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Summary. The detailed nature of oscillatory motions in intense flux tubes is
examined. We consider states of constant £ (the ratio of gas to magnetic pressure)
and analyse the character of motions that can occur in such tubes. We include heat
exchange between the tube and the ambient medium using Newton’s law of
cooling. Adopting a linear analysis, we present results for both polytropic and real
atmospheres. In the latter case, we use a height dependent radiation exchange
time constant. For purposes of comparison with earlier studies, results for the
adiabatic case are also given. Growth rates, oscillation frequencies and
eigenvectors of the fundamental modes are calculated for different values of the
initial magnetic field strength, parametrized by £, and initial tube radius. The
latter quantity influences heat exchange, particularly in the optically thick layers.
It is found that for the solar stratification, oscillatory behaviour occurs for <.,
where 5. denotes some critical value, which depends upon the radius of the tube.
Moreover, in the solar case the oscillations are overstable with periods and
growth rates typically in the ranges 650—1500s and 625-11505s respectively. An
interesting feature of the solutions is the existence of a bifurcation at =4, from
overstability into two purely unstable modes. Results depicting the height
dependence of the eigenvectors (in general complex) and their phases are
presented as well. We also examine the sensitivity of the results on boundary
conditions. Lastly, some of the observational consequences of the study are
pointed out. ‘

1 Introduction

The existence of intense flux tubes with kG field strengths as a dominant feature of the solar
atmosphere has been reasonably well established by observations. Theoretically, there has been
some debate on the exact nature of the process that produces the kG field. Recently, much
interest has focused on the suggestion by Parker (1978) that the principal cause might be a
convective instability. This instability has been fairly extensively studied, both in the linear
regime (e.g. Webb & Roberts 1978; Spruit & Zweibel 1979) as well as in the non-linear regime
(e.g. Hasan 1984a, b; Nordlund 1983). In Hasan (1984a) the non-linear development of the
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instability for the solar stratification was examined assuming adiabatic conditions. It was found
that the end state that developed was one with stationary oscillations and in which the average
value of the magnetic field at the surface was in the kG range. This analysis was generalized in
Hasan (1984b) to incude radiative heat exchange between the flux tube and the surrounding
medium. Inclusion of heat exchange led to the generation of overstable oscillations (in time)
along the magnetic field. Their existence had been conjectured earlier on qualitative grounds by
Spruit (1979a).

The main aim of the present study is to examine in detail the nature of motions that can arise in
intense flux tubes. A similar problem was investigated in connection with sunspots by Syrovatskii
& Zhugzhda (1968), who showed that for a polytropic atmosphere, overstability could occur
under certain conditions.” For large values of the polytropic index, their instability criterion
turned out to be less severe than the usual Schwarzschild condition for convection in a field-free
medium. In the case of intense flux tubes, which can effectively be regarded as ‘thin’, the problem
in the adiabatic approximation, was investigated amongst others by Roberts & Webb (1978);
Webb & Roberts (1978) and Spruit & Zweibel (1979) (see also Spruit 1979a, 1982). The more
general case of heat exchange based on Newton’s law of cooling was incorporated subsequently
by Webb & Roberts (1980). Their analysis assumed an isothermal atmosphere and is, therefore,
of rather limited applicability (roughly on length scales which are smaller than the local pressure
scale height). We shall relax this constraint in favour of a realistic temperature stratification. We
shall also treat the polytropic case which is amenable to an analytic solution. For mathematical
reasons, we shall work within the framework of the thin flux tube approximation.

There are a variety of wave modes that can exist in thin flux tubes (Spruit 1982). We shall solely
concern ourselves with the axisymmetric mode (or ‘sausage mode’), which is a longitudinal
compressive mode. Physically, it can be regarded as a slow magneto-acoustic oscillation which
travels along field lines with a speed given by the expression

CsCa

“Tlaea
where ¢ and ¢, are the sound speed and Alfvén speed respectively in the medium. Owing to
radiative coupling between the flux tube and the external gas, these waves can either be damped
or become overstable depending upon thermodynamic conditions as we shall see later on. It is,
thus, of some interest to quantitatively examine for a sufficiently general range of parameters the
conditions under which we have overstability, instability and damped oscillations. We do this by
solving the generalized eigenvalue problem, thereby determining the eigenfrequencies (in
general complex) of the tube. We also calculate eigenvectors and phase relations between
different variables. The sensitivity of the results on boundary conditions is also considered.
The plan of the paper is as follows: in Section 2, we present the thin flux tube equations which
can be combined to yield a single second order differential equation for the velocity amplitude. Its
solutions for both polytropic and real stratifications are presented in Sections 3 and 4. In the
former case an analytic solution is possible whereas in the latter case a numerical solution is
attempted using model opacities. The results are described in Section 5 and discussed in Section 6.
Finally, some of their observational implications are pointed out in Section 7 followed by
concluding remarks.

