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Activity dependence of solar supergranular fractal dimension
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ABSTRACT
We study the complexity of supergranular cells using the intensity patterns obtained at the
Kodaikanal Solar Observatory during the solar maximum. Our data consist of visually iden-
tified supergranular cells, from which a fractal dimension D for supergranulation is obtained
according to the relation P ∝ AD/2, where A is the area and P the perimeter of the supergranular
cells. We find a fractal dimension of about 1.12 for active region cells and about 1.25 for quiet
region cells, a difference that could be attributed to the inhibiting effect of the magnetic field.

Key words: methods: data analysis – methods: statistical – techniques: image processing –
Sun: activity – Sun: granulation – Sun: photosphere.

1 IN T RO D U C T I O N

Heat flux transport is chiefly by convection rather than by photon
diffusion in the convection zone of cool stars such as the Sun, the
thickness of convection zone being 30 per cent of the solar radius
below the photosphere. Convection is revealed predominantly on
two scales – on the typical scale of 1–2 arcsec it is granulation,
and on the typical scale of 30–40 arcsec it is supergranulation. The
typical lifetime of a supergranular cell is 24 h. Horizontal motion in
the supergranular cells transports the magnetic flux tubes from the
centre to the edge of the cells where they are deposited. The excess
heat resulting from these magnetic fields at the chromospheric level
traces out a network of supergranulation structure. Supergranules
are characterized by typical horizontal speeds of 0.3–0.4 km s−1.
The vertical downward motion at the cell boundary is typically in
the range of 0.1–0.2 km s−1. The speed of the central upwelling
is believed to be about 0.01 km s−1, though there is some uncer-
tainty concerning this. Worden & Simon (1976) report a tentative
value of 50 ms−1, suggesting the need for further accurate studies.
Giovanelli (1980) reports an upper bound of 10 ms−1 in the absence
of measurement fluctuations, whereas a speed as high as 100 ms−1

has also been reported (Küveler 1983). Berrilli et al. (1999) report
an upper limit of 2 per cent anisotropy for the chromospheric net-
work cell orientation and a 30 per cent size reduction towards the
poles.

Sykora (1970) finds a cell size dependence on solar latitude, as
also confirmed by Raju, Srikanth & Singh (1998). A dependence
of the network size on solar cycle with a smaller size at solar max-
ima has been reported (Singh & Bappu 1981; Meunier, Roudier &
Rieutord 2008), which is arguably consistent with the findings of
Meunier, Roudier & Tkaczuk (2007b), who suggest that supergran-

�E-mail: srik@rri.res.in

ular sizes are anticorrelated with magnetic activity. Cells of a given
size associated with a remnant magnetic field live longer than those
in the field-free regions (Singh et al. 1994). Srikanth, Raju & Singh
(1999a) have also found a positive correlation between cell sizes
and cell lifetimes. Convective motion and magnetic inhibition of
motion are both stronger in active regions thereby leading to similar
speeds in all regimes (Srikanth, Singh & Raju 1999b). The inter-
relationships amongst the parameters of length L, lifetime T and the
horizontal flow velocity vh of supergranular structures throw light
on the underlying dynamics. A relationship between the horizontal
flow velocity and the size of the supergranular cell has been estab-
lished by Krishan et al. (2002), which they find to be compatible
with the Kolmogorov energy spectrum, in contrast to Meunier et al.
(2007a). This difference can possibly be attributed to the differing
ways by which cells are defined in these two works (cf. below). A
relationship between the horizontal flow velocity and cell lifetime
has been established by Paniveni et al. (2004).

No unanimous agreement exists concerning the origin of super-
granulation. Rieutord et al. (2000) suggest that supergranular flow
is generated directly by the granular flow through a large-scale in-
stability which fixes the scale in space and time of supergranulation.
It is therefore conjectured that non-linear interaction between flows
at the granular scale, in other words Reynold stresses, is sufficient
to drive flows at the supergranular scale and that the energy released
by the recombination of ionized helium plays no part. In the light of
lack of conclusive proof required of a convective origin, other spec-
ulations have arisen to account for supergranulation: gravity wave
modulation of the convective motions (Lindzen & Tung 1976; Rast
2003). Lisle, Rast & Toomre (2004) have noted a north–south align-
ment of supergranulation, consistent with an underlying dynamical
cause at a larger scale identified with giant cells.

