combinations of atom centered basis functions �AOs�
�l�r ,R�,
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�i�r,R� = 	
�

AO

t�
i �R����r,R� , �12�

where t�
i �R� are the MO expansion coefficients. The MOs

��r ,R� are chosen to be orthonormal, i.e.,

Sij = ���i�r,R��� j�r,R�� = �ij . �13�

The electronic energy Eelec corresponding to a CI wave
function is given by

Eelec = 	
IJ

CI

CICJ��I�Helec��J
 = 	
IJ

CI

CICJHIJ, �14�

where the Born–Oppenheimer Hamiltonian Helec for n elec-
trons and N nuclei is

Helec = − 	
i

n 1

2
�i

2 + 	
A

N
ZA

riA
� + 	

i�j

n
1

rij
= 	

i

n

h�i� + 	
i�j

n
1

rij
,

�15�

in which Z is the nuclear charge and h�i� the usual one-
electron operator,

h�i� = − 	
i

n
1

2
�i

2 − 	
i

n

	
A

N
ZA

riA
. �16�

The total energy Etot of the system is then given by

Etot = Eelec + 	
A�B

N
ZAZB

RAB
, �17�

where RAB is an internuclear separation.
Differentiating Eq. �14� with respect to nuclear coordi-

nate R yields

�Eelec

�R
= 	

IJ

CI  �CI

�R
CJHIJ + CI

�CJ

�R
HIJ + CICJ

�HIJ

�R
� , �18�

which can be further written as

�Eelec

�R
= 2	

IJ

CI
�CI

�R
HIJCJ + 	

IJ

CI

CICJ
�HIJ

�R
�19�

by interchanging summation indices. Invoking the varia-
tional condition within the CI space, i.e., 	JHIJCJ=EelecCI,
Eq. �19� can be further expressed as

�Eelec

�R
= 2Eelec	

I

CI
�CI

�R
CI + 	

IJ

CI

CICJ
�HIJ

�R
, �20�

or simply

�Eelec

�R
= 	

IJ

CI

CICJ
�HIJ

�R
�21�

because of the normalization condition

	
I

CI
�CI

�R
CI = 0. �22�

Now, the matrix elements of Hamiltonian Helec with re-
spect to the CSFs I and J are written as the form44

HIJ = 	
ij

MO

�ij
IJhij + 	

ijkl

MO

�ijkl
IJ �ij�kl� , �23�

where �ij
IJ and �ijkl

IJ are the one- and two-particle transition
density matrices, and the one- and two-electron MO integrals
hij and �ij �kl� are given by

hij =� �i
��1�h�1�� j

��1�d�1 �24�

and

�ij�kl� =� � �i
��1�� j

��1�
1

r12
�k

��2��l
��2�d�1d�2, �25�

respectively. Here, the choice of orbitals remains quite gen-
eral and can be assumed to comprise HF orbitals for the
occupied orbitals in the reference wave function and IVOs
for the remaining orbitals. Substituting Eq. �23� in Eq. �14�,
we get

�Eelec

�R
= 	

IJ

CI

CICJ	
ij

MO

�ij
IJ�hij

�R
+ 	

ijkl

MO

�ijkl
IJ ��ij�kl�

�R � . �26�

Now, defining the full one- and two-particle reduced density
matrices as

�ij = 	
ij

MO

CICJ�ij
IJ, �ijkl = 	

ijkl

MO

CICJ�ijkl
IJ , �27�

respectively, we can rewrite Eq. �26� as

�Eelec

�R
= 	

ij

MO

�ij
�hij

�R
+ 	

ijkl

MO

�ijkl

��ij�kl�
�R

. �28�

The derivatives of the one-electron MO integrals appear-
ing in Eqs. �26� and �28� can be represented as

�hij

�R
=

�

�R
	
��

AO

t�
i t�

j h��

= 	
��

AO  �t�
i

�R
t�
j h�� + t�

i �t�
j

�R
h�� + t�

i t�
j �h��

�R
� . �29�

Expressing the �th perturbed MO coefficients in terms of the
perturbation parameter � as

t�
ipert

= t�
i + �	

m

MO
�t�

i

�R
+ ¯ = t�

i + �	
m

MO

Umi
R t�

M + ¯ , �30�

where Umi
R denotes the changes in the MO coefficients of the

� th orbital �molecular� due to nuclear perturbation and is
defined as

�t�
i

�R
= 	

m

MO

Umi
R t�

m. �31�

Substituting Eq. �31� in Eq. �29�, we get
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�hij

�R
= hij

R + 	
m

MO

�Umi
R hmj + himUmj

R � , �32�

where the superscript R indicates the derivative with respect
to R. Likewise, the derivatives of two-electron MO integrals
are obtained as

��ij�kl�
�R

= �ij�kl�R + 	
m

MO

�Umi
R �mj�kl� + Umj

R �im�kl�

+ �ij�ml�Umk
R + �ij�km�Uml

R � . �33�

Substituting Eqs. �32� and �33� in Eq. �28� and perform-
ing some algebraic manipulations reduces these equations to

�Eelec

�R
= 	

ij

MO

�ijhij
R + 	

ijkl

MO

�ijkl�ij�kl�R + 2	
ij

MO

Uij
RXij , �34�

where the Lagrangian matrix X in Eq. �34� is defined as

Xij = 	
m

MO

� jmhim + 2	
mkl

MO

� jmkl�im�kl� . �35�

It is obvious from Eq. �34� that the evaluation of the first
derivative of the CI energy requires the explicit evaluation of
the derivatives of the MO coefficients Uij

R, which are of the
form �neglecting the CI derivative�

Uij
R =

Fij
R − Sij

R

�i − � j
, �36�

where FR and SR are the derivatives of Fock operator �HF or
IVO� defining the MOs and of the overlap operator in the
MO basis, and � are the orbital energies.

