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and their applications to optical clocks
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Static dipole polarizabilities are calculated in the ground and metastable states of Sr*, Ba* and Ra* using the
relativistic coupled-cluster method. Trends of the electron correlation effects are investigated in these atomic
ions. We also estimate the Stark and black-body radiation shifts from these results for these systems for the
transitions proposed for the optical frequency standards and compare them with available experimental data.
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I. INTRODUCTION

There have been a number of significant proposals for
new optical clocks that are more accurate than the current
standard; the Cs clock [1-3]. Singly charged ions are some
of the prominent candidates in this category due to the re-
markable advances in modern ion trapping and laser cooling
techniques [1-4]. S-D transitions in Sr* [3,5], Yb* [6], Hg*
[1,7], Ba* [8,9], and Ra* [10] can serve as clock transitions.
It is necessary to estimate the shifts of the energy levels for
these cases due to stray electromagnetic fields in order to
determine the accuracies of these potential optical clocks.
Knowledge of hyperfine structure constants, electric quadru-
pole moments, gyromagnetic constants, and polarizabilities
are essential quantities that can be used to estimate various
possible shifts [11]. In our previous studies, we have already
calculated hyperfine structure constants and electric quadru-
pole moments for the above ions [12,13]. It is possible to
find the gyromagnetic constants approximately using analyti-
cal approaches for different states [11]. There have been ex-
tensive studies of the hyperfine structure constants of the
low-lying states in the above ions using the relativistic
coupled-cluster (RCC) method [10,13-15]. A few calcula-
tions of polarizabilities in these ions using the sum-over-
states approach have also been reported recently [10,16].

Both Ba* and Ra* have also been proposed as suitable
candidates for atomic parity violation (APV) experiments
[17,18]. Determination of polarizabilities depends on the
electric dipole (E1) matrix elements and excitation energies.
On the other hand, the determination of APV amplitudes also
depends on El matrix elements and excitation energies.
Therefore, studies of correlation effects in these properties
involving quantities in these systems are also useful for the
APV studies. In contrast to hyperfine structure constants
where the explicit behavior of electron correlation has been
studied elaborately, the same cannot be done for polarizabil-
ities using the sum-over-states approach. Also, the sum-over-
states approach considers only a limited number of states,
mainly from the single excited states and misses out contri-
butions from continuum, double excited states, normalization
of the wave functions etc.
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In this work, we have employed an ab initio method in the
RCC framework to calculate dipole polarizabilities of Sr*,
Ba*, and Ra*. The roles of different types of electron corre-
lation effects in determining these quantities are studied and
comparisons between these results are given explicitly. Con-
tributions arising from different types of excited states and
normalization of the wave functions through the RCC
method have also been evaluated. Using these results, we
then estimate the Stark and black-body radiation shifts in
these systems which will be useful for the proposed optical
clock experiments in the ions mentioned above.

II. THEORY

The polarizability of a given state |J,M,) can be
expressed by
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where the subscript O represents for the static values and
angular momentum coefficients [C;(J,)] for the scalar (with
superscript 1) and tensor (with superscript 2) dipole polariz-
abilities are given as
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respectively. Es are the energies of the corresponding atomic
states.

By defining a modified wave function due to the dipole
operator, D, we can rewrite the above expression as
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appears as a first-order correction to the |J,) state due to the
dipole operator D. In the above expression, we also define an
effective dipole operator as

D;=C(J,)(= )’/nD, (2.6)
whose matrix element between the original and perturbed
wave functions will give the dipole polarizabilities. Here the
J,,), have parities opposite to that of |J,)
and they have to satisfy the usual triangular condition for the
vector operator D.

To avoid the sum-over-states approach in the determina-
tion of the polarizabilities, we avoid the explicit form of
l7\) that is given by Eq. (2.5). Instead, we obtain /") by
solving the following equation:

(H - En)|‘]£1])> == D|Jn>’ (27)
that is similar to the first order perturbative equation. Here H
is the atomic Hamiltonian which in the present work is con-
sidered in the Dirac-Coulomb approximation

H= E[ca pi+(B-1)c? +Vm(r)]+2—, (2.8)
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where c is the velocity of light, @ and B are the Dirac ma-
trices and V,,.(r) is the nuclear potential.