2 Equations

We adopt the thin flux tube approximation, and consider the MHD equations for a vertical flux
tube to zeroth order in a cylindrical coordinate system (r, 6, z), assuming no ¢ dependence, i.e.
we restrict ourselves to the axisymmetric mode.

*This was also found by Roberts (1976) for a Boussinesq fluid.
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For the initial unperturbed state we assume hydrostatic equilibrium and equal temperatures in
the flux tube and the external medium at each height. Thus, in the initial state, we have

dpo
R 1
iz % (1)
T()= Te (2)
Bj
pt——=p. 3
87

where p, Ty and B, denote the pressure, temperature and magnetic field in the unperturbed state
and e denotes quantities in the external medium. Equation (3) expresses horizontal pressure
balance between the flux tube and its surroundings. Defining S=8xp,/B?, it is easy to see that
[ is constant with z (strictly speaking only approximately constant as gg=~gu., where u is the mean
molecular weight). The radius of the flux tube is found from the flux conservation condition

Bya3= constant. “4)

Let us now consider small perturbations about this initial state. The linearized MHD equations
for the perturbed quantities are (Roberts & Webb 1978):

B{ap 6( )} {aB dBO} 0 )
—_—t— V)¢ — —ty— = B
0 at 9z €0 €o ot dz
ov ap
- _ - 6
G0 — =708~ (6)
d d d d T .
_p_*_vﬂ:@(_p_*_vﬂ) +p0/¥ Qrad (7)
at dz oo \ 9t dz C,
ByB
pt+t—=0 (8)
4

where ¢ is the density, v the vertical velocity, T the temperature, Qrad is the amount of energy
per unit mass per unit time exchanged with the ambient medium due to radiative transport, C,
is the specific heat at constant volume, y and jy,, are defined as follows:

dlnp dlny
XT= =1- )
dlnT/, dlnT/,

<alnp> <alnﬂ)
Xo = =1- ’
dlng /1 dlng /1

where y=y,C,/C,. We neglect any time variations in quantities associated with the external
medium, i.e. p. is constant. Equation (6) is a generalized energy equation which includes
radiative exchange and also the effect of changes in ionization. We assume that radiative
exchange occurs through Newton’s law of cooling and set

. T.—T
Qradzcv< ) ’ (8)

125
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where the time constant 7, is, following Spiegel (1957), given by

v

T 16x0T>

7, {1—arcot (x00a0)} ", )

which in the optically thin (xgea0<1) and thick (#00ap>1) limits reduces to C,/ 16x%0T> and
3x0%a*C,/16x0T? respectively. (We have replaced the wave number in the original expres-
sion by ao, the radius of the flux tube.) In equation (9), » denotes the opacity and o is the
Stefan—Boltzmann constant.

Assuming that all perturbed quantities have a time dependence of the form exp (iwt), we
find from equations (5), (7) and (8)

6 1 6 B iQ yB Nj
Qo ——{o'+ (ﬂ——")a— ' —ﬂ—oa}, (10)
0o iws o0 By iQ+y 2 g
b y iQ+y, 5 B iQ N}
——=—_—.—9{0'+<—93—-—°)ﬁ+ —01‘}}, (11)
Do iws iQ+y oo By iQ+x, &
where Q=ywr,,
] 2
=, w=-Te-L
Qo Qo Co
and
iQ+
s=1+ﬁ—;{p.
2 iQ+y

The caps denote ampitudes of the perturbations and the primes denote derivatives with respect
to z. The quantities Ny and ¢, refer to the Brunt — Viiséla frequency and sound speed in the
unperturbed medium respectively.