Now, when the orbitals are generated from variationally
optimized procedures, such as the MCSCF or the closely
related IVO-CASCI methods, the Lagrangian matrix satisfies
the symmetry condition, i.e.,

Xij = Xji. �37�

The Lagrangian matrix X is related to IVO-CASCI/MCSCF
Fock matrix via

Xij = ��i�	
m

MO

Fjm��m
 , �38�

where

Fij = �ijh + 2	
m

MO

�ijklJkl, �39�

in which h is the one-electron operator and the two-electron
operator Jkl satisfies

��i�Jkl�� j
 = �ij�kl� . �40�

A similar symmetry condition is also used in the evaluation
of the first derivatives of the energy gradient in the closed
and restricted open-shell HF methods. Using the Lagrangian
symmetry condition, Eq. �34� is rewritten as

�Eelec

�R
= 	

ij

MO

�ijhij
R + 	

ijkl

MO

�ijkl�ij�kl�R + 	
ij

MO

�Uij
R + Uji

R�Xij ,

�41�

which can be further simplified to

�Eelec

�R
= 	

ij

MO

�ijhij
R + 	

ijkl

MO

�ijkl�ij�kl�R − 	
ij

MO

Sij
RXij �42�

by invoking the orthonormality condition, i.e., Sij
R +Uij

R +Uji
R

=0. Equation �42� clearly shows that the evaluation of the
first derivative of the IVO-CASCI/MCSCF energy can be
accomplished without the explicit computation of the UR and
�C /�R derivatives. On the other hand, the computation of the
second derivative of the IVO-CASCI/MCSCF energy re-
quires the explicit evaluation of first derivatives of the MO
and CI coefficients. This computation is accomplished in the
MCSCF method by differentiating Eq. �37� to produce the
CPMCHF equations. The detailed derivation of the CPM-
CHF equations for multi-Fock operator methods is sketched
in Ref. 43, and the modified form used here will be presented
in a future communication.

III. NUMERICAL APPLICATIONS

This section illustrates the numerical performance of our
computationally inexpensive analytical gradient based IVO-
CASCI method, which is completely general and easily por-
table to the study of very different chemical systems. The
main focus of the applications is to provide high level quan-
tum chemical calculations of geometries and vibrational fre-
quency for some chemically interesting and challenging sys-
tems and thereby demonstrate the feasibility and efficacy of
the IVO-CASCI method. Thus, we have applied this analyti-
cal gradient scheme to the benzene, biphenyl, and alanine
dipeptide molecules. All the harmonic vibrational frequen-
cies reported here are calculated using our analytic second
derivative method.

Unless otherwise mentioned, all the calculations are per-
formed using the GAMESS quantum chemistry software,48

which has been interfaced with our IVO-CASCI module for
generating improved virtual orbitals and which will be made
available for distribution.

A. Benzene

We begin by examining the ground and excited state
geometries and vibrational frequencies of benzene, one of
the most extensively studied �-electron aromatic hydrocar-
bons in quantum chemistry for which the theoretical descrip-
tion of the ground and excited of this system is difficult due
to their multireference character even in the equilibrium re-
gions. This six-membered ring system, and particularly its S0

and S1 states, is of fundamental importance in spectroscopy.
Extensive experimental studies of the S0 and S1 vibrational
modes are also well documented,49–56 and several calcula-
tions are available for the S0 and S1 state harmonic force
fields and vibrational spectra.57–63 Recent advances in high
resolution spectroscopy have enabled the assignment of the
S0 and S1 state vibrational frequencies of benzene more pre-
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cisely and, therefore, a rigorous comparison between theory
and experiment provides a stringent assessment for the accu-
racy of ab initio many-body methods.

The geometry optimizations for the ground X 1Ag�S0�
and first excited singlet 1B2u�S1� and triplet 3B1u states of
benzene are performed with the correlation consistent
polarized-valence double-� �cc-pVDZ� Dunning basis set64

without altering the active space. The calculations assume a
D2h �subgroup of D6h� point group symmetry for conve-
nience in checking for possible symmetry lowering. The ac-
tive space in these calculations comprises three bonding va-
lence � orbitals �b2u, b1g, and b3g� and three antibonding
valence �� orbitals �b3g, b2u, and au�. Consequently, the ac-
tive space used in IVO-CASCI calculations contains 51 and
52 CSFs for the treatment of the 3B1u and X 1Ag states,
respectively.

The ground state geometry determined from HF, MP2,
density functional theory �DFT�/B3LYP, CASSCF, and IVO-
CASCI calculations exhibits some striking differences �see
Table I� in the computed C–C and C–H bond lengths,
namely, �a� the HF calculations yield the C–C and C–H
bonds as 0.008 and 0.002 Å shorter than the experiment,
whereas the DFT/B3LYP procedure estimates these bonds to
be 0.002 and 0.011 Å longer than the observed values;66 �b�
the MP2 predicted C–C and C–H bond lengths are off by
0.009 Å from the experiment; �c� the C–C and C–H bond
lengths from the IVO-CASCI and CASSCF methods are ac-
curate to 0.001 and 0.002 Å, respectively. It is pertinent to
note that the CPU times elapsed during the IVO-CASCI and
CASSCF geometry optimization are 189 and 367 s, respec-
tively, a difference which mainly arises because of the need
for a CASSCF iteration cycle at each intermediate geometry.

Since the first excited singlet 1B2u�S1� state of benzene is
an open shell, the geometry optimizations are determined
only at the IVO-CASCI and CASSCF level. As shown in
Table I, the C–C bond length increases from 1.397 to 1.435
Å during the S0→S1 excitation, while the C–H bond length

decreases from 1.086 to 1.070 Å. These changes in bond
lengths are consistent with other theoretical estimates. Table
I also exhibits the IVO-CASCI estimates of the C–C and
C–H bond lengths for the S1 state as deviating by only 0.001
and 0.01 Å, respectively, from the experiment.49 The geom-
etries reported in Table I for the S0 and S1 states further
indicate that the D6h point group symmetry is preserved dur-
ing the optimization procedure. The lack of lowering of the
symmetry in the transition between the S0 and S1 states
agrees with the experimentally observed selection rules.

The geometry of benzene in its lowest triplet state �3B1u�
has been a subject of several experimental and theoretical
investigations69,70 since the 3B1u state exhibits conforma-
tional instability due to strong vibronic coupling with the
3E1u state through e2g modes. Theoretical calculations of the
vibronic coupling support this interpretation of the spectro-
scopic results.71 We compute the geometry and vibrational
frequencies of the 1 3B1u state using the CASSCF and IVO-
CASSCI schemes to analyze the stability of these states.
Table I presents the optimized molecular dimensions and
adiabatic transition energy from the ground X 1Ag state as
determined with the CASSCF and IVO-CASCI methods.
The calculated bond lengths and bond angles demonstrate

FIG. 1. Labeling of molecular structure for the triplet states of benzene.

TABLE I. Optimized and experimental geometries for the ground �X 1Ag�, first excited singlet �1 1B2u�, and
triplet �1 3B1u� states of benzene from theories using the cc-pVDZ basis set. The bond angles and bond
distances are given in degrees and angstrom, respectively.

