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Abstract. We use the Vlasov equations for ions and electrons to develop a theory of a double
layer in which there are both free and trapped electrons and ions. We find the equations which
replace the Langmuir condition and the Bohm conditions and by numerically solving the resultant
differential equation we find for particular choices of distribution functions the potential distribu-
tion in the layer. We discuss the applicability of this theory to solar flares, and show that condi-
tions in solar flares may be such that double layers can exist for which the free particles have a
power-law energy distribution. These particles will be accelerated in a double layer and may in
this way account for the production of high-energy particles during the impulsive phase of solar
flares.

1. Introduction

Let us briefly summarize the main relevant data about solar flares. Many flares
exhibit a period of rapid acceleration in which very energetic particles are produced
(de Jager, 1969). The first phase of this process, the so-called impulsive phase, is
characterized by the acceleration of electrons to energies which are typically of the
order of 20 to 100 keV during a period of 1 to 2 minutes. With the possible exception
of the electrons responsible for type 111 bursts — which may or may not be generically
related to flares, as they are not always seen (Svestka, 1975) — these electrons are
hardly detected in space during this stage so that they remain presumably confined
to their respective loops. Their presence is inferred from the impulsive radiation
consisting of hard X-rays, during flares. In small flares the energy in the accelerated
electrons can constitute a major fraction of the flare energy (Lin and Hudson, 1971)
so that an efficient acceleration mechanism is required. Although we have no direct
observational data about the fate of the protons during this phase, it seems reasonable
to assume that they will also be accelerated.

The second phase occurs only in large flares and gives rise to relativistic electrons
and to protons with energies in excess of 10 MeV. Many of these particles are ejected
into interplanetary space and have been detected.

It is not known whether the two phases are part of a single mechanism, but we
shall concern ourselves here only with the first phase. In fact, the difficulty with
flare theory has been to find a mechanism for the initial acceleration — which we
shall discuss here — while for the subsequent acceleration several mechanisms have
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been proposed. Our suggestion is that the initial acceleration takes place in a double
layer of the kind originally suggested by Alfvén and Carlquist (1967); cf. also
Carlquist (1969, 1972).

From the observations, especially of hard X-rays, one can infer the electron spec-
trum, provided one can estimate the effect of/various processes occurring during the
propagation of the electrons from the flare region to the region where the X-rays
are produced. If one uses the radio-emission data, one must correct for (unknown)
magnetic field inhomogeneities and anisotropy in pitch-angle distributions, so that
we shall for the purposes of the present paper use the X-ray data. These indicate the
existence of two compenents (Kane and Anderson, 1970) — a soft gradual part with
energies of 1 to 10 keV which can be fitted to a thermal spectrum (Kahler ef al,
1970) and a hard, impulsive, non-thermal part with energies from 20 keV upwards.
The spectral intensity J(e) of the hard X-rays is well described by a power-law
expression

J(e) oc e ?, (1.1)

where the photon energy e lies in the range 20 to 100 keV and where the spectral
index y lies typically in the range 3.5 to 5.5 (Datlowe, 1975).

If one accepts that the X-rays are produced by bremsstrahlung (Korchak, 1971),
one can use the technique developed by Brown (1971; see also Lin, 1975) to deter-
mine the energy distribution function n(E) of the electrons producing the X-rays.
If J(e) is given by (1.1) we have

WE) = AE-7; 8 =y — 1. (1.2)

If, as is possible, the regions where the X-rays are produced are different from those
where the high-energy particles originate, one must still relate n(E) to the distribution
function f(E) of the electrons emerging from the acceleration region. This can be
done by solving an equation of continuity in energy space (Lin, 1975; Brown and
Melrose, 1976; Hasan, 1977). In the case of a stationary and homogeneous situation
one finally ends up with

f(E) < E7°, (1.3)

where the value of 6 depends on whether one is dealing with a thick target, when
8 = y + 1, or with a thin target, when 8 = y — 1. In order to produce the observed
X-ray spectrum, one needs therefore a high-energy particle distribution with ¢ lying
between 2.5 and 6.5.