Substituting equations (10) — (11) into equation (6), we obtain the following differential
equation

iQ+y Z' iQ
Y'+ (% : ——> Y+@-Z(a)2— N%) =0, (12)
g iIQty, Z iw iQ+,

where

7y

00 Bo

iw [y  iQ+
2= (2p, 2001
©OoCo \ 2 iQ+y,

Further simplification of equation (12) yields

2 A
<A°) D”+L(—0> ﬁ'+(MA° +N>1*J=O, (13)
A Al Ab

dv (gé Bb) iQ N3
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where

1 1 9 1
L=—| —+—Ag X~ Aoxo+(r,— 1} |,
A(’)[ 2 M e, {Aoxo + (1o )}]

., e 1 =20 \ @ n*iQ iQ xs
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N= [—;(14‘,6)4'

A i

_ w=(y/y")w'
w+yB/2
Ao=po/00g, n°=(y—1)/y+Aj and W=(iQ+7)/(iQ+y,).

As it stands, equation (13) is best solved numerically. Before attempting this, however, it is
instructive to simplify this equation so that an analytic solution is possible.

X

3 Polytropic atmosphere
Let us assume that the scale height in the equilibrium state varies linearly with height, so that
Ao(2)=Ao(0) +2As,

where Ay is a constant. Such a state corresponds to a polytrope with index 1/(Ag+1). We also
assume that y, 4 and 7, are constants. With these approximations the coefficients of & appearing in
equation (13) become constants, given by

1 1

AL Q41
w? -1\ ?
RPN NS
vgA§ 2 iQ+1 /ygA)

N——n—zl . i(l E) AP V_1)1
T 2AR ) (iQ+1) Aa2{ )7 °+< 2y Hﬁ)}'

Equation (13) is now identical to equation (10) of Webb & Roberts (1980) and admits the formal
solution

v=p'~"{AJ(p)+BY(p)} (14)

where p?=4MA,/A} and s?=(1—L)*—4N.
The quantities A and B are constants to be determined by the boundary conditions. We assume
a no-flow boundary condition, so that @ is zero at z=0 and z=2z;. Substituting these conditions
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in equation (14), the condition for the existence of a non-trivial solution yields

J{po(0)} Yi{p(21)} =Jo{p(21)} Ys{p(0)}=0. (15)

Equation(15) can now be used to determine the eigenfrequencies w (in general complex). We
consider first the adiabatic limit.

3.1 ADIABATIC CASE

Defining g=1/7,, the adiabatic limit corresponds to g=0. This limit has been examined by
Webb & Roberts (1978) and the interested reader can refer to this paper for more details. We
assume that s is real and for convenience consider only integral values n (this can be arranged by
choosing a suitable combination of A and y). Thus, a determination of w reduces to determining
the zeros of the function F,, given by

Fy=Jn{p(0)} Yo{dp(0)} =Ju{Ap(0)} Ya{p(0)},

where A=p(z,1)/p(0)=1+2z1A¢/Ay.

It is well known that F, has an infinity of zeros, all of which are positive and real (e.g.
Abramowitz & Stegun 1965). The eigenfrequencies *w, are therefore real and ordered as
follows

la)1|<|a)2|<<|wn]<

3.2 RADIATIVE EXCHANGE INCLUDED

We assume that 7, is large enough so that g can be treated as a first order quantity. Defining
w=w,+ iy, where a denotes the adiabatic limit, y is in general at least of order g. Let us expand
all quantities about the adiabatic state (g =0) and retain only terms to first order in g and y.
Thus, for example

T(o)~T(p) i{(x )y—l 1 al, q s? aJ“} 16)
=l(p)+ —\¥—Q)——————————— — >
P Pa w, 1 2 (yB/2+1) on  y n dp,
where
2
A
s={si+si=n+ —_q —1,
lyw, n
and
1 2 (y-1
s3=1+ _Afr (1+,8)+A6<1+—ﬂ—)+A62}.
28y AR 2y 2

Substituting equation (16) (and a similar one for Y;) into equation (15), we can determine y,
which is given by

_1{2;1_1_+5i1}
2702 gy n bl {an
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where

aJn(po) dYn(p1) dYa(po) aJn(p1)
a=— Ya(p)+ Ja(Po)— Jap1)— Ya(po),
b=po{J1(po) Yo(p1) — Ya(po) Ju(p1)} +P1{Y 2(P1) Ja(Po) =T u(P1) YulPo)}
pOEPa(O)
and
P1=pa(z1).