State Method re�C–C� /Å re�C–H� /Å E�kcal /mol�a
CPU
�s�b

X 1Ag�S0� HF 1.389 1.082 14
MP2 1.406 1.095 32

DFT/B3LYP 1.398 1.093 43
CASSCF 1.398 1.082 65c, 34d

IVO-CASCI 1.398 1.082 14
Expt. 1.397e 1.084e

1 1B2u CASSCF 1.436 1.080 110 20c, 34d

IVO-CASCI 1.436 1.080 110 33
Expt. 1.435f 1.070f 113g

1 3B1u CASSCF 1.432 1.080 85 67c

IVO-CASCI 1.432 1.080 85 33
Expt. 90h

aECASSCF/IVO-CASCI�X 1Ag�=−230.794 31 a.u.
bCPU time for single energy+gradient calculation.
cFrom GAMESS package �Ref. 48�.
dFrom DALTON package �Ref. 65�.

eReference 66.
fReference 49.
gReference 67.
hReference 68.
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that the hexagonal molecular structure �D6h� is preserved
during the optimization procedure. In passing, we note that
the CASSCF geometry obtained using the DALTON package65

yields a lower symmetry �D2h� solution for the 3B1u and 1B2u

states.

Interestingly, the calculations at C2v symmetry �sub-
group of D2h� yield two stable triplet states. The ground state
configuration of benzene under C2v symmetry is
11a1

27b1
22b2

21a2
2. The triplet state geometry optimization is

carried out with a ��1–4�b2�1–2�a2�6 CAS space �3� and

TABLE II. Optimized triplet state geometries of benzene. Bond distances, bond angle, energy with respect to
ground state, and CPU time are in angstrom, degrees, kcal/mol, and seconds.

State Parameters IVO-CASCIa CASSCFb Expt.

3A1

re�C1–C4�=re�C2–C3� 1.3628 1.3628
re�C1–C5�=re�C2–C5�=re�C4–C6�=re�C3–C6� 1.4698 1.4698

re�C1–H�=re�C2–H�=re�C3–H�=re�C4–H� 1.0816 1.0816
re�C5–H�=re�C6–H� 1.0787 1.0787

�C4–C1–C5= �C3–C2–C5= �C2–C3–C6
= �C1–C4–C6 120.51 120.51

E�1 3A1�−E�X 1Ag� 82 82 90c

CPUd 22 43
3B1

re�C1–C4�=re�C2–C3� 1.4372 1.4372
re�C1–C5�=re�C2–C5�=re�C4–C6�=re�C3–C6� 1.4293 1.4293

re�C1–H�=re�C2–H�=re�C3–H�=re�C4–H� 1.0799 1.0799
re�C5–H�=re�C6–H� 1.0807 1.0807

�C4–C1–C5= �C3–C2–C5= �C2–C3–C6
= �C1–C4–C6 119.68 119.68

E�1 3B1�−E�X 1Ag� 111 111
CPUd 22 43

aECASSCF/IVO-CASCI�X 1Ag�=−230.794 31 a.u.
bFrom DALTON package.
cReference 68.
dCPU time for single energy+gradient calculation.

TABLE III. Comparison of calculated and experimental vibrational frequencies �in cm−1� of ground �X 1Ag /S0�
and first excited singlet �1 1B2u /S1� state of benzene. �Entries are the differences with respect to experiment
�theory experiment�.�

Symmetry

X 1Ag 1 1B2u

HF IVO-CASCI CASSCF Expt.a IVO-CASCI CISb Expt.c

a1g 297 292 291 3074 256 287 3130
88 50 46 993 36 114 923

a2g 94 86 86 1350 198 273 1246
b1u 271 267 267 3057 190 216 3159

76 79 79 1010 122 181 936
b2u 33 19 19 1309 286 278 1570

39 30 30 1150 92 159 1148
e2g 282 277 277 3057 280 305 3077

175 118 118 1601 207 281 1454
95 79 79 1178 80 152 1148
53 42 42 608 56 79 522

e1u 295 290 290 3064 291 321 3081
123 102 102 1484 114 207 1401

93 68 68 1038 42 159 919
a2u 79 31 32 674 15 166 515
b2g 127 31 31 990 
47 227 749

64 13 12 707 130 27 365
e1g 102 19 20 847 12 156 585
e2u 123 18 19 967 
37 213 713

52 31 31 398 62 58 237
Deviation �rms� 154 137 137 158 209

aSee Ref. 53 for experimental references.
bReference 57.
cReference 54.
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3�� orbitals� and the computed molecular dimensions
�Fig. 1� are summarized in Table II. Thus, the active space
employed in these calculations contains 93 and 96 CSFs for
the treatment of the 3A1 and 3B1 states, respectively.

The structural parameters displayed in Table II reveal
that the C1–C4 and C2–C3 bond distances in 3B1 differ by
only 0.008 Å from the other four C–C bond lengths. Like-
wise, we find that the C5–H and C6–H bond lengths in 3B1

are also relatively close �differ by 0.0008 Å� to the other four
C–H bond lengths. But the picture is completely different for
the 3A1 state where the C1–C4 and C2–C3 bond lengths
differ by 0.107 Å from the other C–C bonds, and the C5–H
and C6–H bonds deviate by 0.003 Å from the other four
C–H bonds. While the C–C bond lengths in the 3A1 and 3B1

states differ substantially, the C–C–C bond angles differ only
by 1°.

The benzene ground �S0� and first excited states �S1�
have 30 fundamentals with symmetries 2a1g+a2g+2b1u

+2b2u+2b2g+a2u+3e1u+2e2u+4e2g+e1g for their D6h struc-
tures. The normal mode frequencies of the S0 and S1 states
are computed with the HF, CASSCF, and IVO-CASCI meth-
ods and are compared with the experiment51–54,56 in Table III.
The computed normal mode frequencies are all real, imply-

ing that the optimized geometries are at minima. A relatively
good agreement emerges between the calculated vibrational
spectra for the S0 and S1 states from the IVO-CASCI and
CASSCF methods. The root-mean-square �rms� deviations
between the calculated IVO-CASCI and observed frequen-
cies are 137 and 158 cm−1 for the S0 and S1 states, respec-
tively. The maximum deviations in our calculated vibrational
frequencies are 292 cm−1 �a1g� and 291 cm−1 �e1u� for the
S0 and S1 states, respectively.

The CASSCF and IVO-CASCI harmonic vibrational fre-
quencies for the triplet states of benzene are displayed in
Table IV for all 30 fundamentals with symmetries 11a1

+10b1+6b2+3a2 for the C2v structure. Since none of fre-
quencies is imaginary, both structures are stable. The geom-
etries and frequencies for the triplet states are determined
from DALTON package to demonstrate the reliability of our
proposed scheme because while the IVO-CASCI geometry
optimization with GAMESS takes less time than with the
DALTON package, the frequency calculation is more time
consuming with GAMESS than with the DALTON package.