We have already noted that it is difficult to say much about the proton spectrum
in the impulsive phase; in the second phase, the proton spectrum can often be ap-
proximated by a power-law expression with index ~3 (Verzariu and Krimigis,
1972; Ramaty and Lingenfelter, 1975).

If we concentrate on the impulsive phase of solar flares, there are two important
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problems to be solved: (i) how are the electrons (and protons) accelerated, and (ii)
how are the power-law distributions produced ? In the present paper we shall postu-
late that there are power-law distributions and concentrate on the first problem. We
shall indicate that conditions in an active region (electron density N, ~ 10** cm ™2,
temperature 7, ~ 10° K) may be such that a double layer may be set up. In such a
double layer particles can be accelerated to sufficiently high energies. In the next
section we discuss the basic features of the Alfvén—Carlquist double-layer model.
In Section 3 we develop the basic theory for the case where the free particles have a
delta-function distribution. This simple choice enables us to study the behaviour of
the double-layer model in some detail. However, this model may be too simplified
and we discuss therefore in Section 4, in less detail, a model in which the free par-
ticles have a power-law distribution. We find that under solar conditions a double
layer can, indeed, be produced. In Section 5 we discuss our results with special
reference to the solar situation.

2. The Double-Layer Model

In 1967, Alfvén and Carlquist (1967; see also Carlquist, 1969, 1972) suggested that
as a consequence of an MHD instability a double layer might be formed in a flare
loop. They invoked an analogy with a low-pressure discharge tube. The flare energy
is released in this model through the interruption of the current. According to Carl-
quist (1969), voltage drops up to 10*° V in large flares can be generated which will
accelerate electrons and protons. Smith and Priest (1972) criticized this model,
pointing out that the instability proposed by Alfvén and Carlquist has the same
threshold as the Buneman instability (1959) and as that instability has been observed
to occur, while the Alfvén—Carlquist instability has not been observed, they sug-
gested that the Buneman instability is the one more likely to develop. From the
experimental data of Hamberger and Friedman (1968) it appears to follow that the
Buneman instability will lead to turbulence and hence to an anomalous resistivity
which will inhibit the fast interruption of the current needed for a successful theory
of particle acceleration. On the other hand, computer experiments (Berk and Roberts,
1967; Goertz and Joyce, 1975) seem to indicate that double layers of the form involved
in the Alfvén—Carlquist model will, in fact, be produced and there seems to be some
experimental support for this (Babi¢ and Torvén, 1972; Quon and Wong, 1976).
We therefore feel that there are sufficient reasons to present a qualitative analysis
of double layers which might be relevant to solar flare conditions. We give here such
an analysis, and apply it to the solar flare problem.

In 1972, Block (1972) extended Langmuir’s double-layer theory (1929) to iono-
spheric conditions. The model we shall describe here has many features in common
with Block’s model, but differs from it in that we shall use a kinetic approach rather
than the two-fluid MHD approach used by Block. We treat the double layer as an
essentially one-dimensional structure — a space-charge region separating two plasmas
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in possibly widely differing physical states. We shall only consider a stationary double
layer with a current flowing along a magnetic field, assumed to be in the positive
x-direction. The double layer is assumed to extend from x = —o0 to x = +o0,
and there are no restrictions in the transverse direction, but all variables are assumed
to be functions of x only. The electric potential ®(x) is assumed to decrease mono-
tonically from a value ¥ at x = —oo to a value 0 at x = +oo0, with vanishing
gradients — that is, vanishing electric fields — at infinity. The effective variation of the
potential occurs over a comparatively short distance, of the order of a few Debye
lengths which, for the lower corona (n ~ 10" cm ™2, T ~ 106 K), is of the order of
a few centimetres (cf. Kaplan and Tsytovich, 1972, p. 102). The thickness of the
double layer is much less than the mean free path for Coulomb collisions which,
for the lower corona, is of the order of 1000 km. In an active region with n ~ 101!
cm~® and T ~ 10° K, the Debye length is ~1072 cm and the Coulomb mean free
path ~ 10 cm. Electrons (from x = +00) and ions (from x = —o0) are accelerated
into the layer and produce a current (which in our stationary model is constant).
There are also ‘thermal’ particles present in the layer which are reflected somewhere
in the layer by the potential. They contribute to the space charge within the layer.
We shall assume that we are dealing with a strong layer, that is, e¥'/T > 1, where T
is the plasma temperature in energy units, so that the number of thermal particles
which will be able to cross the double layer is negligibly small. In the layer quasi-
neutrality is violated, although the total net space charge integrated over the double
layer is very small. Figure 1 sketches the behaviour of the potential in our model.
We denote by subscripts O and 1 quantities at x = —oo and x = + o0, respectively.
Our model resembles a laminar electrostatic shock with a net current. Montgomery
and Joyce (1968) were the first to apply the Vlasov equation to this problem; they
showed that shock-like solutions were possible. Their work was generalized and
extended by Smith (1970a, b) and Schamel (1971) who tried to find a physically
justified distribution of reflected electrons which could support an electrostatic shock
without current. The problem we shall be concerned with is the slightly different one