4 Real atmosphere

We consider first an equilibrium atmosphere based on the VAL/SP model (taken from Spruit
1977) for the temperature. Equations (1) -(3) (along with Saha’s equation to determine x) were
then used to determine the equilibrium quantities. The thermodynamic quantities like C, were
determined following Mihalas (1967) and the opacities were calculated by interpolating from a
table by Kurucz (1979). In Table 1 the z variation of some of the equilibrium quantities is
presented. It may be noted that 7, is depth dependent and that radiative exchange is most efficient
for z=—-100km.

Equation (13) was solved numerically by approximating the derivatives by finite differences. A
closed boundary condition (#=0) was applied at the lower boundary. However, for the upper
boundary both closed as well as open boundary conditions corresponding to =0 and ' =0 were
adopted. Inserting the boundary conditions in the difference equations led to a homogeneous
tridiagonal system of equations which constituted a generalized eigenvalue problem. The
eigenvalues were determined by finding the roots of a determinantal equation. Since we
anticipated complex roots, numerical algorithms for locating complex roots, for efficiently
evaluating determinants and finally for calculating eigenvectors were required. The choices of an
interval-bisection algorithm for real roots and Miiller’s method for complex roots proved
extremely satisfactory. Determinants were evaluated using Gaussian elimination with partial
pivoting and the eigenvectors were calculated using inverse iteration (Wilkinson & Reinsch
1971). Once # was determined, § and p were calculated using equations (10)—(11) and 7'was then
determined from the relation

T 1/p 0
_=_(_ 2 _), (17)
To  xt \Po Qo

A uniform grid with a spacing of 10 km was used in all computations. This was sufficiently fine
to resolve the steepest of gradients. In the majority of cases, the upper and lower boundaries were
placed at 500 and —2000 km, respectively, where the z=0 level was chosen to coincide with
Ts000=1 in the external medium.

5 Results
5.1 POLYTROPIC ATMOSPHERE

In Table 2 the real and imaginary parts of the eigenfrequencies w, , and ¥, n, where m denotes
the order of the zero of F, (m=1 corresponds to the fundamental mode) are presented for'
different n assuming y=1.2, #=1/y, g=10"3s"! and z;=—2000km. The quantity p, p in the
table satisfies F,(pn.m)=0. For purposes of comparison, we also present the eigenfrequencies
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Table 1. Equilibrium quantities at different heights in a solar flux tube for #=3, and ap=100km.

z(km) To(K) pPolgm cm~3) Bgy(G) ag(km) x(gm cm~2) 7,(s)

500 4.15.103 4.23.10°9 97 309 4.46.10-3 332
300 4.52.103 2.57.10"8 250 192 2.42.1072 47
100 5.29.103 1.28.10°7 603 122 1.26.1071 8

0 6.27.103 2.28.10°7 876 100 18 6
-100 8.69.103 2.89.10"7 1.17.103 89 88 149
-300 1.11.10%4 4.75.10°7 1.75.103 72 200 4.3.103
-500 1.25.10%4 7.63.10"7 2.42.103 61 515 1.9.104
-1000 1.50.104 2.08.1076 4.61.103 44 1.85.103 1.9.105

(denoted by bars), obtained using the boundary condition &’ =0 at the upper boundary. The
critical value of A} for the onset of instability based on Schwarzschild’s criterion is
Ab, eriv=—(y—=1)/y=—0.1667 for y=1.2. Thus, for n=1 the equilibrium would be unstable in the
absence of a magnetic field, whereas states with higher n would be stable. The fact that the
equilibrium for n=1 is stable (in the absence of heat exchange) is possible owing to the presence
of a sufficiently strong magnetic field. Radiative heat exchange, however, can destabilize the
equilibrium and lead to overstable behaviour. This, indeed, is the case for n=1 and 2 (for the
fundamental mode), since y is negative. For higher n, however, heat exchange leads to damped
oscillations. For small values of n (i.e. large A{), the growth rate y is higher owing to a steeper