The vibrational frequencies for C–H stretching modes in
Table III display the common characteristic of deviating by
more than 200 cm−1 from the experiment, whereas our com-
puted frequencies for the other modes well reproduced the

TABLE IV. Calculated harmonic vibrational frequencies �in cm−1� for the
first excited 1 3A1 and 1 3B1 states of benzene.

Symmetry

1 3A1 1 3B1

CASSCFa IVO-CASCI CASSCFa IVO-CASCI

a1 3387 3387 3386 3385
3379 3379 3369 3368
3353 3353 3351 3350
3335 3335 3348 3347
1599 1598 1660 1659
1504 1503 1509 1509
1219 1220 1226 1226
1064 1064 1066 1067

956 956 972 987
857 856 932 931
579 579 553 553

b1 3359 3359 3373 3372
3336 3336 3368 3367
1642 1642 2311 2310
1497 1497 1606 1605
1444 1444 1447 1445
1391 1391 1392 1392
1236 1236 1303 1302
1069 1069 1232 1231

755 754 801 800
489 488 575 572

b2 906 905 749 747
681 681 745 743
512 512 631 630
249 247 555 554
243 240 492 501
155 152 312 291

a2 902 901 682 681
674 673 609 606
385 384 289 291

aFrom DALTON package.

TABLE V. Calculated vibrational frequencies �in cm−1� for the first excited
triplet �1 3B1u� state of benzene at the saddle point �D6h� and at the �D2h�
minima along the internal reaction coordinate �Fig. 2�.

Symmetry Saddle point Minima

ag 3381 3373
3348 3212
1353 1613

956 1238
628 960

1469i 586
b3u 3369 3213

1547 1653
1526 1500
1235 1264

971 1071
b2u 701 770

549 259
312 186

b1g 617 718
b1u 3369 3369

3345 3188
1526 1531
1073 1063

971 870
b2g 3348 3188

1449 1453
1353 1396

628 760
1469i 485

b3g 730 959
617 509
514 250

au 701 968
312 385
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experiment. As is well known, the frequencies obtained upon
diagonalization of harmonic force fields, in general, exceed
�10% on average�57 the experiment, and, consequently, the
ab initio vibrational frequencies are commonly scaled to re-
produce the observed frequencies. For example, the CH and
CC stretching frequencies for the S0 and S1 states are scaled
by factors of 0.83 and 0.82 by Orlandi et al.57 A closer analy-
sis of the data presented in Table III shows that the difference
between IVO-CASCI predicted and the experimental vibra-
tional frequencies would also diminish if the IVO-CASCI
frequencies are also scaled by 0.82. However, in order to
demonstrate the accuracy and strength of the method, this
scaling procedure is not introduced here.

The calculated 0-0 adiabatic energy separation between
the X 1Ag–1 3B1u and X 1Ag–1 1B2u states from the IVO-
CASCI and CASSCF methods is accurate to 5 and 3 kcal/
mol, respectively. The present calculations estimate the
X 1Ag→1 3B1u and X 1Ag–1 1B2u transition energies to be
85 and 110 kcal/mol, where the corresponding experimental
values are 90 and 113 kcal/mol, respectively. Thus, the data
in Tables I–IV clearly demonstrate that the CASSCF and
IVO-CASCI methods describe the X 1Ag�S0�, 1 1B2u�S1�,
and 1 3B1u states of benzene in a reasonably balanced fash-
ion for the chosen active space.

The vibrational frequencies computed using the
CASSCF and IVO-CASCI methods yield a pair of imaginary
frequencies for the first excited triplet state of B1u symmetry.

This implies that the 1 3B1u is conformationally unstable, a
finding that is also in accord with the experiment and with
earlier theoretical calculations.69,70 In fact, Moffitt et al.69

explain that the conformational instability of the 1 3B1u state
arises due to strong vibronic coupling between the 3B1u and
3E1u states. In order to analyze the conformational instability,
our geometry optimization in D6h symmetry as expected pro-
duces a saddle with a pair of imaginary frequencies �see
Table V�. We then employ the IRC path method to study the
potential curve along the direction of the largest magnitude
downhill component of the imaginary normal mode �see
Fig. 2�. The use of the IRC path method leads to a stable
conformer of D2h point group symmetry �see Table V�. Fi-
nally, it is important to emphasize that the IVO-CASCI treat-
ment yields almost identical results to the CASSCF scheme
at a fraction of the computational cost �see Tables I and II�.
Thus, the IVO-CASCI procedure is a viable replacement for
the CASSCF method.

B. Biphenyl

Another system of great interest is the biphenyl molecule
�H5C6–C6H5� owing, in part, to the nonrigid geometry and
conformational changes during electronic excitation. The
study of biphenyl also helps in understanding the interaction
between two subsystems, two benzene molecules. The accu-
rate determination of the thermodynamic properties of biphe-
nyl is also of great importance because biphenyl is an envi-
ronmentally significant compound. Consequently, the
geometry, vibrational frequencies, and internal rotational po-
tential of the biphenyl molecule have long been the subject
of theoretical72–80 and experimental78,81–89 study in spite of
the difficulty of ab initio calculations because of its size.
However, some experimental and theoretical findings exhibit
inconsistencies, which should be resolved through more ac-
curate calculations. While it is desirable to investigate the
geometries of the biphenyl conformers and their relative sta-
bility with high level ab initio methods, the size of the sys-
tem has usually prevented or at lest attenuated the calcula-
tions before reaching the ab initio limit.

The molecular structure of biphenyl �Fig. 3� is mainly
characterized by the twisting angle ��� between the two phe-
nyl rings because this angle strongly depends on the state of
aggregation. For example, the experimental data for biphenyl
in the solid state are consistent with a coplanar structure
��=0�, whereas gas phase electron diffraction experiments
indicate that a nonplanar ��=44.3°+	1.3°� structure is en-
ergetically more stable.

The first ab initio geometry optimization of biphenyl by
Almlöf uses HF calculations and a double-� quality basis.
Almlöf demonstrates that the nonplanar structure ��=32°� is
energetically most stable. The rotational barrier heights E�

reported in his calculations are 5.0 and 18.9 kJ/mol for the
planar ��=0� and perpendicular ��=90� conformers, respec-
tively. Several subsequent theoretical calculations employ
different approaches to locate the most stable structure and
its stability. For example, the rotational barrier heights E0

and E90 from HF and MP2 calculations lie in the range of
13–16 and 5–7 kJ/mol, whereas the electron diffraction study
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FIG. 2. Energy as a function of the distance along the reaction path in mass
weighted Cartesian space. The path is along the direction of the largest
magnitude of the downhill component of the imaginary normal mode.