}cb(x)

<

A —

Transition Distance () X

[

Fig. 1. Sketch of the potential distribution in our double-layer model.
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of determining the shock structure explicitly for given distributions of the free and
trapped particles for the case of a strong, current-carrying shock. Schamel (1972)
studied the associated problem of the existence of stationary ion-acoustic solitary
wave solutions, but for a weak shock without a current. Our treatment is based on
the technique developed by Bernstein et al. (1957).

3. Basic Theory

The basic equations for our stationary model are the time-independent collisionless
Boltzmann equations (Vlasov equations) for the electrons and ions,

U_‘Z ————— 0, g = e, i, (3‘1)

where e,, m_ and f,(x, v) are, respectively, the charge, mass and distribution function
of the oth kind of particle; the Poisson equation,

§=4wef(fe—fi)dv; ' (.2)

and the expression for the total current density J,

J=ef(fi—-fe)vdv. (3.3)

One sees immediately that the energy W, = im_v® + ¢,® is a constant of motion
of Equation (3.1) so that any distribution function £ (W) will be a solution of Equa-
tion (3.1). Of course, these distribution functions must still satisfy Equation (3.2).
For each species of particle there are some free particles — that is, particles which
can move between x = —o0 and x = +00 — and some reflected or ‘trapped’ par-
ticles. Whether a particle is free or trapped depends on the magnitude of W . Elec-
trons are trapped (free), if W, < 0 (W, > 0), and ions are trapped (free), if W, < ¥
(W; > e¥).

As mentioned earlier, we shall stipulate the distribution functions and then in-
vestigate the consequences. In order to keep the calculations manageable we assume
in the present section the free particles to be mono-energetic and uni-directional and
the trapped particles to have a ‘water-bag’ distribution. We thus stipulate the
following distributions:

free electrons:

1/2 1/2
Jer = Nea 8([02 — 2:?] + Vl) > v < — (2@) ; (3.4a)

e me

1/2
_o, oo - (20)7

- (3.4b)
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free ions:
2e 1/2 2e(F — D)\1/2
(3.4¢)
o ST
m;
(3.4d)

trapped electrons:

B (O — ¥,) 2e(d — ¥y) |12 2e(D — ¥)|ve
f‘Et = Net [26’(\}? — ‘Fl)/me]l/z - [————me < v < T ;
(3.4e)
=0, otherwise ; (3.4f)
trapped ions:
(¥, — @) 2e(V, — D)2 2e(¥, — D)|r2

= 1N, 22— ) B i Nl T 4 i Sl B2

ﬁt - ZNlt [281{,1‘2/mi]1/2 [ m; <v< m; )
(3.4g)
=0, otherwise. (3.4h)

In Equations (3.4), ¥'; > 0and ¥ > ¥, > 0; ¥, and ¥, can be associated with
the temperature of the trapped particles; N,;, N.o, N, and N;; are, respectively, the

free electron density at x = 4o, the free ion density at x = —oo, the trapped
electron density at x = —oo and the trapped ion density at x = +o0; 6(x) is the
Heaviside function,

0x)y=1, x> 0; 0(x) =0, x<0; (3.5)

and U, and — V; are, respectively, the velocities of the free ions and the free electrons
at x = —oo and x = +4o0.