In an earlier work, we suggested (Paniveni et al. 2005) a possible
turbulent origin of supergranulation based on a fractal analysis.
However, theoretical approaches are undecided between scenarios
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that either invoke a large-scale instability of the surface turbulent
convection or a direct forcing by buoyancy. We suggest that this
discrepancy concerning the role of turbulence in supergranulation
is probably due to the ambivalence in our understanding of the
relationship between the area and magnetic flux content of network
cells. For example, Rieutord et al. (2007) have shown, through the
kinetic energy spectrum derived from high-resolution data obtained
from the Pic-du-Midi observatory, that supergranulation peaks at
36 Mm and spans on scales ranging between 20 Mm and 75 Mm.
The decrease in supergranular flows in the small scales is close to
the k−2 power law, steeper than the Kolmogorov one. Based on the
probability distribution function of the divergence field, they find
a signature of intermittency of supergranulation and therefore that
the supergranulation field has turbulent nature. On the other hand,
Meunier et al. (2007a) find that the velocity–scale relationship in
supergranules is not compatible with the Kolmogorov turbulence
and the 1/3 exponent. Part of this discrepancy is perhaps due to
the way cells are defined and scales extracted. For example, it
has been noted that the network may be more complete than it
seems to visual methods like the one we have employed (Hagenaar,
Schrijver & Title 1997). The set identified by visual inspection
could thus be biased towards cells with well-demarcated boundaries.
Clearly, observational constraints are needed to guide theoretical
approaches.

Fractal analysis is a valuable mathematical tool to quantify the
complexity of geometric structures (Mandelbrot 1977) and thereby
gain insight into the underlying dynamics. For example, statistical
analyses such as studies of the size distribution of active regions
or of the fractal dimension of solar surface magnetic structures are
useful for comparing observations and models. In the context of so-
lar physics, fractal analysis was first adopted by Roudier & Muller
(1986), who measured the fractal dimension of granular perimeters.
Complex phenomena such as distribution of the flux tubes and their
interaction with the convective pattern can be understood by their
fractal analysis which also helps to test models. The structures are
not strictly self-similar and therefore one should consider the frac-
tal dimension computed over small ranges of size (Meunier 2004).
Fractal analysis can shed light on the turbulence of magnetocon-
vective processes that generate the magnetic structures (Stenflo &
Holzreuter 2003a; Lawrence, Ruzmaikin & Cadavid 1993), and has
been applied to a study of the formation of solar active regions
(Meunier 1999).

A number of authors have studied the temporal evolution and
geometric properties of supergranular cells and the complexity of
their network pattern. Berrilli, Florio & Ermolli (1998) have em-
ployed fractal analysis to characterize the complexity of supergran-
ular flows using Ca K images of the chromospheric network. They
use an intensity threshold scheme to produce binary image versions
of the filtergram. The skeleton representing a medial axis transform
is then used to extract geometrical information such as the area
and the perimeter of the cells, from which we obtain the fractal di-
mension. Their method of data analysis permits a statistically large
number of cells to be analysed. By contrast, visual inspection re-
stricts the number of cells we have studied. On the other hand, what
is novel to our work is that our method allows us to identify reason-
ably well the cells in both quiescent and active regions and thus to
compare cells at different activity levels. It is not clear that a thresh-
old scheme like that of Berrilli et al. (1998) can be directly applied
to quiet regions (where cells are known to be less well defined) and
thence to the study of activity dependence. Perhaps a future study
would be to extend the threshold scheme to cover active regions,
which may not be straightforward, but require careful inspection.

The variation of fractal dimension with the solar cycle is an im-
portant observation, which theoretical models should also be able
to reproduce. Thus, many issues could be resolved by studying the
maximum of the solar cycle, such as the variation of the fractal di-
mension with the activity level. It will also be interesting to establish
some comparison with other types of data (Paniveni et al. 2005).
Magnetohydrodynamics (MHD) models due to Rincon & Rieutord
(2003) and Benson, Stein & Nordlund (2006) are of relevance here,
similar to that of Crouch, Charbonneau & Thibault (2007), who,
employing an n-body diffusion-limited aggregation model to simu-
late the dispersal and interaction of small-scale magnetic elements
at the solar surface, obtain a spatial distribution of clusters of mag-
netic concentrations, comparable to the supergranule cell pattern.
A dependence of the fractal dimension of active region magnetic
structures on the activity level (spots, flares) and solar cycle phase
(Meunier 2004) has been observed.