Table 2. Real and complex frequencies @, n, and y, ,, respectively for various n and m, where m
denotes the order of the harmonic for fixed n, assuming y=1.2, #=1/y and g=10"3(s™*). The prime
quantities correspond to the boundary condition #;,,=0.
L
n Ag ™ Pn,m “n,m Xn,m “Wn,m Xn,m
(s™1) (s~1) (s (s™1)

1 3.81 1.13.10-2 -4.29.10°5 8.31.103 -1.44.10°%

1 -0.1798
2 7.55 2.23.1072 1.92.10°5 1.81.10"2 -4.35.10°6

1 4.23 1.16.10-2 -7.59.10-6 9.20.10"3 -5.51.10°5
2 -0.1667

2 8.11 2.22.10"2 2.77.10°5 2.85.10"2 3.27.10°5

1 4.84 1.20.10-2 3.23.10°5 9.80.10"3 2.46.10°5
3 -0.1510

2 8.91 2.21.10-2 3.88.10-5 2.82.10"2 3.97.10°5

1 5.57 1.24.10-2 6.84.10°5 1.06.10"2 8.33.10°5
4 -0.1360

2 9.8 2.20.10-2 5.05.10-5 2.80.10"2 4.73.10°5

1 6.37 1.29.1072 9.86.10°5 1.12.10"2 1.25.10%
s -0.1227

2 10.90 2.20.10"2 6.19.10°5 2.78.10°2 5.47.10°5
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temperature gradient, or a greater degree of superadiabaticity, which, of course, drives the
instability.

A comparison between the instability growth rates for the boundary conditions #=0and &' =0
at z=0shows that the growth rate is faster in the latter case. An interesting feature to note is that
for n=1, both the fundamental and first harmonic turn out to be unstable.

5.2 REAL ATMOSPHERE

We now describe the results for the case of the solar stratification using a realistic heat exchange
time constant z,. For reasons of computational economy, only eigenvalues and eigenvectors
corresponding to the fundamental mode were calculated. In order to check the numerical
procedure and also to find a satisfactory location for the lower boundary, the adiabatic case was
also treated. A comparison with the results of Spruit & Zweibel (1979), who treated this case
using the full depth of the convection zone and an upper boundary at z=500km, showed a
remarkable agreement (to within 10 per cent). However, we used a lower boundary at
z=-—2000 km which a posteriori justified this choice. Fig. 1 depicts the variation of 7=iw with 3,
for the adiabatic case and also for different values of ayy, where ay denotes the radius of the tube

10 +

12

Figure 1. The variation of the complex growth rate 77 as a function of 8. The symbol ad refers to the adiabatic case and
the numbers denote the value of g used when radiative exchange is included. Full and dashed lines correspond to
real and imaginary values respectively of 7.
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z (km)

Figure 2. The variation of #, 9/0o and T/ T, with z for ag=200km and S=3. Each value has been normalized with
respect to the maximum value in the interval. Full and dashed lines are used for real and imaginary parts respectively
of the eigenvectors.

at z=0in the equilibrium state. Let us first examine the adiabatic case, where the frequency only
appears as @ (thus @ and —w are both eigenvalues). For >4, where . denotes some critical
value, 72>0 and the system is unstable with a growth rate that increases with 8. For 8 </, where
B.=1.8, the equilibrium is stable with an oscillation frequency that increases with decreasing 5.

In the general case, 7 is complex with roots occurring in complex conjugate pairs. From Fig. 1
we note that for each value of ag, it is possible to distinguish between modes which are purely
growing (i.e. for which Im =0) and those which are overstable. When </, where §. depends
upon ag, the system is overstable with a growth rate and oscillation frequency which increase and
decrease respectively with 8. At 8=4,, a bifurcation into two purely unstable modes occurs. The
growth rate of the upper branch (the fast mode) increases with 8 whereas the growth rate of the
lower branch (the slow mode) decreases with increasing 8. Similar behaviour was also noted by
Spruit (1979b, unpublished). We also explored the possibility that for low [ there may exist a
second critical value below which the system is stable. Such an attempt proved futile; no matter
how small the value of 3, overstability was invariably present.