FIG. 3. Structure of coplanar biphenyl molecule.
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suggests these gaps to be 6.0	2.1 and 6.5	2.0 kJ /mol,
respectively. The twisting angle reported in these calcula-
tions varies from 38.6° to 46.3°, a range which is quite sub-
stantial. Thus, one aim of the present work is to provide an
accurate estimate of the barrier heights and geometries of the
biphenyl conformers.

The geometry optimizations of the coplanar �D2h�,
twisted �D2�, and perpendicular �D2d� conformations are ef-
fected with HF, MP2, DFT, and IVO-CASCI methods using
the 6-31G� and polarization consistent �pc� basis sets. Actual
calculations, for convenience, are performed with D2 sym-
metry �a subgroup of D2h/2d�. The active space for the IVO-
CASCI calculations is constructed by allocating 12 valence
�-electrons over 12 valence �-MOs in all possible ways to
yield 57 008 CSFs. For the coplanar geometry, these 12
�-valence orbitals are of b1u �4�, b2g �4�, b3g �2�, and au �2�
symmetries, where the entrees within parentheses indicate
the number of MOs present in the active space.

1. Twisted geometry „D2…

This twisted geometry �which reduces the symmetry
from point group D2h to D2� represents a wide class of
chemically important issues such as the description of tran-
sition states and diradicals. As the twisting angle increases,
no coupling between the excited states is introduced, and
thus no new states are generated. The geometries of the non-
planar conformer from HF, MP2, DFT, and IVO-CASCI cal-
culations with the 6-31G� Gaussian basis set �128 basis func-
tions� are compared with the experiment83 in Table VI which
exhibits some noticeable differences in the computed C–C
and C–H bond lengths and the torsional angle: �a� the HF
optimized geometries agree reasonably well with the experi-
ment except for the C–H, C2–C3, and C3–C4 bonds, �b�
MP2 calculations overestimate the C–C bond lengths of the
phenyl ring by �0.02 Å and the torsional angle by 2°, �c�

the IVO-CASCI approach yields shorter C–H bonds, and �d�
the torsional angle estimated from DFT deviates by 5.4°
from the experiment.

The accuracy of the C–C and C–H bond lengths, how-
ever, improves significantly when the geometry optimiza-
tions are performed with Jensen’s pc basis set90 augmented
with one polarization function.90 The contraction schemes
used in the pc-1 basis set for hydrogen and carbon atoms are
�4s1p�/�2s1p� and �11s4p1d�/�3s2p1d�, respectively. The ge-
ometries obtained from this basis set for the twisted geom-
etry clearly demonstrate a significant improvement �see
Table VII� especially for the HF and DFT procedures. How-
ever, this is perhaps fortuitous as the coplanar treatments
�discussed below� do not exhibit any such trend.

2. Coplanar geometry „D2h…

Tables VIII and IX, respectively, compare the geometry
of the coplanar conformer, as determined from HF, MP2,
DFT, and IVO-CASCI calculations using the 6-31G� �128
basis functions� and pc-1 basis sets �218 basis functions�
with the experiment.82 Table VIII demonstrates that the op-
timized geometries from all these scheme are reasonably ac-
curate, but the error in the computed barrier height differs
significantly. For example, the barrier height at 0° from HF,
MP2, DFT, and IVO-CASCI calculations deviates by 7.6,
11.4, 4.0, and 5.7 kJ/mol, respectively. The results from the
pc-1 basis set also exhibit very similar trends, except �a� the
error in the MP2 optimized C1–C1

�, C1–C2, C2–C3, and
C3–C4 bond distances reduces to 0.006, 0.012, 0.007, and
0.011 Å from 0.01, 0.026, 0.022, and 0.026 Å, and �b� the
error in the IVO-CASCI optimized C1–C2, C2–C3, and
C3–C4 bond distances reduces to 0.002, 0.005, and 0.003 Å
from 0.012, 0.008, and 0.011 Å. In passing, we note that the
IVO-CASCI and CASSCF geometry optimizations require
385 and 1012 s, respectively.

TABLE VI. Computed equilibrium geometry of biphenyl molecule from 6-31G� basis set calculations. The
bond angles, bond distances, and energies are given in degrees, angstrom, and a.u., respectively.

Parameters HF MP2 IVO-CASCI DFT Expt.a

� b 44.6 46.4 44.2 39.0 44.4
C1–C1� 1.489 1.492 1.490 1.488 1.507
C1–C2 1.395 1.419 1.405 1.410 1.404
C2–C3 1.387 1.411 1.397 1.398 1.395
C3–C4 1.387 1.413 1.398 1.400 1.396
C2–H2 1.073 1.093 1.074 1.086 1.102
C3–H3 1.073 1.091 1.074 1.086
C4–H4 1.073 1.091 1.073 1.086
�C2–C1–C6 118.4 118.7 118.3 118.2 119.4
�C1–C2–C3 120.8 120.7 120.9 120.9 119.9
�C2–C3–C4 120.2 120.2 120.3 120.3
�C3–C4–C5 119.5 119.6 119.4 119.5
�C1–C2–H2 119.5 119.4 119.6 119.5
�C2–C3–H3 119.7 119.8 119.7 119.7
�C3–C4–H4 120.3 120.2 120.3 120.3
Energyc 
0.095 86 
1.1347 
0.2483 
2.9023

aReference 83.
bC2–C1–C1�–C2� dihedral angle.
cEnergy=ground state energy+460.0.
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The biphenyl molecule has 60 fundamentals which are
of 11ag, 4au, 10b1g, 6b1u, 6b2g, 10b2u, 3b3g, and 10b3u �10�
symmetries for the coplanar �D2h� structure. When the mol-
ecule twists �D2�, these modes factor into 15a+16b1+16b2

+13b3. Before describing the details, we note that the vibra-
tional frequencies for the twisted structure from the HF and
IVO-CASCI methods are all real, whereas for the coplanar
geometry these calculations produce an imaginary frequency

TABLE VII. Calculated equilibrium geometry for the twisted biphenyl molecule from the pc-1 basis set �except
for the CASSCF� calculation. The bond angles, bond distances, and energy are given in degrees, angstrom, and
a.u., respectively.

