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Auto-correlation of Binary Stars
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Abstract: Speckle interferometric technique is used to record a series of short
exposure images of several close binary stars with sub-arcsecond separation
through a narrow band filter centred at Hα at the Cassegrain focus of the 2.34
meter (m) Vainu Bappu telescope (VBT), situated at Vainu Bappu Observatory
(VBO), Kavalur . The auto-correlation method is developed under Image Re-
duction Analysis Facility (IRAF). Wiener filter is included in the programme to
eliminate spurious high frequency contributions; a few sets of data provide the
optimised results. The auto-correlated image of these stars gives the separation
of the binary components.
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1. Introduction

The speckle interferometric technique [1] is widely used to decode the deleterious
effect of the atmospheric turbulence that limits the sensitivity of ground-based
telescopes. Recent reviews by Saha [2, 3] describe in depth the utility of this
method. One of the important subjects in stellar astrophysics is the studies
of close binary stars, that play a fundamental role in measuring stellar masses,
providing a benchmark for stellar evolution calculations; a long-term benefit
of interferometric imaging is a better calibration of the main-sequence mass-
luminosity relationship [4]. The procedure in obtaining masses of stars involves
combining the spectroscopic orbit with the astrometric orbit, which is the pro-
jection of true orbit on the sky, from the interferometric data [5]. In order to
derive accurate orbital elements and masses, luminosities and distances, contin-
uous observations of spectroscopic binaries are essential. Major contributions
in resolving close binary systems, among others, came from the Center for High
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Angular Resolution Astronomy (CHARA) at Georgia State University, USA [6-
9]. Survey of visual and interferometric binary stars have also been reported by
the other groups [10-19].

Most of these results that appeared in various journals till date are from the
usage of the auto-correlation technique though schemes, like Knox-Thomson al-
gorithm [20], shift and add [21], triple correlation [22], and Blind Iterative decon-
volution (BID) technique [23] restore the degraded images. All these schemes,
barring BID, depend on the statistical treatment of a large number of images.
Often, it may not be possible to record a large number of images within the
time interval over which the statistics of the atmospheric turbulence remains
stationary. In such cases, where only a few images are available, we describe
an auto-correlation algorithm that is developed under IRAF; this algorithm has
been applied on degraded images of several binaries, obtained at the 2.34 m
VBT at Kavalur.

2. Outline of the theory of speckle interferometry

The instantaneous image intensity distribution I(x) recorded by the detector
(CCD/photographic plate/eye etc.) is actually a convolution of the instanta-
neous ‘Point Spread Function (PSF)’ S(x), with the actual intensity distribution
of the object O(x). Here x is the two dimensional position vector. The PSF de-
scribes how light from a point source (a two dimensional δ function on the sky)
gets distributed across the detector. The variability of the corrugated wave-
front yields ’speckle boiling’ and is the source of speckle noise that arises from
difference in registration between evolving speckle pattern and the boundary
of the PSF area in the focal plane. These specklegrams have additive noise
contamination, N(x), which includes all additive measurement of uncertainties.
This may be in the form of (i) photon statistics noise, and (ii) all distortions
from the idealized isoplanatic model represented by the convolution of O(x)
with S(x) that includes non-linear geometrical distortions.

If instead of dealing in the real space we choose to work in Fourier space, our
life becomes simpler. This is because the operation of convolution in real space
becomes simple multiplication in the Fourier space. Mathematically speaking:

I(x) = O(x) ∗ S(x) + N(x), (1)

where ‘∗’ signifies convolution operation.
In Fourier domain, equation (1) can be written as:

I(u) = O(u) · S(u) + N(u), (2)
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where u is the two dimensional spatial frequency vector and ‘·’ implies the
ordinary operation of multiplication. The quantity O(u) is called the Object

Spectrum, and S(u) the Transfer function.

If the exposure time is short enough then the atmosphere can be taken to be
static during the exposure. The common term that describes this is that ‘the
atmosphere has been freezed during the exposure’. From experiments it has
been found that for exposures below 20 ms the atmosphere can be considered
as fairly static for reasonably stable nights.

