DAILY VARIATION OF TOTAL ELECTRON CONTENT NEAR MAGNETIC EQUAPOR

G. SETHIA, H. CHANDRA AND R. G. RASTOGI* Physical Research Laboratory, Ahmedabad 380 009, India

AND

B. S. MURTHY

Indian Institute of Astrophysics, Kodaikanal 624 103, India

Abstract

Mean daily variations of the total electron content (N_p) derived from the Faraday rotation measurements made at Ootacamund during October 20-November 5, 1975, are described and are compared with similar variation for Ahmedabad. The noon bite-out, observed in the daily variation of $f_0 F_2$ near magnetic equator, is absent in N_p . However, there is a sharp decrease in the rate of increase in N_p indicating ionization flow due to Fountain effect. It is suggested that the effect of noon bite-out in N_p is diluted because of its being an integrated parameter over the whole ray-path.

INTRODUCTION

THE F_2 region in the equatorial latitudes is marked by two distinct features. (1) Daily variation of the oritical frequency (f_0F_2) shows peaks in the morning and late evening with a valley near noon, generally known as midday bite-out¹⁻². (2) Latitudinal plot of noon f_0F_2 against magnetic dip shows two maxima around 30° dip with a trough around magnetic equator³, generally known as Appleton anomaly or Equatorial F_2 anomaly. Both the midday bite-out and the equatorial trough in f_0F_2 are explained in terms of the vertical uplift of the ionization at the magnetic equator due to $E \times B$ force and the subsequent diffusion down the field lines termed as Fountain effect⁴⁻⁸.

With the advent of radio beacons aboard the artificial satellites, a new technique has emerged to study the columnar electron content (N_F) through the measurement of Faraday rotation of the signal at ground. The signals from the low orbiting satellites have been used extensively by different workers to study the latitudinal profiles of N_F at a particular instant of time. Combining such data for over a few months, one can also obtain a daily variation of N_F at a particular location. At a tropical latitude, Ahmedabad, close to the crest of anomaly, daily variations of N_{r} and N_{m} have been found to be similar⁹. In the equatorial region the latitudinal plots of N_r showed trough at the equator with crests around 20° dip latitudes consistently. However, there have been some discrepancies in the daily variations of N_{r} . Blumle¹⁰ reported absence of bite-out at Huancayo, whereas for the same station from later observations Bandyopadhyay¹¹ inferred bite-out to be present. Observations at Ibadan,

Thumba and Kodaikanal did not show any bite-out in $N_{\rm p}^{12-14}$. Rufenach *et al.*¹⁶ reported that f_0F_2 at Bangkok showed the presence of bite-out in its daily variation but no corresponding bite-out was observed in $N_{\rm p}$.

One of the difficulties in deriving a conclusive result about the daily variation of $N_{\rm p}$ from measurements from the orbiting satellites has been that a single daily variation curve can be obtained only from data of at least a few months. The beacons aboard a geostationary satellite therefore are being used these days as they provide continuous observations over a long period of time. Thus, a good time resolution is achieved.

With the positioning of ATS-6 satellite to 35° E in 1975, it was possible to record Faraday rotation continuously for nearly a year at several locations in India. Some of the results from multi-station observations have earlier been reported¹⁶⁻¹⁹. During this phase of ATS-6, a joint radio beacon experiment was conducted by the NOAA Laboratories, Boulder and the Physical Research Laboratory, Ahmedabad, at Ootacamund²⁰. In the present article a comparison of the daily variations of N_p at Ootacamund has been made with N_p at Kodaikanal and also N_p at Ahmedabad. The results have also been critically discussed.

RESULTS

Mean daily variations of N_p at Ootacamund (subionospheric point 72.9° E, 10.6° N) and N_m at Kodaikanal (77.5° E, 10.0° N) for the period October 20 to November 5, 1975 for which simultaneous observations were available are shown in Fig. 1. The data have been plotted at an interval of 15 min, for a good time resolution. The error bars of some representative points are also indicated in the diagram. As expected, N_m shows very distinct bite-out at noon with maximum of magnitude 10.2×10^{11} el m⁻⁸ at 0915

^{*} At present: NRC/NAS Senior Resident Research Associate, Air Force Geophysics Laboratory, Hanscom AFB, Bedford, MA 01731, USA.

LT (75° EMT) in the morning and the other maximum of $11\cdot3 \times 10^{11}$ el m⁻³ at 1630 LT in the afternoon. The minimum value of N_m is $7\cdot2 \times 10^{11}$ el m⁻³ at 1145 LT. The standard error of these points is about $0\cdot5 \times 10^{11}$ el m⁻³ and therefore midday minimum is statistically highly significant. The curve for N_p does show a decrease in the rate of increase but no minimum around midday hours is noticed.

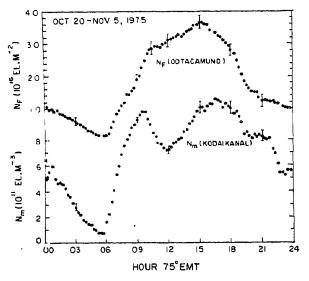


FIG. 1. Mean daily variations of the Faraday content N_{p} at Ootacamund and of peak F_{2} region electron density N_{m} at Kodaikanal, for the period October 20-November 5, 1975.

The mean daily variation of $N_{\rm p}$ and the rate of change of $N_{\rm p}$ at Ootacamund has been compared with that at Ahmedabad in Fig. 2. Some of the important features to be noted are as follows :

(1) During night time (1900-0600 h LT) the N_{μ} values for Ootacamund are higher than the corresponding values for Ahmedabad.

