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Abstract. It is shown that the points of bifurcation belo:aging to the third harmonics 
o1o:"lg the se:j,ucnce of Maclaurb spheroids viewed from an h"1ertial frame are dis­
thet fro;n the eorrespondi Ig points alOl'g the Maclaurin sequence considered 
statio.lary i:1 a rotati.1g frame and occur at eccentricity e = 0·73113 and e=0'99608; 
the MlClauri.l spheroids having become dynamically Wlstable before the secor.d 
poiH is reacaed. A toroidal magletic field leaves these points tmeffected, while 
a geneIa.1 poloidal :field may either raise or lower these points of .bifurcation. 
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1. Introduction 

The virial equations of various orders provide a very elegant and powerful 
method for investigating the equilibrium and the stability of rotating masses. 
See Chandrasekhar (1969 hereafter referred to as EFE; and the references therein) 
for their application to rotating liquid masses. The virial method has also been 
used to investigate the oscillations and the stability of differentially rotating gaseous 
masses in the presence of magnetic fields (Nakagawa and Trehan 1970; Kochhar 
and Trehan 1971, 1973, 1974; Kochhar 1974). An interesting outcome of these 
studies is the isolation of the points of bifurcation belonging to the second and the 
third harmonics from an investigation of the complete frequency spectra. How­
ever, it is possible to isolate the point of bifurcation from a consideration of the 
integral properties provided by the virial equations various orders (cf. EFE § 34). 

The point of bifurcation, belonging to the second harmonics, where the Jacobian 
and the Dedekind sequence of ellipsoids branch off from the sequence of Maclau­
rin spheroids in the presence of toroidal magnetic fields has been isolated by 
Trehan and Singh (197S) using second order virial equations. In this paper, we 
use third order virial equations to isolate the points of bifurcation, belonging to 
the third harmonics, ,along the sequence of Maclaurin"spheroids viewed from an 
inertial frame, and discuss the effects of a torodial and a general maglletic field 
on these points of bifurcation. 

2 . The equilibrium configuration 

We consider a homogeneous, axisymmetric, self-gravitating gaseous mass rotating 
with an angular velocity n (x) and pervaded by a magnetic field H (x) which vanishes 
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at tile surface. Both Q (x) and H (x) are assumed to be symnletric about the 
z·~s, which is taken to be the axis of rotation. We can express the velooityed 
the magnetic field vectors as 

(1) 
and 

(2) 

Here w, 9, Z define a system of cylindrical polar coordinates; 1"" l,p, I, are the 
unit vectors along the three principal directions and the defining scalarS Q P and . , 
T are azimuth independent. 

The third order virial equations governing the equilibrium configuration are 

where 

2T1Ji1o + 2T'l:1/-2M'I;" -2M,t;1 + Wi/ ;" + W'kll 

+ 8'1 (II" + M,,; a) + 81& (II, + M",J) = 0, 

Tu; k = 1- J pu,u1x" dx. 

MIl; It = /; J H,H/x" dx, 

ilk = f px"dX, 

W,J;1r: = -!- f PVilXtdx. 

(3) 

(4) 

(5) 

(6) 

(7) 

In equation (7), V'I (x) is the tensor potential at x due to a mass distribution 
p(x') at x': 

( ) _ G J p (X') (x, -XI') (XI-XI') dx' 
Vii X - Ix -x'ls . (8) 

The equilibrium conditions governing the system are obtained from the steady state 
virial equations of the second alld the fourth orders; the former yield (Kochhar 
and Trehan 1973) 

Tll - Mll + Mas = FIn (9) 

where 
(10) 

and the remaining symbols have their usual meaning. In equation (10), AIJ •.. 
and B'I .. , are the index symbols defined in EFE (§ 21), and e is the eccentricity 
given by 

(11) 

CIt = at > Cla being the three semi axes. 

The steady state fourth·order vitia! equations have been written in Kocbhar 
(1974, eq. [3D. Sfuce the velocity field haS been assumed to be toroidal and axisym­
metric, we have 

(12) 
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It should be noted that if the field is purely toroidal or if the poloidal scaler P is 
u function of til alone. i.e., the poloidal field has a non-vanishing component only 
along the Z-dil'ectioll. the tensor Mil: 1:1 obeys relations similar to the second one 
in equation (12). 

With the help of the above relations and proceeding as in Kochhar (1974) we 
nbtain tbl! following equilibrium relations 

(14) 

and 

Tu; 33 -M 11; 33 = FI1133 -M33; 33 + 2M18 ; 13' (15) 

When rotation is uniform and the magnetic fields are absent, equations (14) and 
(15) reduce to equation (9). In this case thus one need not consider the fourth 
order virial equations. When the magnetic field is purely toroidal, we recover 
equilibrium relations of Kochhar (1974). 