A large number of such short exposure images (specklegrams) of the object
of interest is taken. Also images of a reference star which is known to be a
unresolved star (i.e., a point source, a two dimensional δ function on the sky)
and which lies in the same isoplanatic patch as that of the program star, is
taken at the same time. It is assumed that the atmospheric distortion affects
the reference star in the same way as it does to the program star.

The ensemble average of the power spectrum is given by

< | I(u) |
2

>= | O(u) |
2
· < | S(u) |

2
> + < | N(u) |

2
> . (3)

The reference star being a single star, the Fourier transform of its image is unity,
i.e., Oref (u) = 1.

The power spectrum of the program star is therefore given by

| Opro(u) |2=
< | Ipro(u) |

2
>

< | Iref (u) |
2

>
, (4)

and by Wiener-Kinchin theorem, the autocorrelation of the object is given by

A[O(x)] = FT −1[| O(u) |
2
], (5)

where A denotes Autocorrelation and FT −1 denotes the operation of inverse
Fourier transform.

3. Data Processing and Noise Reduction

The program for finding the power spectrum is written in FORTRAN. It uses
IRAF commands and hence the macros in IRAF are called and used. The
program is written in such a way that a large number of data files can be
handled and large number of images can be averaged to increase the signal-
to-noise ratio. The set of input specklegrams of object and the reference stars
are read and their power spectrum is calculated. The object power spectrum
and the image power spectrum are averaged in the Fourier space. Finally the
autocorrelated image is calculated using another programme.
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The disadvantage with a division as in equation (4), is that the zeros in the
denominator will corrupt the ratio and spurious high frequency components
will be created in the reconstructed image. Moreover, a certain amount of noise
is inherent in any kind of observation. In our present case noise is primarily due
to thermal electrons in the CCD interfering with the signal. Most of this noise
is in the high spatial frequency regime.

In order to get rid of this high frequency noise as much as possible, a Wiener
filter was used. Applying the Wiener filter is essentially the process of convolving
the noise degraded image I(x) with the Wiener filter. The Wiener filter is
applied in the frequency domain. Then the original image spectrum I(u) is
estimated from the degraded image spectrum I ′(u) by simply multiplying the
image spectrum with the Wiener filter W (u). However, this will reduce the
resolution in the reconstructed image. The advantage is the spurious higher
frequency contribution are eliminated.

I(u) = I ′(u) · W (u). (6)

The Wiener filter, in the frequency domain, has the following functional form:

W (u) =
H∗(u)

| H(u) |
2

+ Pn(u)
Ps(u)

. (7)

where, H(u) is the Fourier transform of the point-spread-function, Ps(u) the
power spectrum of signal process, and Pn(u) the power spectrum of noise pro-
cess.
The term Pn(u)/Ps(u) can be interpreted as reciprocal of signal to noise ratio.
In our case, the noise is due to the CCD. We developed an IRAF-based algo-
rithm, where a Wiener parameter, w, is added to the PSF power spectrum in
order to avoid zeros in the PSF power spectrum that helps in reconstructions
with a few frames. The classic Weiner filter that came out of the electronic
information theory where diffraction-limits do not mean much, is meant to deal
with signal dependent ’coloured’ noise. In practice, this term is usually just a
constant, a ’noise control parameter’ whose scale is estimated from the noise
power spectrum. In this case, it assumes that the noise is white and that one
can estimate its scale in regions of the power spectrum where the signal is zero
(outside the diffraction-limit for an imaging system). The expression for the
Wiener filter simplifies to:

I(u) =
Pref (u)

Pref (u) + w
, (8)

where, w is the noise-variance and termed as Wiener filter parameter in the
program.
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To get an optimally autocorrelated image, a judicious choice of the Wiener filter
parameter is made according to the procedure described below:

For a very wide range of Wiener filter parameter values, the autocorrelated im-
ages are constructed. A small portion (16 X 16 pixels) of each image, far from
the centre, is sampled to find-out the standard deviation in the intensity values
of the pixels, σnoise. The plot of standard deviation thus obtained against the
Wiener filter parameter (Figures 1(c)) shows a minimum. The abscissa corre-
sponding to this minimum gives the optimum Wiener filter parameter value.