For an atomic system with zero nuclear spin, the Stark
shift to the second order in the presence of an electric field
(quadratic Stark shift) for |J,,M,) state is given by [19]

3IM>
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where E and E, are the magnitudes of the externally applied
electric field in any arbitrary and z directions, respectively.
For atomic systems with nonzero nuclear spin (), the
expression for hyperfine states are given by [19]
1 1
AW(F,, My, ;E) = = S ao(F,)E* = - aii(F,)
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where F,=I+J, and My are the total spin due to nuclear
spin / and atomic state spin J, and its azimuthal component,
respectively. Since it is easier for us to deal with J,, of the
electronic states, therefore we express all the above quanti-
ties in terms of electronic coordinate. By using the following
relations [11]:

ay(F,) = a)(J,) (2.11)
and
o e 2| FaRF, = 1)Q2F, +1)
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between the dipole polarizabilities of the electronic and hy-
perfine states, we obtain
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Again, the blackbody-radiation (BBR) shift of a given state
|7,,M,) in the adiabatic expansion due to the applied isotro-
pic electric field radiated at temperature T [in Kelvin (K)]
can be assumed as [20]

T(XK)

300 ) ab(J).  (2.14)

Appr=— (8319 V/m )(

7 = Fy(F,+1) ] [Fn(zF,, —1DQF,+1)2J,+ D, + 1)(2J, + 3)]
F,(2F,-1)

(2F,+3)(F,+ 1)J,(2J,-1)

(2.13)

III. METHOD OF CALCULATIONS

The RCC method, which is equivalent to all order pertur-
bation theory, has been recently used to obtain precise results
and account for the correlation effects accurately in single
valence systems [10,12-15]. In the RCC framework, the
wave function of a single valence atom can be expressed as
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(WO = eT{1 +5,}|®,), (3.1)

where |®,) is the reference state constructed from the Dirac-
Fock (DF) wave function |®,) of the closed-shell configura-
tion by appending the corresponding valence electron as
|,y=a’|d,) with a’ representing addition of a valence elec-
tron n. Here T and S, are the RCC excitation operators which
excite electrons from |®,) and |®,), respectively. The ampli-
tudes of these excitation operators are obtained by the fol-
lowing equations

(DH{H e | P =0, (3.2)

(DH{HNeT}S,|D,) = — (DE{H e H|D,) + (L[S, | D, )AE, .
(3.3)

with the superscript L(=1,2) representing the single and
double excited states from the corresponding reference states
and the wide-hat symbol over Hye! represent the linked
terms of normal order atomic Hamiltonian Hy and RCC op-
erator 7. For the single and double excitations approximation
(CCSD method), the corresponding RCC operators are de-
noted by

T= T] + T2 (34)

and

Sn=51n+52n (35)

for the closed-shell and single valence configurations, re-
spectively. Again, AE, in the above expressions is the corre-
sponding valence electron affinity [negative of the ionization
potential (IP)] energy which is evaluated by

AE, = (®,[{Hye {1 +S,}®,).

In Eq. (3.2), we have considered only the single and double
excitations, however we have incorporated contributions
from important triple excitations [CCSD(T) method] pertur-
batively in Eq. (3.3) by defining

(3.6)

ngrtzHNTz + HySy, (3.7)
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where the superscript pert denotes for the perturbation, and
evaluating their contributions to AE, from these operators by

—

AE"? = T$he, (3.8)

After obtaining the amplitudes for 7, the core excitation op-
erator, we solve Egs. (3.3) and (3.6) simultaneously to obtain
the amplitudes for the S, operators.

We extend the RCC ansatz for the perturbed atomic state
in the presence of the electric dipole operator D by writing
the total atomic wave function as

[y =e™M1+8,+A,}D,),

where ) and A, are the first order corrections to the RCC
operators T and S,, respectively. Since Eq. (2.7) is first order
in the operator D, the above expression will reduce to

(3.9)

W)= {1+8,+Q(1+8S,)+A,}D,). (3.10)

Now, separating the above wave function as |‘I’,(10)) and
[Py, we get
(W)= Q1 +S,) + A} D). (3.11)

Following Eq. (2.7), we solve again the amplitudes for the
modified operators as

(D Hye O} Do) = — (DHD|Dy),  (3.12)

(DL Hye A |®,) = — (D HYe Q1 +S,) + De (1 +S,)}
X|®,) + (DA, |P)AE,, (3.13)

where De” represents the connecting terms between D and T
operators. Again in our CCSD approximation, we have

QZQ]+QZ (314)
and
An=A1n+A2n. (315)

Therefore, the RCC expression for the dipole polarizability is
given by

WD) + (VDY) (@, {1 +SHDAN +5,) + AMD,) + (DAL + (1+SHQNDLL +S,1P,)

ay=

<\I;(0)|\P(0)>

where we define i:(eT%ﬁieT) and IV0=eTTeT. The non-

truncative series for 5,« and N, are expanded using the Wick’s
generalized theorem and truncated the series when the lead-
ing order nonaccounted terms are below fifth order of Cou-
lomb interaction. These operators are then contracted with ()

(D, {1+ SIING{1 + S, }|D,)
(3.16)

to get fully contracted terms that give rise core electron con-
tributions. The core-valence and valence correlation contri-
butions are obtained from the open contraction between the
operators with Q and Q{1+S,}+ A, operators, respectively.

Corrections due to the normalization of the wave func-
tions are accounted by evaluating
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B _ N,
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(3.17)
where N,=(®,|{1+SIN,{1+5,}|®,).