Parameters HF MP2 CASSCFa,b IVO-CASCI DFT Expt.c

� 44.9 50.4 44.3 45.2 44.7 44.4
C1–C1� 1.489 1.479 1.492 1.488 1.487 1.507
C1–C2 1.391 1.404 1.409 1.400 1.405 1.404
C2–C3 1.384 1.396 1.399 1.394 1.394 1.395
C3–C4 1.383 1.397 1.399 1.393 1.396 1.396
C2–H2 1.076 1.088 1.077 1.077 1.090 1.102
C3–H3 1.077 1.088 1.077 1.078 1.090
C4–H4 1.077 1.087 1.077 1.077 1.090
�C2–C1–C6 118.2 119.0 118.4 118.3 118.2 119.4
�C1–C2–C3 121.0 120.5 120.9 120.9 120.9 119.9
�C2–C3–C4 120.2 120.2 120.2 120.2 120.3
�C3–C4–C5 119.4 119.7 119.4 119.4 119.5
�C1–C2–H2 119.4 119.4 119.7 119.6 119.4
�C2–C3–H3 119.5 119.7 119.7 119.7 119.7
�C3–C4–H4 120.3 120.2 120.3 120.3 120.3
Energy �a.u.�d 
0.1316 
1.6918 
0.2730 
2.9320

aFrom polarized double-� double zeta polarized �DZP� basis set. ECASSCF=−460.505 48 a.u.
bReference 75.
cReference 83.
dEnergy=ground state energy+460.0.

TABLE VIII. Computed equilibrium geometry for the coplanar biphenyl molecule from 6-31G� basis set
calculations. The bond angles, bond distances, and relative energy with respect to the twisted geometry are
given in degrees, angstrom, and kJ/mol, respectively. The bond lengths and bond angles given here are the
differences with respect to experiment.

Parameters HF MP2 IVO-CASCI CASSCFa DFT Expt.b

� 0.0 0.0 0.0 0.0 0.0 0.0
C1–C1� 0.002 0.010 0.001 0.001 
0.001 1.496
C1–C2 0.001 0.026 0.012 0.012 0.015 1.397
C2–C3 0.002 0.022 0.008 0.008 0.009 1.388
C3–C4 0.001 0.026 0.011 0.011 0.014 1.385
C2–H2 0.030 0.090 0.030 0.030 0.084 1.00
C3–H3 0.013 0.030 0.014 0.014 0.027 1.06
C4–H4 0.053 0.071 0.053 0.053 0.066 1.02
�C2–C1–C6 
1.000 
0.800 
1.000 
1.00 
1.100 117.9
�C1–C2–C3 0.700 0.600 0.700 0.700 0.008 120.9
�C2–C3–C4 0.200 
0.200 0.200 0.200 
0.200 120.7
�C3–C4–C5 0.000 0.000 0.000 0.100 0.000 118.9
�C1–C2–H2 
1.800 
2.100 1.800 1.800 
2.100 122.4
�C2–C3–H3 
1.300 
2.100 
1.200 
1.20 
1.200 120.6
�C3–C4–H4 0.000 
0.100 0.100 0.100 0.000 120.6
rms deviationc 0.02 0.05 0.02 0.02 0.04
E0

d 7.5 11.4 5.2 5.2 4.0
CPU �sec�e 6 72 47 160f 78
Energy �a.u.�g 
0.0907 
1.1281 
0.2441 
0.2441 
2.8985

aSame active space as employed in IVO-CASCI calculations.
bReference 82.
crms deviation in C–H and C–C bond lengths.
dE0= �E�=0−Etwisted�theory− �E�=0−Etwisted�expt.
eCPU time for one energy+gradient calculations.
fCalculations use the GAMESS package.
gEnergy=ground state energy+460.0.
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for the torsional mode �au symmetry�. Thus, these results
clearly indicate that the twisted form �D2� is the true mini-
mum.

Selected HF and IVO-CASCI harmonic vibrational fre-
quencies for the twisted geometry are compared with the

experiment87 and with earlier correlated calculations79 in
Table XII. The frequencies computed with the IVO-CASCI
method agree favorably with the experiment87 and with DFT/
B3LYP predictions.79 For example, the lowest fundamental
�torsional mode� 1a frequency is predicted to be 62 cm−1 by

TABLE X. Computed equilibrium geometry for the D2d perpendicular biphenyl molecule from 6-31G� basis set
calculations. The bond angles, bond distances, and E �stabilization energy� energies are given in degrees,
angstrom, and kJ/mol, respectively.

Parameters HF MP2 IVO-CASCI DFT Expt.a,b

� 90.0 90.0 90.0 90.0
C1–C1� 1.496 1.501 1.496 1.498
C1–C2 1.392 1.416 1.403 1.407
C2–C3 1.388 1.413 1.398 1.399
C3–C4 1.388 1.413 1.399 1.400
C2–H2 1.074 1.093 1.074 1.086
C3–H3 1.074 1.092 1.073 1.086
C4–H4 1.074 1.091 1.073 1.086
�C2–C1–C6 118.8 118.2 118.8 118.6
�C1–C2–C3 120.7 120.5 120.7 120.7
�C2–C3–C4 120.2 120.1 120.1 120.2
�C3–C4–C5 119.6 119.9 119.6 119.7
�C1–C2–H2 119.4 118.6 119.4 119.2
�C2–C3–H3 119.8 119.6 119.8 119.8
�C3–C4–H4 120.2 120.1 120.2 120.2
E c 6.9 6.6 5.2 11.6 6.5	2.0
Energy �a.u.�d 
0.093 25 
1.1321 
0.2463 
2.8978

aReference 83.
bReference 84.
cEnergy=ground state energy+460.0.
dE=Etwisted−E�=90.

TABLE IX. Computed equilibrium geometry for the coplanar biphenyl molecule from the pc-1 basis set �except
for the CASSCF� calculation. Entries �for bond angles and bond lengths� are the differences with respect to
experiment. The bond angles, bond distances, and energy are given in degrees, angstrom, and kJ/mol, respec-
tively.

Parameters HF MP2 CASSCFa,b IVO-CASCI DFT Expt.c

� 0.0 0.0 0.0 0.0 0.0 0.0
C1–C1� 0.001 
0.006 0.001 
0.001 
0.003 1.497
C1–C2 0.002 0.012 0.012 
0.002 0.011 1.397
C2–C3 0.005 0.007 0.009 
0.005 0.005 1.388
C3–C4 0.003 0.011 0.013 
0.003 0.009 1.385
C2–H2 0.074 0.084 0.074 0.074 0.087 1.00
C3–H3 0.017 0.027 0.017 0.017 0.030 1.06
C4–H4 0.057 0.067 0.057 0.057 0.070 1.02
�C2–C1–C6 
1.000 
0.700 
1.000 
1.000 
1.300 117.9
�C1–C2–C3 0.007 0.500 0.700 0.700 0.900 120.9
�C2–C3–C4 
0.200 
0.100 
0.200 
0.200 
0.200 120.7
�C3–C4–C5 
0.100 0.000 
0.001 
0.100 
0.100 118.9
�C1–C2–H2 
1.700 
1.900 
1.700 
1.700 
2.300 122.4
�C2–C3–H3 
1.300 
1.300 
1.200 
1.300 
1.200 120.6
�C3–C4–H4 0.000 0.009 0.000 0.000 0.000 120.6
rms deviationd 0.03 0.04 0.04 0.04 0.04
E0