Integration of the distribution functions over velocity leads to the following
expressions for the number densities:

—-1/2 —
ny(®) = NelVl[Vf + 26@] et[q’ At}

m]”ze(@ %),  (3.6a)

€ -

2 — ®Y]-1/2 W, e
n(®) = NloUo[Ug + L)] + Nﬂ[ i ] 0¥, — D).
i 2

(3.6b)

The trapped particle densities N,; and N, can be expressed in terms of the free particle
densities N, and N;, by using the condition of charge neutrality at x = + o0, as

26111'] -1z

N = Ny — NelVl[V% + 5 (3.72)

e
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Y] ~1/2
Ny = Ney — NiOUO[Ug + g;_]

1

(3.7b)

If we define the temperature (in energy units) 7, of the trapped particles as the
average of m,vZ (o = e, i) we find that

T, = %e[%lf]”ze(@ _ vy, (3.82)
T, = %e[%;w}me(‘yz — o). (3.8b)

Equation (3.8) can be used to express ¥'; and ¥, in terms of 7, and T..
We note for future reference that Equations (3.3) and (3.4) lead to

J = e(NioUo + NelVl)- (3.9)

We now introduce an auxiliary function V(®) through the equation (cf. Bernstein
et al., 1957)

dv

% = 4me(n; — n,). (3.10)

Using Equations (6) for n; and n, and Equations (8) to eliminate ¥, and ¥,, by
integrating Equation (10) we get

2ed

€

Ze‘P') 1/2

i

[V (0) — V()] = meNelvl[(Vf ; ) - Vl] - NuT, —

1
4

— m;N;, Uo{(Ug =+

, 2 12
(v o - o))
— Nu(Tiy — To), (3.11)

where T}, is the value of T; at x = +0.

This equation expresses the fact that at any point in the layer the electrical stress
is balanced by the net mechanical stress.

If we substitute Equation (3.10) into the Poisson Equation (3.2), we get

dzo dv

= 1) (3.12)
or, integrating,

1 (dD\2

3 (a}) + V(D) = V(0), (3.13)
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where we have used the fact that at x = +o00, d®/dx = 0. As d®/dx also vanishes
at x = —oo, we have

V) = V), (3.14)
and, hence, from Equation (3.11) on putting ® = ¥,
2eV

e

1/2
’ne]velVl[(Vl2 + ) - Vl} + NetTeO =

1/2
— ot (U8 + 2T

i

- Uo] + NyTa, (3.15)

where T, is the value of 7, at x = — 0.

We can use Equations (3.15), (3.7) and (3.9) to express the electron and ion cur-
rents in terms of J, N,,, T;1, N;;, and T,, and thus to obtain a generalization of the
Langmuir condition (1929). The result is, for the case where the initial velocities of
the particles are small compared to their final values — that is, m, V7 « ¢¥ and
mU% « e¥,

T;
J(l - zzii—y) + 211;- (Nel’rll - NiOTeO)

Je = eNelVl == T T > (316&)
il L e0
L+ Vi = 559~ Visp
T.o e
Vi J( 3 ‘F) + N/W— (NigTeo — NeiTi)
Ji = eNiQUO — > (316b)

1+\/;—2TF Vi g

where p = m,/m;. In the limit as 7;;/2¢¥ — 0 and T,,/2¢¥ — 0, we get J, — J,
J; =V uJ. The ratio J,/J, is given by the equation

T 26“}/. 172 T'il TeO)
v (1= gg) = e ) (Mo g = Mo

J. ol To 20T\ 172 T T.o
J( zw) + "(‘n?) (N“EeTf - NW)

Equation (3.17) is the modified Langmuir condition. We note that in the limit as

la~

(3.17)

Ti, T.o < 2e¥ we regain the Langmuir ratio 4/, but that for finite values of 7;,/2¢¥
and T,,/2e¥ this ratio is modified by the expression in the square brackets.