IV. RESULTS AND DISCUSSIONS
A. General discussions

The orbitals used in the present work are generated on a
radial grid given by

r= ro[eh(i_l) -1], (4.1)

where i represents a grid point. The total number of grid
points in our calculations is 750, the step size A is taken as
0.03 in the present case and r, is taken as 2 X 107® a.u. To
construct the basis functions, we use Gaussian-type orbitals
(GTOs) defined as

FOTO(r,) = pe=o. (4.2)

Here n, is the radial quantum number of the orbitals and «; is
a parameter whose value is chosen to obtain orbitals with
proper behavior inside and outside the nucleus of an atomic
system. Further, the a;s satisfy the even tempering condition

;= apB". (4.3)

We have chosen same «¢(,=0.00525 and $=2.73 values to
construct the basis functions in Sr*, Ba*, and Ra™, so that
effects due to the different sizes of the systems can be com-
pared. Finite size of the nucleus in these systems are ac-
counted by assuming a two-parameter Fermi-nuclear-charge
distribution for evaluating the electron density over nucleus
as given by

P
) =— (4.4)

=1+e

where ¢ and a are the half-charge radius and skin thickness
of the nucleus. These parameters are chosen as

a=2.3/4(In 3) (4.5)
and
5 7
c=1/ —rfmv - —a*, (4.6)
373

where r,,,, is the root mean square radius of the correspond-
ing nuclei which is determined as discussed in [21].

In Table I, we present our DF and CCSD(T) results along
with other available calculations and experimental results for
the dipole polarizabilities of the ground and metastable states
of Sr*, Ba*, and Ra*. The differences between the DF and
CCSD(T) results indicate the magnitudes of the electron cor-
relation effects in the determination of the dipole polarizabil-
ities in these systems using the CCSD(T) method. They are
45%, 48%, and 58% for the ground states of Sr*, Ba*, and
Ra*, respectively. They increase with the size of the system.
However, the correlation effects in the d;, metastable states
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are 137%, 85%, and 119% for the scalar polarizabilities and
159%, 83%, and 128% for the tensor polarizabilities in Sr*,
Ba*, and Ra", respectively. This shows that the correlation
effects reduce in these states from Sr* to Ba*, but the pres-
ence of the core f-orbitals increases the correlation effects in
Ra*. The correlation effects in the ds,, metastable states are
117%, 73% and 75% for the scalar polarizabilities and 138%),
88%, and 87% for the tensor polarizabilities in Sr*, Ba*, and
Ra*, respectively. This implies that the correlations in the
d-metastable states do not depend upon the size but the in-
ternal structure of the systems. Our previous studies on the
hyperfine structure constants in these systems [10,13-15]
had shown peculiar behavior of the core-polarization effects.
These effects were comparatively smaller in the ds, meta-
stable states. In contrast, the correlation effects are larger in
the d;, metastable states compared to the ds, metastable
states and the ground states in the dipole polarizabilities
calculations.

The upper limits to the error bars in these quantities were
determined by taking the differences of the results obtained
using CCSD(T) and CCSD methods and the inaccuracies due
to the self-consistent results obtained at the DF levels by
varying the number of GTOs considered in the calculations.
These results are quoted inside the parentheses in Table 1.

We explicitly present the diagrams in Fig. 1 correspond-
ing to various RCC terms that are significant in determining
the dipole polarizabilities. As seen from the figure, Fig. 1(a)

which arises from the fully contracted terms of D), corre-
sponds to the core-correlation contributions. Its lower-order
terms correspond mainly to the diagrams coming from the
random-phase approximation (RPA). There are also core-

correlation contributions arising from 502, but they are rela-
tively small and are not shown in Fig. 1. The core-valence
correlation contributions are determined by open diagrams

from D), as shown in Fig. 1(b). The most important corre-
lation contributions arise through the valence correlation ef-
fects and they are shown in Figs. 1(c) and 1(d). Important
pair-correlation and core-polarization effects are accounted

through DA,,, however core-polarization effects arising
from the perturbed doubly excited states are accounted

through DA,,. The DF contributions involving the core,
core-valence and virtual orbitals are the lowest order dia-

grams to the fully contracted DQ,, open DQ, and DA,,
RCC terms, respectively. Based on the above mentioned cor-
relation diagrams, we analyze their roles in different systems
considered below.

