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Abstract. Sca.ttering of light by rough surface is considered in the Kir
choff approximation. Analytica.l expressions are presented for th(> &'nt
tered intensity by considering the elevations in the z-dir\?'Ction. «(x, y) 
at any point (x,y) all the surface to be a zero mean, c()[rt'llltt..u Gaus
sian, stationary random variable, such that < ((x, y) >= 0 and < 
(Xl,Yl)(X2,Y2) >= O'~g(r), where r ::: [(Xl - :1'2)2 + (Yl - Y2)211/~ 
with g(O) ::: 1 and g(r) ...... 0 for r » l. In the forgoirlg IISSllIl1pt.iollS (T 

gives the measure of the height of the 'grooves' on tllf' random surflwl" 
g(r) is the correlation function and 'l' is the corrE'iation 1('llgth of tilt' 
randomness. The correlation function is considered to be of tht' form ()f 
g(r) = exp[-(r/l).8] where 1 :5 j3:::; 2. We present analytical (>xpres:..ioIlH, 
for the values of the j3 in the above given rangE'. In thE' ahow' (>xprflAAiclll 
P is related t.o the fractal dimension of the tmrfN'e. Special ciistinrtionR 
are made for Q « 1 and Q » 1, where Q - a I). il; a dilllt'llI.iollll'b!l quall
tity which measures the depth of the grooves w.r.t. the wavelength>. of 
the light. Several representative CIl..'lCS nrc consiciC'rcci, with r(1fnrl'Jl('(' tn 
potentials applications. 

1 Introduction 

Scattering of light forms an important tool for non-destructive testing, pnrtk
ularly for characterization of surface profiles, as is required in fubl'iealioll of 
important optical elements like, mirrors, light diffusers, light deflectors, 1'<'111'('
tion gratings etc. For a perfectly smooth plane surface, tht> scattt'n'<i light iH 
expected to be confinoo in the specular direction; deviation for this condition, 
Le. distribution of light intensity in speckles, carries information of tlw scat
t.ering properties of the roughness and 011 inversion, about the l'Ougtuwss it~;t>Ir. 

The problem of inversion is known to be a formidable one and mathematknlly 
intricate. The approach that we follow here is to describe the randomness of 
the surface by fflw parameters and examine the direct problem of light scattpr
ing by a model rough surface, thus parameterized. By fitting the parameterized 
equations to the data, the roughness properties of the surface can be extractl'<1. 

The direct problem of rough surface scattering is acldl'essro in the Kirchoff 
approximation in our present paper, i.e., it is considered that the local radius 
of curvature rc(x, y) = ((ra: + <"SI)' 1 » .A, the wavelp.ngth of thp. incident light, 
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where (x, y) is the elevation in the z-direction at any point (x. y) on the surface. 
As the convention of the notation in literature, we designate as V (v." , Vy: v z ) the 
change in the wavevector of the light upon scattering and calculate the intensity 
of light that is scattered along any arbitrary v. As is known, the scattered in
tensity is dependent on the nature of the randomness, which in fact contributes 
to the phase consonance and dissonance of the radiation on scattering. We pa
rameterize the disorder with a correlation function that has three independent 
parameters, a which describes the typical depth of the grooves on the surface: l 
the correlation length of (x,y) and an exponent (3, such that structure facto!' 
V(dXl: Yl; X2, Y2) = a 2[1 - exp( -rll).B] where r = [(Xl - X2)2 + (YI - Y2)2F;::~. 
We give the scattered intensity as series expansion in Cal)..) (which scales the 
groove height with respect to the wavelength of the light) and (Ivll) which scales 
the wavevector of scattering, v with respect to a typical wavevector Ill, in the 
system). 

Z 
t 

Fig. 1. Orientation of coordinate system and scattering geometry showing the propa
gation direction of incident wave and scattered wave, respectively along kl and k2. 

Following the series expansions calculated in this paper, we present the com
putational results for some typical cases of practical importance. It ~ suggested 
that confidence in surface profile characterization is greatly enhanced If measure
ments are done at various wavelengths. An obvious fallout of such experimental 
scheme is that a multiwavelength observation allows us to sample (ai>") direc;tly. 
An impediment, however, arises due to the fact that t~e coherenc.e length of lIght 
ro (arising due to random phase additions on reflec~lOn from different parts of 
the rough surface) it;! also dependent upon >.., for varIOUS value of {3. 
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2 Theory 

Consider a rougll surface in x - y plane. Let kl and k2 define the direction of 
incident and scattering respectively, as shown in the Figure (1). Let the elevation 
in the z-direction at any point (x, y) be given by, z = (x, V), where (x, y) is a 
zero mean stationary random variable, such that, 

{(X,y)} = 0 (1) 

and the correlation function is considered to be 

(2) 

where 

In the above expression l is the correlation length and {3 > 0 is the exponent of 
the correlation. It is clear that g(O) = 1 and g(oo) = o. The scattering geometry, 
following Beckmann and Spizzichino (1963) is given in figure 1, and we follow 
the symbolic notation given therein. We consider incident beam to be Gaussian, 
such that the electric field distribution across it varies as exp( -r2j24). Let pew) 
be the total power in the laser beam illuminating thfl surface. Then the total 
photon flux per unit solid angle (n), at large distances from the rough surface, 
is given by [1-4], 