In this work, we study supergranular fractal dimension by the
method of visual inspection on the intensitygrams of Kodaikanal
Solar Observatory during the solar maximum of 2001 May–August
and the activity level dependence of the fractal dimension.

2 DATA A NA LY SIS

We analysed intensity data, consisting of Ca II K filtergrams (λ =
3934 Å) of the Sun, obtained between 2001 May 16 and 2002
November 26, during the solar maximum phase of the 23rd solar
cycle, at the Solar Observatory, Kodaikanal. Light from a 46 cm
siderostat is diverted to a 15 cm Zeiss achromat objective which
provides an f /15 beam and a 2 cm image. A pre-filter and a Daystar
Ca K narrow-band filter are used together with a Photometrix 1k ×
1k CCD to record the K filtergram. The images have a resolution
of about 2 arcsec, which is twice the granular scale. Only cells
lying within 60◦ angular distance from the disc centre were selected
in order to minimize projection effects. Regions that were clearly
identifiable as either quiescent (quiet) or active were noted, and
visually identifiable cells were selected from these regions. Regions
that were not unequivocally quiescent or active were avoided, for
simplicity. Depending on the region in which a cell is found, it is
called quiescent or active.

An example of region and cell selection is depicted in Fig. 1 in a
zoomed-in view. In all, a set of 239 cells were analysed, comprising
87 quiescent and 152 active cells. Clearly, the cell perimeter that is
detected, and hence the fractal dimension that is derived, depends
on the smoothing level, with the greater degree of smoothing reduc-
ing the fractal dimension. It thus seems that the fractal dimension
attributed to a feature must be qualified by the resolution at which
it is derived. It cannot be discounted that our method of visual in-
spection probably rejects or fails to select many cells with gaps in
the network, and thus with less well-defined contours, compared to
the whole cell boundary, thereby favouring active area cells, where
such gaps are less likely. The greater clarity of contours in the active
region cells could also mean that a larger perimeter is found in this
case relative to quiet cells, and thus that the fractal dimension for
this region is an over-estimate.

The profile of an identified cell was scanned as follows. We chose
a fiducial y-direction on the cell and performed intensity profile
scans along the x-direction for all the pixel positions on the y-axis
(Krishan et al. 2002; Paniveni et al. 2004). In each scan, the cell
extent is taken to be marked by two juxtaposed ‘crest’ (separated by
a ‘trough’) as expected in the intensitygrams. This set of data points
was used to determine the area and perimeter of a given cell and

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 402, 424–428



426 U. Paniveni et al.

Figure 1. Zoomed-in view of the solar chromosphere. Cell A is present in an active region, while cell B in a quiet region.

of the spectrum of all selected supergranules. The area–perimeter
relation is used to evaluate the fractal dimension.

The use of Ca II K images here has the advantage with respect to
Dopplergrams (Paniveni et al. 2005) that the latter are much more
sensitive to projection effects. Furthermore, cell identification and
activity level recognition are easier with intensitygrams. The use
of intensitygrams also usefully complements other forms of image
data we have earlier used.

For our purpose, fractal dimension D is characterized by the
area–perimeter relation of the structures. Self-similarity, meaning
the same degree of complexity regardless of the scale at which
the structures are observed, is expressed by a linear relationship
between log P and log A over some range of scales.

3 R ESULTS AND DISCUSSION

The main results pertaining to fractional dimension are derived
from Figs 2 and 3, which are discussed below. A fractal analysis is
relevant to such irregularly shaped features because we can quan-
tify the supergranular irregularity and shed light on the nature of
solar turbulence. Along the lines of various works reported in the
introduction on granules, we analysed planar shapes by analysing
the area–perimeter relation P ∝ AD/2. For smooth shapes such as
circles and squares, P ∝ A1/2 and thus D = 1, the dimension of a
line. As the perimeter becomes more and more contorted and tends
to double back on itself, filling the plane so that P ∝ A and D
approaches the value 2.

3.1 Main results

Our data, in which 152 active region cells and 87 quiet region cells
were analysed separately, demonstrate an anticorrelation between
the activity level and fractal dimension.