B. Sr*

There are no experimental results of the dipole polariz-
abilities available for the ground and metastable excited
states in Sr*. However, a number of calculations have been
carried out using different methods and we have compared
their results with the present work in Table I. Lim and
Schwerdtfeger [22] have done comparative studies between
the nonrelativistic and scalar relativistic Douglas-Kroll cal-
culations using four different many-body methods. They
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TABLE 1. Comparison of dipole polarizabilities between different works in Sr*, Ba* and Ra* (in atomic
unit). Abbreviations: HF — Hartree-Fock, nonrel. — nonrelativistic, DK rel. —scalar relativistic Douglas-

PHYSICAL REVIEW A 80, 062506 (2009)

Kroll method, MBPT(2) — second order perturbation theory, sum-over— sum-over intermediate states.

nsip (n=1)ds3 (n=1)ds)
System ap ap a% ap a(z) Methods References
Srt(n=5)

127.62 145.86 -91.81 136.84 -116.02 DF This work
88.29(1.0) 61.43(52) -35.42(25) 62.87(75) —48.83(30) CCSD(T) This work
132.15 HF [22]
86.21 nonrel. MBPT(2) [22]
101.58 nonrel. CCSD [22]
97.91 nonrel. CCSD(T) [22]
121.33 DK DF [22]
79.89 DK rel. MBPT(2) [22]
94.31 DK rel. CCSD [22]
91.10 DK rel. CCSD(T) [22]
91.3(9) 62.0(5) —47.7(3) LCCSD(T)+sum-over [16]
89.88 61.77 Nonrel. +sum-over [23]
93.3 57.0 Nonrel. +sum-over [24]

84.6(3.6) 48(12) Nonrel. + sum-over [5]
91.47 Nonrel. +sum-over [25]
86(11) Experiment+nonrel. [26]
Ba*(n=6)

184.49 90.07 -45.07 87.66 -58.02 DF This work
124.26(1.0) 48.81(46) —24.62(28) 50.67(58) —30.85(31) CCSD(T) This work
213.47 HF [22]
110.60 nonrel. MBPT(2) [22]
148.24 nonrel. CCSD [22]
146.88 nonrel. CCSD(T) [22]
177.64 DK DF [22]
94.64 DK rel. MBPT(2) [22]
129.92 DK rel. CCSD [22]
123.07 DK rel. CCSD(T) [22]
124.15 LCCSD(T) +sum-over [29]
124.7 Nonrel. +sum-over [25]
126.2 Nonrel. +sum-over [30]

123.88(5) Experiment [27]
125.5(10) Experiment [28]
Ra*(n=7)

164.66 183.07 -114.70 143.77 -98.64 DF This work
104.54(1.5) 83.71(77) —50.23(43) 82.38(70) —52.60(45) CCSD(T) This work
257.00 HF [22]
123.23 non-rel. MBPT(2) [22]
186.23 nonrel. CCSD [22]
172.00 nonrel. CCSD(T) [22]
145.47 DK DF [22]
79.80 DK rel. MBPT(2) [22]
110.48 DK rel. CCSD [22]
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TABLE 1. (Continued.)
nsi (n=1)ds3 (n=1)dsp
System a(') a(l) aé a(l) a(z) Methods References
105.37 DK rel. CCSD(T) [22]
106.12 95.54 -55.06 91.85 -58.33 CCSD(T) +sum-over [10]
106.5 LCCSD(T) +sum-over [32]
106.22 LCCSD(T) +sum-over [33]

demonstrate the importance of the relativistic methods to cal-
culate dipole polarizabilities. Jiang et al. [16] have used El
matrix elements obtained using the linearized RCC method
with the singles, doubles, and partial triple excitations
[LCCSD(T)] to evaluate the valence correlation contribu-
tions for a few intermediate states. The core correlations are
accounted through the RPA method and contributions from
higher states were estimated using the DF method. Mitroy et
al. [23] have used a nonrelativistic method using the sum-
over-states approach to determine polarizabilities of the
ground and 4d states. As seen in Table I, the dipole polariz-
abilities of the 4d5, and 4ds,, states are not the same and
they cannot be evaluated separately using a nonrelativistic
method. However, our ground state polarizability for Sr*
agrees with their result. Similar approaches were also em-
ployed by Barklem and OMara [24]. Patil and Tang [25]
have employed a summation and integration approach to de-
termine the ground-state polarizability. Recently, Nunkaew et
al. [26] have estimated E1 matrix elements using the nonrel-
ativistic theory and microwave resonance measurements in
Sr and have extracted dipole polarizability of the ground
state of Sr.

In Table II, we present the individual contributions from
RCC terms to the dipole polarizability calculations in Sr*.

S e \B HN H
b B HNGD “““ Y

“Ur Qe s U
aq, /D D P /D D\ D
(@ (i)

(i) (iii)

(iv)

FIG. 1. Breakdown of RCC terms into lower-order perturbative
diagrams. Lines with singles going up and down represent virtual
and occupied orbitals, respectively. Lines with the double arrows
represent valence orbital. Broken lines, dotted lines, and broken
lines with dots are the bare dipole, two-body part of the Hamil-
tonian and effective one-body dipole operators, respectively.