. (d d ) N(il) == dil dtN(w) 

= ;2 (2:d;~w) J / / / exp [- (X~4~t~) - (Y?4~Y~)] x 

(exp{ivz [(Xl, VI) - (X2' Y2)])} exp{i[vII> (Xl - X2) + VY(YI - Y2)]} X 

dxldx2dy1dY2 x (certain geometrical factors involving Bb B2, 8a) (4) 

where, the integrations are over the entire surface and 

k = 27r j >.., Jf = dV cos2 B} 
VII> = k(Sin{;l1 -sin(;l2cos8a), Vy = -ksin{;l2sin8a 

Vz = -k(cos(Jt + cos{;(2) , V;y = v; + vZ 
(5) 

The formula given eqs(4) can be easily simplified if we normalize as follows. 
Let 

</'p} = . N(il) 
N(v =:::: 0, for a perfectly smooth surface) 

(6) 

i.e. N(il) for any direction v is normalized with respect to the Iv as seen in the 
specular direction for a perfectly smooth surface. 
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Following Beckmann and Spizzichino (1963)and BE..'Ckman (1967) we find, 

with 

(P*Pl - B ({B.}) Iff J ~xp [- (xr4~t~) - (Yr4~{~)] x 

Eo (XI , YI )Eo(x:l. Y2) (cxp{iv:: [(J:!, YI) - (,1'2, Y2)1} I x 

B({B.}) = IF3 ({B.}) 12S({01}) 

F3({e.}) = 1 f coslhcosB2-sinBlsinB2sin03 
cos 01 (cos Ih + cos "2) 

S({O.}) = S (OdS(02) 

S (B) = x~xp [( -1/4) tan Berfc(K cot 0)) 

K2 = 4 (a/l)2 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

w here F.~ ( {e. }) is a geometric factor and S (OJ) S (82 ) are t he shadowing effects 
due to elevation, as introduced by Beckman (1967), 

2.1 The model of the disorder and the average < ... > over the 
randomness 

Vve consIder the model of the randomness as described in the eqs (1-3). For such 
a randomness, assumed to be correlated Gaussian zero mean, it is well known 
that 

{exp{ivz [«xI,yd - (X2,Y2)))) ~ exp{-(1/2) (v; [«Xl,ytl- ((X2,Y2)]2)} 

= exp [_a 2 (1- g(r))] (13) 

where a 2 = (7"2 v~ 
Performing the calculations given in (7), we find, 

(p* p) = (47Tdodd J f dqxdqy exp [-(v; + q;)dr - (tl~ + q~)dgl f(q"" qy) (14) 

where 

f(qx,qy) = J f exp [-a?(l-g(r))] exp[-i(qxx+qyy)]dxdy (15) 

"" (2)" 
= 27Texp(-a2) 2:: -;-.r{n,q.cy) (16) 

n=O n. 

= 27Texp(-a2)S (17) 

where q;,y =- q; + q~ and F(n,q.cy) = r"'" [g(r)]" Jo (q~y r) rdr (18) 
.10 

As is anticipated, (p* p) as given in eqs(14) appears as a convolution, of which 
f(qx, qy) is given by the summation in eqs(16). in which :F(n, qxg) is to be de
terminf'd from t'qs( 17). 
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2.2 Approximation for g(r} 

We consider g(r) to follow, 

geT) = exp [-(r-jl)P] (19) 

which shows that g(O) = 1 and geT) -+ 0 for (rll) -+ 00, i.e., l is tIl(' dista.nce 
beyond which correlaLion in (x, y) is losi. It is important. to noLe that ihe 
exponent (3 determines many of the properties of the randomness, both in the 
short range (r Il) « 1 and in the long range limit. This is easily understood by 
refering to the structurf> function, 

V<:dr ) = ([(0) - (r)]2) 
= 2a2 [1 - exp(-r/l).8J (20) 

which shows that in the limit r Il -+ 00. 2\'dr) = 2a2 , i.e. it saturates. Also 

lim V,,(r) = 2a2 (!"Z·)P 
(r/l)-+O 

(21) 

so that on identifying Vc:c(r) = (8(18r)2 )r2, we find that (CfJ(18r)2) '" 
2q 2ri3-2 l-P. This shows that the ((x, y) is non differentiable for /3 < 2. This 
implies that the roughness consists of jagged steps and the exponent /3 is related 
to the fractal nature of the roughness. In what follows, we confine ourselves in 
the range 1 :5 .8 :5 2. The case (3 = 2 brings it to the case of differentiable 
roughness, while (3 = 1 describes the case where the random elevation (x. y) 
look like random telegraph signals, there being v,...., 1/,rrl2 grooves per unit area 
of the surface. 

2.3 Evaluation of the sum S 

We have from eqs(16) 

00 0 

S = 2: t·n = /'0 + 2: I·n where 
n=O n=l 

a 2n 
tn = -, F(n,(3,qa;y) 

n. 