In order that the solution we have found can survive, it must satisfy certain condi-
tions which are similar to those derived by Bohm (1949) for wall sheaths. Consider
thereto Equation (3.13). Because of charge neutrality at x = +oo0, where ® = 0,
it follows from Equation (3.12) that (dV/d®)¢-, = 0, and expanding V' (®) — ¥V (0)
in a Taylor series, we get

1 /dd\2 dzv
z(a) ‘(WLO’ (3.18)
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and as the left-hand side is positive definite, we find from Equations (3.18) and (3.10)
the condition

dn, dn,
[d_q) _ d<1>L=o >0, (3.19a)

and similarly

dn, dn
[d—@ — d_fb]@:w > 0. (3.19b)

From Equations (3.19), (3.6), (3.7) and (3.8) we get rather complicated inequalities
involving Ny, N,1, Uy, V1, Ti;, Too and . In the limit of a strong layer (e¥" > m;UZ,
m,V?) these inequalities reduce to

m,V% > 3T, (3.202)
and

mU2 > 3T,. (3.20b)

These conditions are analogous to the necessary conditions derived by Bohm
(1949). They differ from the Bohm conditions in an extra factor 3 on the right-hand
sides, which is a consequence of our choice of water-bag distributions and our
definition of T,, and T;;. Physically, the Bohm conditions fix the minimum current
required in the layer to produce the necessary space charge for maintaining the
double layer; that is, to counteract the neutralization near the boundaries by the
trapped particles. Hasan (1977) has discussed the self-consistency conditions in
more detail. Finite temperatures of the free particles will lower the minimum values
of V; and U, below those given by Equations (3.20).

TABLE 1

Variation of J, and J; with ¥" and T,/T;
(The currents are in units eN;V T./m;, and ¥ in units T,/e)

b4 T./T, I J; Vi delJ:
20 1.0 92.12 2.15 1.0
20 1.4 92.06 2.21 0.97
40 1.0 92.12 2.15 1.0
40 1.4 92.08 2.19 0.98
60 1.0 92.12 2.15 1.0
60 1.4 92.09 2.18 0.99
80 1.0 92.12 2.15 1.0
- 80 1.4 92.09 2.18 0.99
100 1.0 92.12 2.15 1.0
100 1.4 92.10 2.17 1.0
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TABLE II

Variation of J, and J; with N, and T,/T;
(Units as in Table I; the density is in units N;)

N. T.|T; Je J; Vo T,
1.2 1.0 92.1 2.17 0.99

1.2 1.4 92.04 2.22 0.96

1.0 1.0 92.12 2.15 1.00

1.0 1.4 92.10 2.17 0.99

0.8 1.0 92.2 2.08 1.04

0.8 1.4 92.17 2.10 1.03

0.6 1.0 92.31 1.95 1.1

0.6 1.4 92.30 1.97 1.10

Integrating Equation (3.13) we obtain the potential distribution in the layer

1 f ¥ do

V2Je VV(0) = V(@)
where V(0) — V(®) is given by Equation (3.11). This equation was solved
numerically; we discuss the results of that calculation in the next section.

In the numerical calculations, we first solved Equations (3.15) and (3.9) for V
and U (we drop the indices 0 and 1 in what follows) for given values of N,, T,/T;
and ¥ and checked that Equations (3.20) were satisfied. In order to avoid slow con-
vergence at ® = 0 and ® = ¥, we defined the layer thickness as the distance over
which ® varied from 0.17,/e to ¥ — 0.17,/e. In the calculations we used dimension-
less variables. The units of velocity, potential, number density, current and distance
used were, respectively, VT, |m, T.le, N;, J, = eNi\/m and A, = VT,/4nxN,e?.
With 7, ~ 10° K, m; = 1.6 x 1072* gand N, ~ 10! cm 2 we have for these units,
respectively, 30 kms~*, 0.03esu. =107V, 1012cm 3, 2 x 10e.s.u. = 4 x 10*?

A/m2 and 10-2cm. Table I gives the variation of J,, J; and vV J,/J; with ¥ and
T,/T; for J = 94.3, n, = 1.0.