Our core-correlation contributions are 4.98 and —0.27 a.u.
for the scalar and tensor dipole polarizabilities, respectively.
Clearly, the CCSD(T) result for the scalar dipole polarizabil-
ity is smaller than the previously estimated values. On the
other hand, the core correlation to the tensor polarizability
vanishes in the nonrelativistic theory, but it is finite in our
approach, although small in magnitude. Jiang et al. [16] have
neglected this contribution in their calculations. We have also

given DF results from the core (D,) and virtual (D,) orbitals
separately in the same table. Our DF result and that reported
by Lim and Schwerdtfeger [22] differ. Comparing our DF
results given in Tables I and II, it seems that Lim and
Schwerdtfeger have not included core-correlation contribu-
tions at the DF level. Again, the lowest order contributions to

5c and ISUA 1, terms correspond to EC and ﬁu, respectively.
The differences between the lowest order and all order re-
sults seem to be significant in this system. The largest con-

tribution to the final results comes from BUAM as it contains
DF result due to virtual orbitals in it. Contributions from

EUAZ,, correspond to doubly excited perturbed states and
they are also large in both the ground and metastable states.
Therefore, the exclusion of these contributions in the sum-
over-state approach may not be appropriate. Again, normal-
ization corrections (Norm) are also non-negligible.

C. Ba*

Two experimental results with small uncertainties [27,28]
are available for the ground state dipole polarizability in Ba*.
There have also been studies of this quantity by Lim and
Schwerdtfeger [22]. Iskrenova-Tchoukova and Safronova
[29] have employed E1 matrix elements from the LCCSD(T)
method in the sum-over-states approach using a few states
for the valence correlation effects and estimating the core-
correlation and core-valence correlation contributions from
lower-order perturbation theory to determine this quantity.
Other available calculations [25,30] are based on nonrelativ-
istic methods. Again, there are no other results available for
the metastable d states in Ba* to compare with our results.
However, we have also carried-out a sum-over-states calcu-
lation using the El1 matrix elements from the CCSD(T)
method [31] that agrees with our ab initio results.

We present contributions from individual RCC terms to
the dipole polarizabilities calculations on Ba* in Table IIL
The trends of these correlation effects seem to be the same as
in Sr*. However, the core-correlation effects in this system
seem to be almost twice than in the case of Sr*. The core-
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TABLE II. Contributions from the DF and various CCSD(T) terms to the dipole polarizability calcula-
tions in Sr*. The subscripts ¢, n, and v of the RCC terms correspond to the core, valence, and virtual

correlation contributions. BC and 5” give the DF results from the core and valence orbitals.

5528, 4d ’Ds) 4d D5,

Terms a(') a(') aé a(l) ag

D. 6.15 6.15 -0.25 6.15 -0.25
D, 121.47 139.71 -91.56 130.69 -115.78
D, 4.98 4.98 -0.27 4.98 -0.27
D,Q+cc 0.10 0.20 -0.35 0.41 -0.41
DyA,,+ce 93.78 67.05 -38.70 68.14 -56.54
DyAg,+ce —2.87 -2.54 -0.86 —2.43 1.72
slvawcc -3.74 —6.06 3.47 -6.10 5.05
52UZA1,,+CC -3.03 -1.47 0.77 -1.39 0.96
S1DyAgt+cc -0.04 0.06 0.03 0.05 -0.03
SapDyAsy,+cc 0.13 -0.05 0.03 -0.06 0.03
Others 0.13 0.22 -0.14 0.24 -0.15
Norm -1.15 -0.96 0.60 -0.97 0.81

valence correlations coming through the open D, () diagrams
are also larger than Sr*. Contributions from the doubly ex-
cited perturbed states and corrections due to the normaliza-
tion of the wave functions also seem to be significant.

D. Ra*

There are also no experimental results available for the
dipole polarizabilities in Ra*. In the same work as mentioned

above, Lim and Schwerdtfeger [22] have also calculated this
quantity in the ground state of Ra™ using various many-body
methods. Safronova et al. [32,33] have also evaluated this
result using the sum-over-states approach. Their valence cor-
relation effects are evaluated using E1 matrix elements for a
few important states from the LCCSD(T) method and core-
correlation and core-valence correlations are evaluated using
lower-order many-body methods. In our earlier work [10],

TABLE III. Contributions from the DF and various CCSD(T) terms to the dipole polarizability calcula-
tions in Ba*. The subscripts ¢, n, and v of the RCC terms correspond to the core, valence, and virtual

correlation contributions. 5c and 5,, give the DF results from the core and valence orbitals.

65 %Sy 5d °Dy), 5d °Ds),

Terms aé a(l) ag a(l) a(z)

D, 11.73 11.73 ~0.46 11.73 ~0.46
Z 172.76 78.33 —44.61 75.93 -57.56
[l 9.35 9.35 -0.56 9.35 -0.56
ZQ+CL 0.23 0.33 -0.64 0.82 -0.82
DByA+ec 133.01 4920 2561 50.17 3623
5v/\_2,,+cc -4.93 -3.23 -1.36 -3.05 2.19
S1uDyA e 6.8 —4.45 2.39 _4.42 3.37
S2uDyAp+cc -5.18 ~1.98 0.84 ~1.83 0.89
S1uDyAatec ~0.06 0.05 0.03 0.03 ~0.01
SDy Ay, +cc 0.27 ~0.10 0.05 ~0.09 0.06
Others 0.21 0.45 -0.25 0.49 -0.33
Norm -2.06 -0.81 0.49 -0.80 0.59
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TABLE IV. Contributions from the DF and various CCSD(T) terms to the dipole polarizability calcula-
tions in Ra*. The subscripts ¢, n, and v of the RCC terms correspond to the core, valence and virtual

correlation contributions. EC and 5,1 give the DF results from the core and valence orbitals.