Using eqs(19) i.e. g(r) = exp [-(rll).B], we have from eqs(18) 

(22) 

(23) 

F(n,(3,qxy) = l R
exp [-n(yt] Jo(qxy,r) rdr (24) 

= foR exp [- C(:)).8] Jo (qa;y,r)rdr with (25) 

1 
l(n) = n 1/{3 (26) 
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i.e the form of :F (n, (3, q",y) for all n's remains the same, but with decreasing 
values of len), n increases as can be seen from eqs(26). It is thus seen [5.6] 

(27) 

and in the limit R -+ 0, this leads us to :F (0,/3, q",y) = 6(q",y). For higher 11 

values the integral (25) has to be found explicitly. And hence the integral over 
q", .qy for the first term in (23) gives us 

(28) 

By expanding the Bessel fUllction in the form of a series, we find, for n! =- 0 [5, 
6] 

'1:"( (3 ) [l( )]2 ~ (-1)m Z2m roo 2m ( 8) dx 
.r n, ,qxy = n !;;:o (m!)2 n io X exp -X X 
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Fig. 2. Plot for (a) {3 = 1 (b) f3 = 1.5 and f3 = 2.0 at different valUeR of correlation 

length In where Yn = In/d. 
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= [1(n)]2 ~ (_l)m z2mr (2m -I- 2) 
!3 ::=0 (m!)2 n !3 

(29) 

where Zn = q",yl(n)/2. 
On performing the q""qy integral, and using (29), we find 

where 
00 (_1)m 2m m [r(m + 1)]2x~ 

Sn = f. [r(m+ 1)]2 Yn ~ [r(p+ l)J2r(m _ p + 1) (31) 

with Yn = In/2d and Xn = v",yd. 
The first term in (30) for Cl! = 0 (i.e. smooth surface) would give a Gaussian 

profile' and is decided by specular reflection of the Gaussian beam by a smooth 
surface. As a = (J / A increases, the contribution from this part falls as e-",2 
and the contribution from the roughness term may incrense as e-",2 an with n 
if a > 1, while l~ falls with increasing n . The other factor Sn broadp.ns with 
increasing n as seen from the form of Sn in (31). Equation (31) can be simplifipd 
for In/A<< 1 (Yn« 1), dj)..» 1 (Xn» 1) to read approximately. 

S ~ (_l)m r(2m+2) 2m 
n = ~ [rem + 1)]2 {3 X.. X 

[ rem + 1)]2 1 -2 
{1 + r(m) F(2) Xn 

[r(m + 1)]2 1 -4 

+ F(m-1) F(3)Xn 

1.00 

0.96 

0.92 

(f)~ 088 

0.84 

0.80 

-~=IO 
--.-.. ~ = 1.5 
-~=20 

\ 
o 2 4 6 8 10 12 14 16 

(Xi 

Fig. 3. Linearity of the plots for Yn = 0.05 
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[r(m+l)]2 1 -6 

+ r(m-2) r(4)x",} 

469 

(32) 

where we have written Xn = vrLyln/2. It is to be remembered that the above 
expressions are asymptotic expressions. The complete summation of the second 
term in (30) is not presented here. We largely concentrate on the term S which 
describes the broadening of the profile. Tt, 

-020 

\ \ 
• Yn =: 010 

• Y,=OOS 

-0.24 .. Y, -001 

-028 .. m=-126 

j -032 

\ m =-092 m--094 

-038 

-0.40 

0.4 0.6 0.8 1.0 1.2 14 1.6 1.8 
log(x,.) 

Fig. 4. Slope near the tail-end of each plot for f3 = 1. 

3 Computational Results and discussions 

The calculations given in the forging sections have been performed with an idea 
to present results that are amenable to simple computations, with adequate 
degree of accuracy. The change in the profile are largely contained in the expres
sions for S,... Figure 2 thus shows some typical curves, in which the computations 
are performed with the limits of validity of asymptotic expansion. 

Figure 3 and figure 4 demostrate the way the profile would change with X n . 

As is seen in Figure 3, for smaller values of :t,.., S", tv a - b x:" where the 
coefficient a and b depend on y,.. and (3. This shows that profound signature 
of (3 is seen even in this range, i.e. at the low angle scattering. Full details 
of the roughness parameters can be obtained in a more comprehensive way if 
observations are extended to larger values of x,.., as can be seen from figure 4, in 
which the m gives the slope of the log S .... versus log x'" plot. In this paper we limit 
ourselves to the study of the function S,.. alone. Since the intensity profile of the 
scattering radiations is simply a superposition of several such profiles of S", type, 
their strength being decided by the quantity Q. In conclusion, we state that the 
expressions given in this paper are amenable to simple calculations for wide range 
of roughness ( in particular the case (3 = 5/3 corresponds to the phase dissonance' 
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caused by Kolmogorove turbulence) and are to be applied to several areas of 
our ongoing projects, particularly the characterization of reflecting elements for 
the forthcoming National Large Solar Telescope project We are in the process 
of obtaining asympt.otic expressions for large angle scatt.ering also, which will 
render completeness to this approach of study, particularly for characterization 
through multi-wavelength studies. 
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