X — Xy = (3.21)

TABLE III

Variation of the Bohm currents with ¥ and 7,/T
(Units as in Table I)

!P- Te/ﬂ -IBe JBi T Te/:rl JBe JBi
20 1.0 91.6 2.10 100 1.0 80.6 1.88
20 1.4 77.6 2.10 100 1.4 68.2 1.88
40 1.0 85.3 1.98 200 1.0 78.6 1.83
40 1.4 72.1 1.98 200 1.4 66.4 1.83
60 1.0 82.8 1.93 400 1.0 77.2 1.80
60 1.4 70.1 1.93 400 1.4 65.3 1.80
80 1.0 81.5 1.90

80 1.4 68.9 1.90
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TABLE IV
Variation of the Bohm currents with N, and T./T;
(Units as in Table I)

Ne Te/T'i JBe JBl Ne Te/Ti JBe JB{

1.2 1.0 95.5 1.88 0.8 1.0 65.74 1.88
1.2 1.4 80.73 1.88 0.8 14 55.59 1.88
1.0 1.0 80.6 1.88 0.6 1.0 50.8 1.88
1.0 1.4 68.2 1.88 0.6 1.4 43.0 1.88

We see that J, and J; are almost independent of ¥, but that J; increases and J,
decreases with increasing 7,/7;. This behaviour can be understood from Equatibn
(3.15): for large ¥ the pressure balance is dominated by the dynamic particle pres-
sure, acquired as a result of acceleration through the layer. An increase in ¥ thus

leads to an increase in the electron pressure, proportional to V¥, but, for large
enough W, this is compensated by an increase in the ion pressure which is also pro-

portional to v/¥. The decrease of J, with increasing 7,/T; is also easily understood

J=94.3
10k Nev 2.9 1
N|0
TeO = 10
4

0-8&; 1
\

0.6(
=4
z . 1
S /
i e
5 0.4 *\e /
N \
hud
3 [ ] s
(2]
@®
; .><o\ J
/./ .\.
0.2l-*—* .
L ] ) 1 1
0 10 20 30 40 50(1)

Measured in units of T,o/
( 3

Fig. 2. Electron and ion densities as functions of the potential ®.
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Fig. 3a. Potential distribution in the layer: N./N, = 0.9, T,/T;: = 1.0, J = 94.3 and 102.8
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Fig. 3b. Potential distribution in the layer: N./N; = 0.9, T./T; = 1.0, J = 94.3, ¥ = 100.
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as being due to an increase in thermal pressure at the boundary. Finally, we note
that the behaviour of v/u J,/J; is in accordance with Equation (3.17).

Table II gives the variation of J,, J; and vV J,/J; with N, and T,/T; for J = 94.3,
¥ = 100. The variation of J, with N, can be explained by noting that the dynamic
electron pressure varies as J,[(J./N.)? + Q¥ /u)]*'? near ® = ¥. A decrease in N,
leads to a small increase in J, to keep the pressure constant.

We note that for large ¥, J, and J; are only very weakly dependent on ¥, 7,/T;

and N, and also that Vi J,/J; is almost equal to unity.

Tables 1II and IV show the variations of the Bohm currents Jg, (= N, Vs, =
N V3T/m,) and Jg; (= Ug; = N;V3T,/m;) with ¥ and T,/T; (Table III) or N, and
T./T; (Table IV). We note that both Jg, and Jg; decrease with increasing ¥, asymp-
totically reaching the values Jg, = (3uT,./T,)}?N, and Jg; =4/3. This behaviour
arises because of a decreasing contribution from accelerated particles from the
opposite boundary to the space charge (cf. variation of n, and »; as functions of @
in Figure 2). Table IV shows that V3, and Upg; depend very weakly on N, — which
follows for the same reasons.

In Figures 2, 3 and 4 we plot the various aspects of the potential distribution in
the layer. From Figures 3a and 3b we note that our potential distribution is more
gradual than the one which follows from Langmuir’s formula (Langmuir, 1929).
The difference arises from the inclusion of trapped particles which partially neutralize
the space charge in the layer. We note also that, in fact, the effective variation of the
potential is when ® changes from ¥ —0.1 to 0.1. In Figures 4a and 4b we show the
variation of ¥ with the transition distance L.