e 7.9 12.1 4.9 6.6 4.2
Energy �a.u.�f 
0.1263 
1.6849 
0.2682 
2.9281

aFrom polarized double-� �DZP� basis set. ECASSCF��=44.3�=−460.505 48 a.u.
bReference 75.
cReference 82.
drms deviation in C–H and C–C bond lengths.
eE0= �E�=0−Etwisted�theory− �E�=0−Etwisted�expt.
fEnergy=ground state energy+460.0.
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the IVO-CASCI method and observed at 70 cm−1; the sec-
ond lowest unobserved fundamental 1b1 is located at
101 cm−1 and the corresponding DFT/B3LYP value is
92 cm−1; the third fundamental 1b2 is observed at 116 cm−1

and the IVO-CASCI frequency is 131 cm−1. The vibrational
frequencies reported by Lee79 are scaled by 0.963 to improve
the agreement with the experiment, whereas the quoted HF
and IVO-CASCI frequencies are all unscaled. The low lying
vibrational frequencies �a, b1, and b2� are well reproduced in
our scheme. Further analysis of Table XII indicates that the
difference between IVO-CASCI and DFT predicted vibra-
tional frequencies also diminishes if the IVO-CASCI fre-
quencies are also scaled by 0.963.

3. Perpendicular geometry „D2d…

Tables X and XI, respectively, display the geometry of
the perpendicular conformer from HF, MP2, DFT, and IVO-
CASCI calculations with the 6-31G� and pc-1 basis sets. The
rotational barrier height �E90� determined from electron dif-
fraction is 6.5	2.0 kJ /mol. The error in the DFT calcula-
tions for E90 reduces substantially when the pc-1 basis is
used. On the other hand, the HF, MP2, and IVO-CASCI
calculations exhibit a completely opposite trend. For ex-
ample, the errors in the DFT estimate of the barrier height
are 5.1 and 0.6 kJ/mol for the 6-31G� and pc-1 basis sets,
respectively, while the corresponding IVO-CASCI deviations
are 0.08 and 4.1 kJ/mol. The difference between the barrier
height computed with the HF and IVO-CASCI methods can
be attributed to the differential correlation effects associated
with the �-valence electrons. The data displayed in Tables X

TABLE XII. Comparison of calculated and experimental harmonic vibra-
tional frequencies �in cm−1� for the first few modes of twisted biphenyl
molecule.

Symmetry HF IVO-CASCI DFTa Expt.b

a 69 62 68 70

338 339 303 315

474 447 407 400

825 800 729 742

991 908 830 838

1114 1050 935 965

1146 1087 982 1003

1152 1126 1023 1030

1333 1313 1167 1190

1421 1407 1264 1285

1691 1666 1499 1507

1814 1764 1600 1612

3351 3344 3062 3031

3373 3365 3080 3052

3390 3384 3092 3083

b1 107 101 92 104

403 389 359 360

568 540 483 484

697 683 605 608

b2 135 131 125 116

304 291 261 260

628 588 539 545

710 695 617 626

b3 467 441 401 400

693 681 601 609

aReference 79.
bReference 87.

TABLE XI. Computed equilibrium geometry for the D2d perpendicular biphenyl molecule from pc-1 basis set
�except for CASSCF� calculations. The bond angles, bond distances, and energies are given in degrees, ang-
strom, and kJ/mol, respectively.

Parameters HF MP2 CASSCFa,b IVO-CASCI DFT Expt.c,d

� 90.0 90.0 90.0 90.0 90.0
C1–C1� 1.495 1.485 1.497 1.495 1.495
C1–C2 1.389 1.402 1.403 1.399 1.402
C2–C3 1.385 1.397 1.400 1.394 1.396
C3–C4 1.384 1.397 1.400 1.394 1.396
C2–H2 1.077 1.087 1.077 1.077 1.090
C3–H3 1.078 1.088 1.077 1.077 1.090
C4–H4 1.077 1.087 1.077 1.077 1.090
�C2–C1–C6 118.9 119.1 118.8 118.9 118.7
�C1–C2–C3 120.6 120.2 120.7 120.6 120.7
�C2–C3–C4 120.2 120.1 120.1 120.1 120.2
�C3–C4–C5 119.6 120.0 119.6 119.7 119.6
�C1–C2–H2 119.5 119.4 119.5 119.4 119.3
�C2–C3–H3 119.7 119.8 119.8 119.8 119.8
�C3–C4–H4 120.2 120.1 120.2 120.2 120.2
E e 2.9 3.9 4.1 2.4 7.1 6.5	2.0
Energy �a.u.�f 
0.1304 
1.6903 
0.2721 
2.9293

aFrom polarized double-� �DZP� basis set. ECASSCF��=44.3�=−460.505 48 a.u.
bReference 75.
cReference 83.
dReference 84.
eE=Etwisted−E�=90.
fEnergy=ground state energy+460.0.
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and XI imply that the contribution from �-valence electron
correlation to the barrier height is 0.5 �1.2� kJ/mol for
6-31G� �pc-1� basis set.

The experimental geometry for this conformer is un-
available, and hence, it is difficult to assess the accuracy of
the theoretically computed quantities at this moment. How-
ever, the favorable agreement of our predicted geometries for
the twisted and coplanar geometry with other theoretical and
experimental data suggests that our computed spectroscopic
constants for this system should be equally reliable.

We evaluate the ground state energy with all degrees of
freedom frozen except for the torsional angle using the
6-31G� set. The calculations begin with the optimized geom-
etry for the most stable conformer, i.e., the twisted geometry.
The energy calculations are then repeated for torsional angles
of 35°, 40°, 45°, 50°, and 55°, keeping all other degrees of
freedom frozen at the twisted optimized geometry. Figure 4
presents the ground state energies of biphenyl molecule,
computed as a function of the torsional angle ��� using the
SCF, MP2, DFT, and IVO-CASCI methods. Figure 4 clearly
demonstrates that the torsional potential curve for the ground
state of biphenyl is very shallow �the energy changes by less
than a kcal/mol for a 	10° change in the twist/dihedral
angle�.

C. Alanine dipeptide

As our last example, we consider the geometry of the
alanine dipeptide �CH3CONHCHCH3CONHCH3� molecule.
Several optimized conformations of alanine dipeptide have
previously been determined by Schäfer and co-workers91,92

using the 4-21G Gaussian basis set. Force constants and vi-
brational frequencies of this molecule are computed by
Cheam et al.93 also using the 4-21G Gaussian basis set. To
our knowledge, geometry optimization with the CASSCF �or
MRCI� method has not been performed for this system.