Fig. 2 shows the variation with z of 9, /0o and T/T, (all quantities normalized with respect to
the absolute maximum value in the flux tube) for ago—200 km and f=3. An upper boundary at

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1986MNRAS.219..357H

r T98BMNRAS, 2197 “357H

Oscillatory motions in intense flux tubes 367
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-1.0 } t : } j

-2000 -1500 -1000 -500 0 500 1000
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Figure 3. The variation of #, $/g¢ and T/ T, with z for ag,=100km and #=3. Each value has been normalized with
respect to the maximum value in the interval. Full and dashed lines are used for real and imaginary parts respectively
of the eigenvectors.

z=1000 km was used. The absence of any nodes in the curve for # may be noted. Furthermore, we
see that the largest contribution to & occurs in some 1000 km below z=0, the region of largest
superadiabaticity. Deeper down in the flux tube, ¢ becomes extremely small due to the
temperature gradient tending to the adiabatic value, thus reducing the force driving the

‘instability. The density and temperature perturbations $/o, and /Ty, in contrast to ¥, reverse

signs around z=0. At z=0, the stratification changes from subadiabatic to superadiabatic. It is
also worthwhile to note that both Re ¢/0, and Re T/T; become negligibly small close to the
boundaries.

Fig. 3 again shows the z variation of the eigenvectors, but this time for ago=100km, i.e. for a
thinner flux tube. The qualitative behaviour is the same as in Fig. 2, except that since the growth
rates are different in the two cases, the ampitudes and phases of the perturbations are different.

Figs 4 and 5 show the z dependence of &1, ®,, &1t— D, where @1 and @, denote the phases of
the temperature and velocity oscillations respectively, for agp=200km and ayp=100km
respectively. In both cases, the phase difference between T and v depicts a sharp-change at z=0,
but for z=0 the variation is fairly gradual. The sharp behaviour of ®1t—®, at z=0 is due to Oy
since @, varies rather smoothly over the entire z interval.
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Figure 4. The z dependence of the phases @ (dashed line), ®, (dotted line) and &+—®, (full line) for agy=200km
and §=3.

We now turn to the sensitivity of the results on the boundary conditions as well as on the
location of the boundaries. It was found that moving the lower boundary from z=-2000 km to
z=->5000 km had a negligible influence on the eigenvalues. We, thus, chose only to consider the
effect of varying the upper boundary condition. In Tables 3 and 4, the complex growth rates (7,,
n;) are shown for various locations of the top boundary for two values of 8. The difference
between the two tables is that they correspond to the boundary conditions #/,,,=0 and #/;,,=0. We
observe that the difference between the eigenvalues for z,,,=1000 km and z,,,=500 km is, for all
practical purposes, rather marginal, for both types of boundary conditions. However, moving the

Table 3. The complex growth rates (s™!) for different § and various locations of Ziops
assuming 9;,,=0 and agy=100km.

B zt°p=1000km Ztop=500km Ztop-o
(7.10,0).10"3 (6.90,0).10"3

10 (0.74,3.03).10"3
(1.51,0).10-4 (1.86,0).10-4

3 (1.58,3.78).10"3 (1.58,4.04).10°3 (0.03,9.25).10"3
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180
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-180 f }
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Figure 5. The z dependence of the phases @ (dashed line), ®, (dotted line) and ®—®, (full line) for agy=100km
and f=3.

+

upper boundary to z=0, leads to an appreciable change in 7 for #,,,=0. In fact, in the latter case,
the purely growing modes, found earlier for =10, are now unstable! On the other hand, the open
boundary condition turns out to be not so bad, giving eigenvalues which agree roughly with the
previous cases.

6 Discussion

The results presented in the previous sections exhibit several interesting features. We have found
that an equilibrium which in the absence of heat exchange is stable (against the convective

Table 4. The complex growth rates (s ') for different 4 and various locations of z,o,, assuming
D40p=0 and ap=100 km.

8 Zt op=1000km Zt op=500km Ztop=0
(7.10,0).10-3 (6.90,0).10-3 (8.33,0).10"3

10
(1.51,0).1074 (1.65,0).10% (1.64,0).10"4

3 (1.58,3.78).10"3 (1.49,3.85).10"3 (2.03,3.72).10"3
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instability) can become overstable in its presence. This behaviour can be discerned both for
polytropic as well as for real atmospheres. Similar behaviour was also noted by Syrovatskii &
Zhughzda (1968) for an associated problem. They also found that for certain values of the
polytropic index, the criterion for overstability is less stringent than the Schwarzschild one. In the
case of the solar stratification, a flux tube, which is thermally insulated, can be stable even though
the temperature gradient inside it is superadiabatic (Spruit & Zweibel 1979, see also Webb &
Roberts 1978). Thus, if adiabatic conditions were to prevail, one would expect vertical undamped
oscillations (in time) in intense flux tubes. In the presence of radiative exchange, however,
oscillations, whose amplitudes grow in time, are now possible.