(b Current = 94.3
Ney _
600}- Ko =
T, =1
o\o %51 o/ o/
g
kS
n 400+ ]  J
‘€ / /
2
c Y )
©
s
> ‘& /
?‘? 2001 ((\\) L] (]
» )
[ [ ]
./ ./
/1 | ] ]

0 20 40 60 80 00 |
Measured in units of AD

Fig. 4a. Variation of maximum potential drop V" with transition distance L: ¥ up to about 500.
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Fig. 4b. Variation of maximum potential drop ¥ with transition distance L: very large V.

An interesting aspect of the theory is the existence of fairly stringent conditions
for the existence of double-layer solutions. In Table V we show the variation of J,
and J; with J and we compare them with the Bohm currents. We note that, in the
case where ¥ = 100, N, = 0.8, T,/T; = 1.4, for J < 80 no double-layer solution
exists, as J; < Jg;.

TABLE V

Ion and electron currents as functions of the total current
(Units as in Table 1)

J J. Ji Vel Jse Jai

94.3 92.2 2.1 1.03 55.6 1.88
85.7 83.8 1.92 1.02 55.0 1.86
77.1 75.4 1.73 1.01 54.6 1.85
68.6 67.0 1.55 1.01 54.0 1.84
51.4 50.2 1.18 0.99 53.0 1.80
42.8 41.9 0.99 0.98 52.6 1.79
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4. Results for Power-Law Distributions of Free Particles

So far we have used delta-function distributions for the free electrons and ions.
However, as we saw in Section 1, from the observational data one can infer power-
law distributions. It is, therefore, of interest to look at the consequences of such
distributions. As the calculations are much more complicated and not qualitatively
different, we have not considered this case in as much detail as the delta-function
case.

The analysis proceeds as in the preceding section, but for a few changes. Equations
(3.4a) and (3.4c) are replaced by

free electrons:

—0e 1/2
fe = A(U2 — 2€(D) > v< — [é— (e® + Bl)] > (4.1a)
where B, is the low-energy cut-off at x = +c0; and
free ions:
— —%e — 1/2
£ = C(Uz _ 2_3(‘1’_‘2)) . b [M 4 Dl] ., (41b)
m; m;
where D, is the low-energy cut-off at x = —o0. 4 and C are normalization constants.

In the first instance, we shall choose 3, = §; = 8 = 2; we have also performed the
analysis for 6 = 3. We note that B; and D, are related to V; and U, through the

equations
_ 3 (2B,\v2 3 (2D,\v2
Vl - 2 (mz) 2 Uo — (—_) N (4.2)

s —
F

N\
N\

[ Breegls [z o050 [2e(g-y) Y

e
Fig. 5. Electron distribution function at x = —co. The free electrons have a power-law
distribution.
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The electron and proton distribution functions at x = —oo are shown in Figure 5.
Equations (3.6) are now replaced by

+ DY
n(®) = iNely”z[(y + DY —4yln El#_—] +
d — ¥, |2
+ Net[ﬂ“x?j 6O — ¥,), (4.3a)
z+ D2+ 1
ny(P) = %Niozuz[(z + )2 — JzIn z+ D72 —1
(D 1/2
+ Nlt[ 7, ] (Y, — D), (4.3b)
where y = B;/e® and z = D,/e(¥ — ®). Similarly, Equations (3.7) are replaced by
A/ , T+ DY2 41
No= o= 3Ny |00+ 02 -y E L G
z' 4+ D2+
Nit - Nel - 2 i0 £ [(Z + )1/2 - “Z l %—_*_131/2—_:' 5 (4.4b)

where y' = B,/e¥ and z' = D,/e¥.
Proceeding as in Section 3, we find instead of Equations (3.11) and (3.15)

4%[1/(0) — V(D)) = B1Ne1 [5 12 |p (y+ D" +1 + (y + ])1/2_~2] _

(y + D — y
_3DiNo |y nay, (Z_t_L”H
e (" + D —
ENCESUES
(z + D" —
+ (Z/ _’,_ 1)1/2 B (Z + 1)1/2] +
z z
+ NI, — Ny(Tiy — T5), (4.5)
and
BiNei |4 jor. () + DY 41 y o+ 1\ B _
3= [ W1\ 2+ Moo =
3DyNig [, Z+ D41 (2 1)
_ 2 0 [_ 12 |p E - 1;”2 — + ( e ) — 2} + nu Ty