(2) Even during prenoon hours (0600-1200 h LT), the Ootacamund values are higher than the values at Ahmedabad which indicate that the crest has not yet reached the latitude of Ahmedabad.

(3) During afternoon hours (1400-1600 h LT) the N_1 values at Ahmedabad are higher than the Ootacamund N_p values showing the presence of well-developed equatorial anomaly.

(4) The mean daily variation of $N_{\rm p}$ at Ahmedabad shows a sharp peak around 1500 h LT whereas for .Ootacamund, one notices a flat maximum during noon hours.

(5) One clearly notices a sharp decrease in the rate of increase of N_p at Ootacamund, around 1000 h LT, which is thought to be a manifestation of the Fountain effect which is responsible for the noon bite-out.

(6) Around sunset, one observes an enhanced rate of decrease of $N_{\rm p}$, the peak rate of decrease being sharper for Ootacamund.

(7) During the post-midnight hours, N_{p} at Ootacamund decreases by a factor of 5 whereas at Ahmedabad, N_{p} remains more or less constant at a low value.

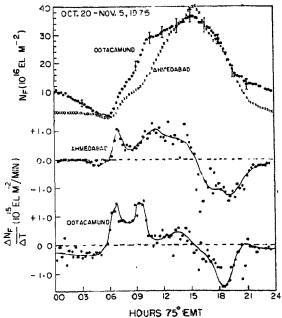


FIG. 2. Mean daily variations of N_s at Ootacamund compared with N_p at Ahmedabad. The lower part of the diagram gives the rate of change of N_p at two stations.

DISCUSSIONS

The increase of N_p during daytime at Ahmedabad shows the dumping of the ionization due to Fountain effect, but corresponding to it, the decrease in N_p at the equatorial station Ootacamund, is not that marked. It is to be noted that the Fountain effect is most effective between the altitudes 400 and 600 km²¹, whereas N_p contains the electron content upto an altitude of approximately 1500-2000 km^{20,22}. Also it is found that the equatorial F-regtion becomes thick during noon time²⁰. In view of the above two factors, it is suggested that the effect of the noon bite-out, which is present very prominently in f_0F_2 , gets diluted in N_p . The conclusions of the present study are based on the observations of the period October-November, 1975.

ACKNOWLEDGEMENTS

The ATS-6 Ootacamund project was a joint undertaking of PRL, Ahmedabad and NOAA, Boulder USA. Thanks are due to Professors K. Davies and G. Swarup for collaboration and facilities respectively.

Current Science Thanks are also due to Dr. M. R. Deshpande for discussions. The computational help by Mr. K. C. Patel and Miss Chhaya Shah is also thankfully acknowledged.

- Berkner, L. V. and Wells, H. W., Terr. Magn. Atmos. Electr., 1934, 39, 215.
- 2. Maeda, H., Rep. Ionos. Res. Japan, 1955, 9, 59.
- 3. Appleton, E. V., Nature, 1946, 157, 691.
- 4. Martyn, D. F., Proc. R. Soc., 1947, A1E9, 241.
- 5. Rastogi, R. G., J. Geophys. Res., 1959, 64, 727.
- 6. Duncan, R. A., J. Atmos. Terr. Phys., 1960, 18, 89.
- Moffett, R. J. and Hanson, W. B., Nature, 1965, 206, 705.
- Bramley, E. N. and Peart, M., J. Atmos. Terr. Phys., 1965, 27, 1201.
- Rastogi, R. G. and Sharma, R. P., Planet. Space Sci., 1971, 19, 1505.
- 10. Blumle, L. J., J. Geophys. Res., 1962, 67, 4601.
- 11. Bandyopadhyay, P., Planet. Space Sci., 1970, 18, 129.
- 12. Olatunji, E. O., J. Atmos. Terr. Phys., 1967, 29, 277.
- Rastogi, R. G., Sharma, R. P. and Shodhan, V., Planet. Space Sci., 1973, 21, 713.
- --, Iyer, K. N. and Bhattacharyya, J. C., Curr. Sci., 1975, 44 (15), 531.

- Rufenach, C. L., Nimit, V. T. and Leo, R. L., J. Geophys. Res., 1968, 73, 2459.
- Deshpande, M. R., Rastogi, R. G., Vats, H. O., Klobuchar, J. A., Sethia, G., Jain, A. R., Subbarao, B. S., Patwari, V. M., Janve, A. V., Rai, R. K., Singh, M., Gurm, H. S. and Murthy, B. S., Nature, 1977, 267, 599.
- Singh, M., Gurm, H. S., Deshpande, M. R., Rastogi, R. G., Sethia, G., Jain, A. R., Janve, A. V., Rai, R. K., Patwari, V. M. and Subbarao, B. S., Proc. Ind. Acad. Sci., 1978, \$7A, 47.
- Sethia, G., Chandra, H., Deshpndae, M. R. and Rastogi, R. G., *Indian J. Rad. and Space*, *Phys.*, 1978, 7, 149.
- Jain, A. R., Deshpande, M. R., Sethia, G., Rastogi, R. G., Singh, M., Gurm, H. S., Janve, A. V. and Rai, R. K., *Ibid.*, 1978, 7, 111.
- Davies, K., Donnelly, R. F., Grubb, R. N., Rama Rao, P. V. S., Rastogi, R. G., Deshpande, M. R., Chandra, H., Vats, H. O. and Sethia, G., Radio Science, 1979, 14, 85.
- Hanson, W. B. and Moffett, R. J., J. Geophys. Res., 1966, 71, 5559.
- 22. Titheridge, J. E., *Planet. Space Sci.*, 1972, 20, 353.
- 23. Huang Chun-ming, Radio Science, 1974, 9, 519.