Let us now consider the variation of 7 with £ for different values of ag (i.e. the variation of the
eigenfrequencies with the strength of the magnetic field for tubes with different radii). Since the
heat exchange time 7, depends upon the tube radius, decreasing ag leads to a decrease in 7, in the
optically thick layers (x00a0=1), which also correspond to the superadiabatic region. Thus, we
expect the destabilizing effect to be greatest for tubes with smaller radii and consequently the
growth rate to decrease with ag. It may be worthwhile to mention here that in the subadiabatic
layers (z>0), the flux tube is optically thin and 7, becomes independent of aoy. The frequency
w=in, of the oscillations, on the other hand, increases with 8. This can be understood by noting
that the oscillation period (~1/w) is inversely proportional to the tube speed c,, the typical speed
at which disturbances propagate in the medium. Using the relationship

Cs

G=——"—
W(rB/2+1)

we find that a decrease in £ leads to an increase in ¢; and consequently to an increase in .

An interesting feature of the solutions is the existence of a critical value of 8 at which a
bifurcation occurs from overstability to two purely growing modes. It may be mentioned that the
latter do not represent different harmonics of the same mode, but in fact correspond to two
different types of modes. This can also be discerned by checking the velocity eigenvectors for the
absence of nodes. By comparing with the adiabatic case, we identify the fast mode as a convective
mode, modified by heat exchange. The slow mode seems to be a new mode which is introduced by
the inclusion of radiative effects. When >4, the system is monotonically unstable. Physically,
we can understand this by noting that the occurrence of overstability is related to the fact that
the tube can exchange heat with the ambient medium. Now, the time scale for convective
instability 7.,,, decreases with increasing 5, whereas 7, increases with 3 (since 7,~ B~ for z>0).
Thus, when the magnetic field is weak or s large, radiative exchange plays an insignificant role
and one expects instability, similar to the adiabatic case. The critical value g, corresponds to the
situation 7..n,=7,. We also found that for 8 very small (5<€f.), there does not appear to exist a
second critical value of £ below which stability occurs. This is possibly related to the fact that a
decrease of f leads to an even stronger influence of heat exchange on the vertical motions in the
flux tube.

Turning our attention to the eigenvectors, we find that the density and temperature
perturbations undergo a reversal of sign at z=0. Writing f =| f‘ |exp (i®), where f denotes a
perturbed quantity, the sign of f depends upon the sign of cos @. In the superadiabatic region
(2=0) Tand ¢ are positive and negative respectively, whereas in the subadiabatic region (z=0), T
and ¢ have opposite signs. In order to see why this happens, let us consider a velocity perturbation
which produces a unidirectional flow in the flux tube. Let us assume that we have a downflow
(v<0), which in superadiabatic layers brings hotter material downwards. If there is approximate
horizontal pressure balance, this material will be denser than its surroundings. For the
subadiabatic layers the opposite situation occurs.
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The phases of the perturbations also provide interesting information. In the adiabatic case, ¥1s
always real and hence its phase ®,=0, which means that in the stable case, only vertical motions
corresponding to standing oscillations can occur. For the general case, ®,#0. Since ®, varies
(albeit not strongly) with z, we have propagating oscillations. Furthermore, these oscillations can
transport energy. To second order, the only contribution to the time-averaged energy flux at
some height comes from the enthalpy flux ~(vp) (there is no first order contribution as () =0).
For the overstable case (vp)=|7|| p|cos (®,—P,)#0 and hence the energy flux is finite. In the
stable adiabatic case, ®,—®,=0 and, therefore, there is no energy transport.