The nature of σnoise vs. WFP plot is understood as follows:
The noise in our data is primarily in the high frequency region whereas the
signal is at a comparatively low frequency. With zero WFP, there is no filtering
and hence there is ample noise. As the WFP value is gradually increased from
zero, more and more high frequency noise is cut off and the σnoise goes down.
It attains a minimum when WFP value is just enough to retain the signal and
discard the higher frequency noise. However, at higher WFP region, we are
over compensating for the signal, and therefore blurring of the image starts to
occur. This leads to the sharp increase in σnoise. The ‘ringing’ effect due to
sharp cutoff comes into play.

Computer simulations were carried out by convolving ideal star images having
Gaussian profile with a random PSF to generate speckle pattern. The plot of
σnoise vs. WFP also gives similar results though some of the major sources
of noise, e.g., thermal noise due to electron motion in the CCD, effect due to
cosmic rays on the frame, etc. were not incorporated in the simulation.

4. Instrumentation

The 2.34 m VBT has two accessible foci for back end instrumentation − a prime
focus (f/3.25 beam) and a Cassegrain focus (f/13 beam). The latter was used
for the observations described in this paper. The Cassegrain focus has an image
scale of 6.7 arcseconds per mm. This was further magnified using a microscope
objective [24]. This enlarged image was recorded through a 5 nm filter centred
at Hα using an EEV intensified CCD camera which provides a standard CCIR
video output of the recorded scene. The interface between the intensifier screen
and the CCD chip is a fibre-optic bundle which reduces the image size by a
factor of 1.69. A DT-2851 frame grabber card digitises the video signal. This
digitiser re samples the pixels of each row (385 CCD columns to 512 digitized
samples) and introduces a net reduction in the row direction by a factor of
1.27. Finally an image-scale of 0.015 arcsecond per pixel is achieved. The frame
grabber can store upto two images on its onboard memory. These images are
then written onto the hard disc of a computer.
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5. Results

The separations of HR4689 and HR5858, observed on 28 February 1997 were
estimated using the procedure described above. The average seeing was around
1.5 arcsec. Figures 1a, 1b, 1c show the specklegrams of HR4689, minimum
noise autocorrelated image of HR4689, and variation of noise with Wiener filter
parameter respectively. The separation of HR4689 was found to be 0.17 ± 0.03
arcseconds and that of HR5858 was 0.23 ± 0.03 arcseconds. The separations
observed are compatible with the values published in the CHARA catalogue
[25].

6. Discussion and conclusions

The program of speckle imaging of binary stars at VBT, Kavalur has been a
successful one. Several experiments and computer simulations have been car-
ried out for improving the speckle interferometer at VBT [3]. Algorithms are
in stage of development for Fourier phase recovery too. Noise in the data is
reduced to an optimum level with the judicious use of Wiener filter. Recent
developments in CCD technology and associated photon counting devices of
high quantum efficiency promise better signal to noise ratio, and hence better
accuracy in determining the orbital parameters of binaries. However, in this
algorithm, it gives a better signal to noise ratio if the reference star is brighter
than the program star, both being in the same isoplanatic patch. This is very
difficult to achieve in reality and when it is not fulfilled, we have tried to make
a compensation by increasing the number of frames for the reference.
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Figure 1: : 1a, 1b, 1c show the specklegram of HR4689, the autocorrelation of
HR4689 and σnoise vs. WFP plot respectively. The axes of the figures 1(a) and
1(b) are the pixel value; each pixel value is 0.015 arc-seconds. Since the inherent
property of the autocorrelation method is to produce double images with 180◦

ambiguities of a binary source, one of the two contours on either side of the
central one (fig 1b) is the secondary component; the central contours represents
the primary component. The contours at the corners are the artifacts.
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