Active regions. The log A versus log P relation is linear as shown
in the lower frame of Fig. 2 for the active region. The linear relation
in this (as well as in Fig. 3 for the quiescent region) suggests that

Figure 2. Active region: plot of the natural logarithm of the supergranular
area (in km2) against the natural logarithm of perimeter (km).

supergranules are self-similar and can be regarded as fractal objects
over the observed range of scale. A correlation coefficient of 0.94
indicates strong correlation. Fractal dimension D, calculated as a
2/slope, is found to be about 1.12, the exact value derived being
1.12 ± 0.07. The average area of the cells analysed in this region is
247 Mm2.

Quiet region. The log A versus log P relation is linear as shown in
the lower frame of Fig. 3. A correlation coefficient of 0.88 indicates
strong correlation. Fractal dimension D, calculated as a 2/slope, is
found to be about 1.25, the exact value derived from the 87 cells
being 1.25 ± 0.14. The average area of the analysed cells of this
region is 272 Mm2.

The above results are compatible with the observation that there
is an anticorrelation between the activity level and cell size (Singh
& Bappu 1981; Meunier et al. 2007b, 2008). The observed frac-
tal nature of supergranulation is also in accordance with earlier
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Figure 3. Quiet region: plot of the natural logarithm of the supergranular
area (in km2) against the natural logarithm of perimeter (km).

works where we presented some evidence for turbulent convection
based on horizontal flow velocity, lifetime and length-scale data for
supergranulation (Krishan et al. 2002; Paniveni et al. 2004). For
this earlier analysis, we analysed 33 h of full disk Dopplergrams
obtained in 1996 by the Michelson Doppler Interferometer (MDI)
on board the Solar and Heliospheric Observatory (SOHO; Scherrer
et al. 1995, ).

3.2 Discussion

The spectral distribution of the temperature, a passive scalar, is
related to the spectral distribution of kinetic energy. It can be easily
shown that the Kolmogorov energy spectrum, k−5/3 , both in two-
and in three-dimensional turbulence leads to a temperature spectrum
of k−5/3 (Krishan 1996; Zahn 1997).

Thus the temperature variance 〈θ 2〉 varies as r2/3, as a function of
the distance r (Tennekes & Lumley 1970). According to Mandelbrot
(1975), an isosurface for temperature has a fractal dimension given
by DI = (Euclid dimension) − 1/2 (exponent of the variance). Thus
for two-dimensional supergranulation, DT = 2 − (1/2 × 2/3) =
5/3 = 1.66 for an isotherm. The pressure variance 〈p2〉 on the
other hand is proportional to the square of the velocity variance, i.e.
〈p2〉 ∝ r4/3 (Batchelor 1953). The fractal dimension of an isobar is
therefore found to be Dp = 2 − (1/2 × 4/3) = 1.33.

Our data furnish evidence that the fractal nature of the supergran-
ular network is closer to being isobaric than isothermal. However
our measurements are not compatible with the isobaric fractal di-
mension derived from a Kolmogorov turbulence, suggesting a more
complex origin of supergranulation. We also observe a trend for
quiet regions having a larger fractal dimension than active region
supergranules.

It is interesting to note that Roudier & Muller (1986) obtained an
almost similar dimension as we do, for smaller granules. However,
in contrast to granules, we do not find any evidence for two different
regimes of fractal dimension; both Figs 2 and 3 show that a single
linear fit is suitable for the entire observed range of supergranules.
But this could be an artefact due to our specific method of cell
identification or the limited sample. Future works, for example by
applying the threshold technique of Berrilli et al. (1998) to cells of
different activity levels, can potentially improve on this result.

In Section 1, we noted theoretical or observational support for
a relationship between the supergranular scale size and activity
level (Singh & Bappu 1981; Meunier et al. 2007b). Nevertheless,
the variation of cell size with its magnetic environment remains
controversial. Part of this state of affairs probably stems from lack of
a consistent definition of activity level in that they do not distinguish
between intra-cellular activity and network activity (as indicated by
Meunier et al. 2007b) and the magnetic sensitivity of the data. It may
be hoped that an extension of theoretical models that can account
for the relationship between the scale and absolute field could also
shed light on how magnetic fields may influence fractal dimension.
It is known that strong magnetic fields have an inhibiting effect on
large-scale flows, but a causal connection linking restricted velocity
flows in the presence of magnetic fields to smaller fractal dimension
is not obvious. A quantitative description of this picture would be
an interesting future exercise.
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