(4.6)

Finally, we must derive the Bohm conditions. Under the same conditions under
which Equations (3.20) hold, we now have

mVi > 4T, m;UG > 4T,,. 4.7

The analysis of the equations was again performed numerically, both for § = 2
and for 8 = 3, in which case Equations (4.2) to (4.7) are slightly changed, mainly
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TABLE VI
Ion and electron currents as function of the spectral index
(Units as in Table I)

é Je Ji \/l_l-Je/Jt JIre Iy

2 100.53 2.31 1.01 78.1 2.20
3 100.53. 2.31 1.01 71.2 2.02
oo (mono-energetic) 100.52 2.32 1.01 67.4 1.89

in the values of the numerical coefficients. The results are given in Table VI, which
replaces Table V, and in Figure 6.

We notice that J, and J; are very insensitive to the value of 8; this is due to the
fact that the main contribution to these currents comes from near the cut-off. How-
ever, Jg, and Jg; decrease appreciably with increasing &. This means that the harder
the spectrum, the more difficult it is to construct a double layer.

5. Discussion

Let us first say a few words about the stability of double layers — without attempting
a quantitative analysis. Although we have derived conditions for the existence of a
double layer, there is no guarantee that these conditions are also sufficient. In fact,
the delta-function distributions are likely to be unstable against plasma oscillations

A A J =102 -84
= N = 0.
105 %io 0.9

N

:@ \. \.

. F N, N\

= .\ \ <
Z .d:\\.\\-’
s

3

2 45f

8

=

:P \.
\'\,\,

\. \.
1 ] ] \l¥\.l -
0 10 20 30 10 50 Ax

Measured in units of AD

Fig. 6. Potential distribution in the layer for the case of power-law distributions. J = 102.84;
N¢/N; = 0.9; T,/T; = 1.2.
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and this would make the layer short-lived as the current would rapidly be dissipated
(Buneman, 1959). However, the distribution considered in Section 4 would be more
stable and our results seem to be relatively insensitive to the choice of distribution
functions so that there may well be distribution functions which would be stable,
something which seems also to be indicated by computer experiments (Berk and
Roberts, 1967; Goertz and Joyce, 1975).

If the double-layer theory discussed in this paper can be applied to describe a
double layer in a solar current loop — as we are doing here — we must consider whether
solar parameters can fit in with the picture presented. First of all, we note that the
current will be dissipated on a time-scale of the order of the release time for flares
(Alfvén and Carlquist, 1967; Carlquist, 1969) which for typical solar conditions is
of the order of 100 s. This means that the layer can be considered to be stationary
only for times less than this. Secondly, we note that for the existence of a double
layer it is necessary that the current density must be sufficiently high so that J, and
J; exceed the Bohm values. This corresponds to a critical current of the order of
80 to 100 in our units, or a few times about 10° stat amp cm~2 for typical solar
flare parameters. This is rather higher than the current densities observed by Moreton
and Severny (1968) and by Title and Andelin (1971); but perhaps the present observa-
tional limitations are such that larger current densities may exist on length scales of
the size of double layers.

If we look at the margins to be acquired by the electrons when they are accelerated
in the double layer, we see that the observed impulsive hard X-rays indicate electron
energies of up to 100 keV (Kane and Anderson, 1970). For T, ~ 10" K, a voltage
drop of about 1007,/e will, indeed, accelerate electrons up to such energies over a
distance of ~ 50X, which in solar conditions (N, ~ 10** cm~?) corresponds to about
10 cm. We see thus that the electrons can, indeed, acquire the necessary energies in
the model considered by us.

Finally, the fact noticed in Section 4, that the harder the spectrum the more difficult
it is to construct a double layer, is in agreement with the observational data about the
relative infrequency of very hard spectra and their occurrence mainly in strong flares
in which large current densities — possibly generated by sunspot motions — can exist
and support hard spectral distributions.

Altogether, we feel that the double-layer model of solar flares probably deserves
further study. Points to be studied are the initial development of power-law
distributions and a more detailed study of the relation between initial and observed
spectra indexes.
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