75281 6d *D+) 6d *Ds),

Terms a(]) a(') aé a/(') aé

D. 15.56 15.56 -0.56 15.56 -0.56
D, 149.10 167.51 -114.14 128.21 -98.07
D, 11.66 11.66 -0.71 11.66 -0.71
D,Q+cc 0.60 0.21 -0.54 1.03 -1.03
DyA,,+ce 107.74 91.30 -54.32 85.59 —62.17
DyAg,+cc —4.15 -5.92 -2.84 —4.85 3.68
slngwcc -5.17 -7.62 451 —6.65 5.13
2Dy Ayt cc -4.93 —4.64 2.68 —3.44 1.76
S1DyAgt+cc -0.02 0.05 0.05 0.02 -0.01
SapDyAsy,+cc 0.25 -0.18 0.07 -0.15 0.10
Others 0.29 0.61 -0.34 0.64 -0.43
Norm -1.73 -1.76 1.21 —1.47 1.08

we had also evaluated dipole polarizabilities in the ground
and d-metastable states using the sum-over-states approach
with the E1 matrix elements from CCSD(T) method and ap-
proximated core-correlation and core-valence correlation
effects.

In Table IV, we present contributions from individual
RCC terms to these results. The trend of the correlation ef-
fects in the ground state seems similar to those of Sr* and
Ba*, but due to the presence of core f electrons, the behavior
of the correlation effects is a little different for the metastable
d-states. The size of core correlation is slightly larger than
that of Ba™, but the difference is not as large as it was be-
tween Sr™ and Ba™. In contrast to Ba* where the ab initio and
sum-over-states results match, we found discrepancies in this
system. The discrepancies are mainly because of the inclu-
sion of the doubly excited states in the present work, but
there could be cancellations in Ba* due to which the discrep-
ancies are small.

E. Applications to the optical clocks

All the ions considered in this work are important candi-
dates for optical clocks [3,5,8—10]. There has been an abso-
lute frequency measurement of the 5s °S,,,—4d *Ds), tran-
sition in ®¥Sr* by Madej er al. [5]. One of the largest
uncertainties due to the applied electric field comes from the
quadratic Stark shift. In fact, this shift was earlier over esti-
mated due to the large error bars in the calculated dipole
polarizabilities of the 5s %S;,, and 4d >Ds), states. Madej et
al. had used ap(5s1,)=(1.40%0.06)x 107 C?s>kg!
where we obtain  this result as (1.46%+0.02)
X 1073% C? s> kg™!. The scalar and tensor polarizabilities of
the 4d’Ds, were used in [5] as a(l)(4d5,2)=(8 +2)

X107 C2s2kg™'  and  @d(4dsp)=(-7=2)x 1074 C?
s> kg~!, respectively. We obtain these results as ag(4ds),)
=(10.3720.12) X 107% C?s’kg™! and aj(4ds;,)=(-8.05
+0.05) X 1074 C? s> kg~!. Using Eq. (2.9) and our results,
we obtain the shift rate, which is defined as y=%, of the
5528, state as (1.10+£0.01) uHz/(V/m)> against
(1.060.04) uHz/(V/m)? of Madej et al. Similarly, we ob-
tain y=(-0.78+0.02) uHz/(V/m)? against results of
Madej ez al. as y=(-0.6+0.2) uHz/(V/m)? in the 4d *Ds,
state using only the scalar polarizability. However assuming
the direction of the electric field lies in the z direction, we
obtain y=(-1.27*0.03) uHz/(V/m)?, y=(-0.91*0.02)

uHz/(V/m)? and y=(-0.18=0.01) uHz/(V/m)?> for M
=1/2, M=3/2, and M=5/2, respectively.

Using Eq. (2.14) and the above results, we also obtain the
black-body radiation shift at 7=300 K in the 5s 25,
—4d D, transition in **Sr* as (0.22+0.01) Hz and that is
an improvement of 10% over the result of Madej ef al. [5].