We consider next the effect of boundary conditions on the results. We found that for an upper
boundary condition at z=0, closed and open boundary conditions gave completely different
results. The reason is not hard to see. Since z=0 is located at a height where the temperature
gradient becomes superadiabatic, the velocity amplitude tends to be large there. Using a closed
boundary condition effectively decreases the length of the superadiabatic region, thus reducing
the growth rate. On the other hand, the boundary condition #{,,=0 provides a less retrictive
limitation on & and in fact yields a fairly reasonable condition. The differences in the eigenvalues
for z,,,=1000 km and z,,,= 500 km are rather marginal as these levels are situated sufficiently far
from the region driving the instability. This is also borne out by Figs 2 and 3, which show that &
drops off fairly rapidly with height, becoming negligibly small for z=500 km.

Finally, let us compare the results for the polytropic case with those for the realistic case,
bearing in mind that the solar stratification cannot be accurately described by the polytropic
approximation over the entire height range as well as the fact that 7, is far from constant.
Nevertheless, a comparison between the fundamental in Table 2 for Ag=—0.18 (for #{,,=0) and
the corresponding case for #=0.8 in Fig. 1 gives a reasonable agreement for the period.
Agreement between the growth rates can be adjusted by choosing an appropriate value of g (see
equation 17). Strictly, speaking this is not consistent when the growth rate becomes comparable
to the period.

An assumption that we have tacitly employed is the absence of flows in the initial equilibrium
and the equality of temperatures between the flux tube and the external medium.
Observationally, there is reason to believe that there are no systematic downflows in intense flux
tubes (Stenflo & Harvey 1984), although the cause of asymmetries in their V profiles is not
known. Equality of temperatures is not such a bad assumption in the surface layers, where the
heat exchange time is rather small. In the very deep layers, this may not be valid. However, the
amplitude of the perturbation is extremely small in these layers, and consequently the final results
are unlikely to be greatly different.

7 Observational implications

We now discuss some of the observational implications arising out of our study for the Sun. It is
useful to distinguish between the purely unstable case (f=/,) and the overstable case (<f.). In
the adiabatic case f.=1.8, which corresponds to a critical surface field =1100G at z=0 for
p.=1.3x10°dyncm™2. However, in the more realistic case, when lateral heat exchange is
allowed, g, varies from about 3.6 for agy=200 km to 8.2 for aqy=>50 km, yielding critical fields of
about 850 G and 600 G respectively. Thus, flux tubes with 8>/, are unstable and will undergo
convective collapse (Hasan 1984a, b). In this paper we are primarily interested in the overstable
case. The periods and growth times of the oscillations lie typically in the range 650-1500 and
1150-625s respectively for £ in the range 0.5-3.0 assuming ag=100km. Unfortunately, no
observations of oscillations in intense flux tubes to date have been reported, possibly owing to the
difficulties associated with spatially resolving fine scale elements on the Sun. Thus, a comparison
must await a future date, perhaps when space observations become available. What could be
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verified from ground-based observations, however, are phase relationships between velocity—
velocity (at two heights) and temperature—velocity fluctuations. The phase difference in
velocities at z=500km and z=0 varies from about 15° for agy=200 km to 25° for agy=100 km. On
the other hand, the phase differences between temperature and velocity are about 155° and 130°
respectively at z=500 km and approximately 180° close to z=0. For z<0, ®—®, undergoes a
reversal of sign, for reasons already pointed out, and after some 100 km levels to an almost
constant value down to a depth of about 900 km.

8 Concluding remarks

The purpose of the present investigation was to examine the detailed nature of oscillatory
behaviour that can occur in intense flux tubes. In order to keep the analysis sufficiently general we
treated first a polytropic atmosphere under certain approximations for which an analytic solution
was possible. We then solved the problem for a realistic stratification using model opacities so as
to obtain results applicable to the Sun. Our results clearly indicate that states, which in the
adiabatic limit are stable, can be driven overstable when heat exchange is included in the analysis.
An interesting property of the solutions, which appears to be fairly general, is the existence of a
bifurcation at =g, from overstability into two purely growing modes. The fast mode resembles
an ordinary convective mode, whereas the slow mode owes its existence to radiative effects. We
also found it worthwhile to calculate eigenvectors from which phase relationships could be
determined. It is hoped that these can be verified observationally in the not too distant future.
Finally, we demonstrated that by a judicious choice of boundary locations, the results become
insensitive to boundary conditions so that the analysis has rather general validity.
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