The geometries depicted in Figs. 5 and 6 are optimized
at with the HF, MP2, IVO-CASCI, and DFT/B3LYP ap-
proaches using the pc-1 basis set. These conformers corre-
spond to the C7 �Fig. 5� and C5 �Fig. 6� structures designated
by Cheam et al. in their ab initio force field studies on this
system. The IVO-CASCI calculations are performed with a
four-electron, six-active orbital CAS. Table XIII summarizes
the elected equilibrium molecular dimensions determined
from HF, MP2, IVO-CASCI, and DFT/B3LYP calculations.
Also listed is the relative stability of C7 and C5 conformers.

As evident from Table XIII, the bond distances from the

φ (in degrees)

E
n
e
rg

y
(i

n
k
ca

l/
m

o
l)

5550454035

0.5

0.4

0.3

0.2

0.1

0

-0.1

FIG. 4. The SCF �+�, MP2 ���, DFT �� �, and IVO-CASCI ��� ground state
energies of biphenyl molecules as a function of H5C–CH5 torsional angle.
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FIG. 6. Geometrical structure of alanine dipeptide �structure II�.
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HF, MP2, DFT, and IVO-CASCI calculations are reasonably
close to each other except for the C–O and O–H hydrogen
bonds. MP2 and DFT predicted C–O bond lengths are 0.02 Å
longer than those obtained from the HF and IVO-CASCI
procedures, while the O–H hydrogen bond from the HF and
IVO-CASCI methods is 0.1 Å longer than the MP2 and DFT
estimates. Although the molecular dimensions determined
from HF, MP2, IVO-CASCI, and DFT methods are reason-
ably close to each other, the computed relative stability
�which probably arises due to hydrogen bonding and disper-
sion effects� varies from 1.0 to 9.6 kcal/mol. The IVO-
CASCI prediction of the relative stability �1.0 kcal/mol�
agrees favorably well with the earlier ab initio estimate of
0.95 kcal/mol.94

The close similarity of the geometries of the conformers
from single and multireference theories indicates that alanine
dipeptide has little multireference character, and, therefore, is
not ideal for testing certain strengths of the IVO-CASCI
method. However, the example illustrates that the method
can be applied to reasonable sized systems.

IV. CONCLUSIONS

The IVO-CASCI method is extended to enable geometry
optimization and the calculation of vibrational frequencies
for the ground and excited states using both first and second
order analytical energy gradients. Both the theoretical devel-

opment and working expressions for implementing the ana-
lytic gradients within the IVO-CASCI method are presented,
and the illustrations yield the following important conclu-
sions.

�a� The present analytical gradient method is quantitatively
applicable to the ground and excited states of various
chemically interesting closed- and open-shell systems,
and it performs satisfactorily at low computational
costs.

�b� The calculated ground state geometries for the ben-
zene, biphenyl, and alanine dipeptide molecules are
generally superior to those from the HF, MP2, and DFT
methods. The vibrational frequencies for benzene out-
perform those from the CASSCF calculations, thereby
demonstrating the viability of the IVO-CASCI scheme
for excited state geometry optimization.

�c� The IVO-CASCI is capable of describing ground and
excited states in a reasonably balanced fashion for a
given active space. The method is free of divergences
and is capable of preserving symmetry during the op-
timization procedure. The computations are more cost
effective than CASSCF treatments.

�d� The optimized geometries from the IVO-CASCI and
CASSCF methods are practically identical. Thus, the
existing computer codes containing the CPMCHF pro-
cedure may be used �instead of the CPMCHF proce-

TABLE XIII. Some representative structural parameters for the ground state of alanine dipeptide determined
with various theories using the DZP basis set. Bond lengths, bond angles, and relative stability E are expressed
in angstrom, degrees, and Kcal/mol, respectively.

Parameters HF MP2 DFT IVO-CASCI

Structure I re�C�1�–C�2�� 1.506 1.510 1.518 1.507
re�C�2�–O�3�� 1.201 1.232 1.226 1.201
re�C�2�–N�7�� 1.348 1.361 1.365 1.350
re�N�7�–C�8�� 1.443 1.445 1.451 1.443
re�C�8�–C�9�� 1.522 1.524 1.535 1.523
re�C�8�–C�13�� 1.529 1.528 1.539 1.528
re�C�9�–O�10�� 1.201 1.233 1.227 1.206
re�C�9�–N�17�� 1.343 1.358 1.357 1.351
re�N�17�–C�18�� 1.448 1.451 1.455 1.447
re�O�10�–H�11�� 2.243 2.247 2.243 2.223

��C�1�–C�2�–O�3�� 122.0 122.6 122.8 122.6
��C�1�–C�2�–N�7�� 115.6 115.2 115.0 115.1
��C�2�–N�7�–C�8�� 122.5 121.5 122.5 122.6

EI�a.u.� a 
0.7429 
2.2666 
 3.4945 
0.7877
Structure II re�C�1�–C�2�� 1.506 1.509 1.518 1.506

re�C�2�–O�6�� 1.204 1.236 1.232 1.206
re�C�2�–N�3�� 1.347 1.359 1.362 1.360
re�C�4�–C�7�� 1.531 1.535 1.547 1.528
re�C�4�–C�5�� 1.525 1.525 1.533 1.525

re�C�7�–O�10�� 1.202 1.232 1.227 1.207
re�C�7�–N�8�� 1.339 1.354 1.353 1.349
re�N�8�–C�9�� 1.445 1.449 1.453 1.444

re�O�6�–H�19�� 2.043 1.925 1.913 2.085
��C�1�–C�2�–O�6�� 120.7 121.2 121.6 121.9
��C�1�–C�2�–N�3�� 116.1 115.6 115.4 115.1
��C�2�–N�3�–C�4�� 127.1 126.0 126.7 127.5

�EII−EI� 9.6 3.9 4.4 1.0

aEI=ground state energy+492.0.
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dure with multiple Fock operators43� for frequency cal-
culations as an approximation. While CASSCF
frequency calculations with the GAMESS package are
currently more time consuming than with the DALTON

package, the difference can be alleviated with appropri-
ate modification of the codes.

�e� The geometries and relative stabilities predicted by
IVO-CASCI calculations for the biphenyl and alanine
dipeptide molecules further demonstrate the strengths
of the method.

�f� The IVO-CASCI approach is applicable to systems
with broken symmetry and thus for following an intrin-
sic reaction path.

Thus, our IVO-CASCI analytic gradient technique can
be viewed as an efficient tool to provide quantitatively accu-
rate analyses of the ground and excited state geometries and
vibrational frequencies of various chemically challenging
and theoretically nontrivial systems with low computational
cost.
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