It appears that both '*"Ba* and '**Ba* will be suitable
candidates for an optical clock [8,9], but each has some ad-
vantages and disadvantages in controlling the systematic er-
rors. For the 65 S,,— 5d *Ds, transition in '**Ba*, it would
be possible to use techniques similar to the measurement of
the frequency in the optical transition in ®3Sr* mentioned
earlier. However, one has to encounter the electric quadru-
pole shift in the 5d >Ds,, state for this case. It is possible to
overcome this particular shift by considering the possible F
=2(6s,/,) — F=0(5d;,,) hyperfine transition in '*’Ba*. In this
transition, one has to again estimate the possible quadratic
Zeeman shifts because of finite nuclear magnetic and quad-
rupole moments. Our dipole polarizability for the 6s %S,
state is given by (2.05+0.02) X 1073° C? s> kg™!. The scalar
and tensor polarizabilities of the 5d 2Ds), state are given by
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(8.05+0.07) X 104 C2s2kg™! and (-4.060.05)
X 107 C%s2kg™!, respectively. Similarly, the scalar and
tensor polarizabilities of the 5d °Ds,, state are given by
(8.35+0.09) X 1074 C? 52 kg™! and (-5.09 =0.05)
X 1074 C%s2kg™!, respectively. Due to the choice of the
hyperfine transition in '>’Ba*, the tensor polarizabilities of
these states are zero and hence the polarizabilities of the
atomic and hyperfine states are the same. The shift rates are
(-1.55+0.01) uHz/(V/m)> and (-0.61+0.01) uHz
/(V/m)? in the 65 S/, and 5d >Ds), states, respectively. For
138Ba*, by considering particular M values of the 5d 2Ds),
state and assuming that the electric field lies in the z direc-
tion, we can evaluate the Stark shifts. They are
y=(-0.94+0.02) uHz/(V/m)?,  y=(-0.71*0.02) uHz
/(V/m)?, and y=(0.14*0.01) uHz/(V/m)?> for M=1/2,
M=3/2, and M=5/2, respectively. As can be noticed, the
result for M =5/2 has opposite sign than other M values. The
Stark shifts in these states can be easily estimated using these
results for a given applied electric field.

The black-body radiation shift at 7=300 K in the
6s 2S,/,— 5d *Ds), transition in this system is given as
(0.64+0.02) Hz.

Similarly as we had reported earlier [10], both ***Ra* and
22Ra* have the same advantages like 37Ba* and '*®Bat,
respectively, for considering as optical clock candidates. In
fact, all the low-lying energy levels in these ions are in op-
tical region which will be an advantage for the experimen-
talists to measure the 7s2S,,—6d°D;, or 7s Sy,
—6d ’Ds;, or F=2(7s,,)— F=0(6d;,) transition frequen-
cies more precisely than other candidates. Recently, *'°Ra
whose half-lifetime is around 2.75 m was produced at KVI
[34] in the accelerator method and its single ion shares the
same advantage with *>Ra* for becoming suitable candidate
for the optical clock. Now assuming that due to the suitable
choice of hyperfine states in **’Ra* [10] like the case for
137Ba*, the tensor polarizability contribution to the Stark
shift will be zero and hence using our dipole polarizability
results, we obtain the Stark shift rates as
(-1.31%£0.02) uHz/(V/m)> and (-1.05%=0.02) uHz
/(V/m)? in the 7s %S, and 6d D5, states, respectively. For
other isotopes discussed above, by considering particular M
values of the 6d 2D5,2 state and assuming that the electric
field lies in the z direction, the Stark shifts are evaluated as
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y=(-1.56*0.03) puHz/(V/m)?,  y=(-1.16+0.02) uHz
/(V/m)?, and y=(0.29+0.01) uHz/(V/m)> for M=1/2,
M=3/2, and M=5/2, respectively. The result for M=5/2
has opposite sign than other M values like in 138Ba*. There-
fore, the Stark shifts in Ra* can be estimated accurately using
our results for a given applied electric field.

The black-body radiation shift at 7=300 K in the
75 28,,—6d *Ds;, transition in Ra* is given as
(0.19£0.02) Hz.

From the above Stark shift ratios and BBR shifts in the
considered ions, it is found that these systematic errors are
small in Ra* which further supports along with its energy
level locations that it will be one of the most suitable candi-
dates for optical clock. In fact, a possible atomic clock with
uncertainty in the order of 107!7 seems feasible from these
results along with the preliminary analysis of Doppler’s
shifts [35] in Ra*.

V. CONCLUSION

We have employed the relativistic coupled-cluster method
to determine ab initio results for the dipole polarizabilities of
the ground and the metastable d states in the singly ionized
strontium, barium, and radium. Electron correlation effects
arising through various coupled-cluster terms are given indi-
vidually and comparative studies are performed for these
three ions. Using the results we have obtained, Stark shifts,
and black-body radiation shifts for these ions are estimated.
Using our results, we were able to reduce the errors of the
measured frequency for the optical clock in *Sr*. Our cal-
culations of the Stark and black-body radiations shifts in
both Ba* and Ra* could be used to remove the systematic
errors in the proposed optical clock experiments for these
ions.

ACKNOWLEDGMENTS

This work was supported by NWO under the VENI pro-
gram with Project No. 680-47-128 and part of the Stichting
FOM Physics Program 48 TRIup. D.M. thanks the Indo-
Swedish research grant for research funding. We thank the
C-DAC TeraFlop Super Computing facility, Bangalore, India
for the cooperation to carry out these calculations on its
computers.

[1] S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E.
Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates,
K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).

[2] D. Adam, Nature (London) 421, 207 (2003).

[3] H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N.
Lea, K. Szymaniec, and P. Gill, Science 306, 1355 (2004).

[4] W. M. Itano, Phys. Rev. A 73, 022510 (2006).

[5] A. A. Madej, J. E. Bernard, P. Dubé, L. Marmet, and R. S.
Windeler, Phys. Rev. A 70, 012507 (2004).

[6] T. Schneider, E. Peik, and C. Tamm, Phys. Rev. Lett. 94,
230801 (2005).

[71 W. H. Oskay, W. M. Itano, and J. C. Bergquist, Phys. Rev.

Lett. 94, 163001 (2005).

[8]J. A. Sherman, T. W. Koerber, A. Markhotok, W. Nagourney,
and E. N. Fortson, Phys. Rev. Lett. 94, 243001 (2005).

[9] J. A. Sherman, W. Trimble, S. Metz, W. Nagourney, and N.
Fortson, e-print arXiv:physics/0504013.

[10] B. K. Sahoo, B. P. Das, R. K. Chaudhuri, D. Mukherjee, R. G.
E. Timmermans, and K. Jungmann, Phys. Rev. A 76,
040504(R) (2007).

[11] W. M. Itano, J. Res. Natl. Inst. Stand. Technol. 105, 829
(2000).

[12] C. Sur, K. V. P. Latha, B. K. Sahoo, R. K. Chaudhuri, B. P.
Das, and D. Mukherjee, Phys. Rev. Lett. 96, 193001 (2006).

062506-9



SAHOO et al.

[13] B. K. Sahoo, Phys. Rev. A 74, 020501(R) (2006).

[14] B. K. Sahoo, Phys. Rev. A 73, 062501 (2006).

[15] B. K. Sahoo, C. Sur, T. Beier, B. P. Das, R. K. Chaudhuri, and
D. Mukherjee, Phys. Rev. A 75, 042504 (2007).

[16] D. Jiang, B. Arora, M. Safronova, and C. W. Clark, J. Phys. B
42, 154020 (2009).

[17] N. Fortson, Phys. Rev. Lett. 70, 2383 (1993).

[18] L. W. Wansbeek, B. K. Sahoo, R. G. E. Timmermans, K. Jung-
mann, B. P. Das, and D. Mukherjee, Phys. Rev. A 78,
050501(R) (2008).

[19] J. R. P. Angel and P. G. H. Sandars, Proc. R. Soc. London, Ser.
A 305, 125 (1968).

[20]J. W. Farley and W. H. Wing, Phys. Rev. A 23, 2397 (1981).

[21] W. R. Johnson, Atomic Structure Theory: Lectures on Atomic
Physics (Springer-Verlag, Berlin, 2007), p. 141.

[22] 1. S. Lim and P. Schwerdtfeger, Phys. Rev. A 70, 062501
(2004).

[23]J. Mitroy, J. Y. Zhang, and M. W. J. Bromley, Phys. Rev. A 77,
032512 (2008).

[24] P. S. Barklem and B. J. OMara, Mon. Not. R. Astron. Soc.
311, 535 (2000).

PHYSICAL REVIEW A 80, 062506 (2009)

[25] S. H. Patil and K. T. Tang, J. Chem. Phys. 106, 2298 (1997).

[26] J. Nunkaew, E. S. Shuman, and T. F. Gallagher, Phys. Rev. A
79, 054501 (2009).

[27] E. L. Snow and S. R. Lundeen, Phys. Rev. A 76, 052505
(2007).

[28] T. F. Gallagher, R. Kachru, and N. H. Tran, Phys. Rev. A 26,
2611 (1982).

[29] E. Iskrenova-Tchoukova and M. S. Safronova, Phys. Rev. A
78, 012508 (2008).

[30] I. Miadokovd, V. Kells, and A. J. Sadlej, Theor. Chem. Acc.
96, 166 (1997).

[31] B. K. Sahoo, R. G. E. Timmermans, and K. Jungmann, e-print
arXiv:0809.5167.

[32] U. 1. Safronova, W. R. Johnson, and M. S. Safronova, Phys.
Rev. A 76, 042504 (2007).

[33] Rupsi Pal, Dansha Jiang, M. S. Safronova, and U. I. Sa-
fronova, Phys. Rev. A 79, 062505 (2009).

[34] P. D. Shidling et al., Nucl. Instrum. Methods A606, 305
(2009).

[35] K. Jungmann, B. K. Sahoo, R. G. E. Timmermans, O. O. Ver-
solato, and L. W. Wansbeek (unpublished).

062506-10