3. The pOints of bifurcation belonging to the third harmonics 

Suppose that the system is now slightly perturbed from its equilibrium state and 
the resulting motions are characterized by a Lagrangian displacement ~ (x, t). 
The existence of a point of bifurcation implies the existence of a non-trivial time­
independent g which will deform the equilibrium configuration in such a manner 
that the sysem is carried over to another eqUilibrium configuration. In other 
words, at a point of bifurcation, not only should the eqUilibrium conditions be 
satisfied (identically or trivially) but the first variation of the integral properties 
due to the Lagrangian displacement g should also vanish non-trivially (EFE § 34). 
It is easy to see that the integral relations provided by the equation (3) are satisfied 
identically by virtue of the triplanar symmetry of the configuration. Thus a 
necessary and sufficient condition for the occurrence and the isolation of the points 
of bifurcation belonging to the third hannonics is that the first variation in equation 
(3) must vanish non-trivially: 

28Tu; ~ + 28Tu.;J -28Mu;1: -28M,k;J 

+ 8W'I; /I + 8Wjk ; I + 8;1 (3II~ + 8M,,;.I:) + 81r.: (311j + 8M,,; J) = 0; 

(16) 

here SA denotes the first variation in the quantity A brought about by the Lagran­
gian- displacement ~ (x). 

We shall now consider two cases. First, when the rotation is uniform and the 
magnetic fields are absent, i.e., the case of uniformly rotating Maclaurin spheroids 
viewed from an inertial frame. As we shall see, vidal equations provide an exact 
solution in this case. In § 5, we consider the general case when differential rota­
tion and a magnetic field, having both toroidal and poloidal components, are 
present. 

4. The sequence of Maclaurin spheroids viewed from an inertial frame 

We now consider the case of uniform rotation and no magnetic field. We set 
1;M'i; I: = 0 in equation (16). Suspending the summation convention and 
letting i # j # k denote distinct ~ndices. -we can: group the eighteen . relations con-
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tained in equation (16) (with 8M'I;'t = 0) as follows: 

48Tji;, + 23 WIi ; " + 280, = 0, 

48TH;, + 48Ti/; I + 28 W;J;; + 2S WI;: I + 2SD, = 0, 

48TH; i + 28 WIl ; J ,-., 0, 

48 Tj ;; 1,; -I- 48 Tu,; ; + 28W,;; 1.; + 28W1k; j = 0. 
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(17) 

(18) 

(19) 

(20) 

Since the perturbations giving rise to the pohlts of bifurcation are volume preserving, 
we can eliminate an, between equations (17) and (18). It is convenient to combine 
them in a particular manner and we get 

4 (ST,,; 4 -STu;, -2ST,s; I) + SSm = 0, 

where (EPE § 12, eq. [84]) 

(21) 

8S IIJ = 28 Wli ; , - 28 WII ; , - 48 WH ; J' (22) 

It is not necessary to consider all the relations contained in equations (19)­
(22). Following Chandrasekhar's arguments (EPE § 40), we need consider only 
the following relations which have an odd parity with respect to the index 1: 

48Tu; II + 28~2; 2 = 0, (23) 

48 Tn; 3 + 28 WIll; :1 = 0, (24) 

4 (8 TIl; J - 8 T21l ; 1 - 28 TJs; 2) + SSm = 0, (25) 

4 (8 Til; 1 - 28 TIS; :J + 88138 = O. (26) 

The quantities STI!; I: and 8Wil; 1; can be expressed in terms of the virial 

VI; !II = J pE,x/xl:dx. (27) 

It is convenient to define the symmetrized virial 

V'II: = Vi; I" + VI; IIi + VII; fl' 

From the defining relation (4) we obtain 

28TH; 1< = f prix [- Ei (u . '7) ulx,. - EI (u . 'iJ) u,x,. 

+ U,UI~" -1I1"lIg. - u]ou,EJI. 

(28) 

(29) 

Substituting for (A, from equation (1) and keeping in mind that 0 is now a constant 
we can distinguish the following cases 

(a) i:#='3, j:#= 3 

laT'I; II = 0 2 {V,;i" + Vi; II' + (_)'+1 VIII; ,·1. -(-)1+1= V';I.·t* 

- ( - )t+' VI; 11\. ,.} (30) 

(b) i = 3, j:#= 3 
28Ts; It = 0 8 {Vs; It -(-y+.t(1-8ta> Vs: j.".} (31) 

(e) & T88: 1= O. (32) 

Here, j* is 2 if j is 1 and .vice versa; and 3* = 3. 

With the help of equations (30) and (31), we can express the various STu:. in 
terms of the V,; I'" We shall now ass~ 
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J pep = 0 . (33) 

whieh ensures that the Qe]lUe of gravity remains stationary. In Viet"" of equation 
(33). we can express 3 W", A: in terms of the V(; 1~ (EFE § 23). 

We consider equation (is) first. Making use of equation (30) and relations in 
§ 23 of EFE, we obtain 

where 

B'l; • = B(j + aliI B,lt. 

Accordingly a neutral point occurs when 

DS = Bll + all! BlU 

for a displacement for which VI; 11:fo Vns· 
Equation (36) is equivalent to 

sin-1 e 15 - Sell + lISe' -128e6 
---e- == 3 (1 - ell)i (5 + 4Qe4 - 32e&) 

and is satisfied when 

e=0'73113 and UI=O'30331. 

(34) 

(35) 

(36) 

(37) 

(38) 

The pOint of bifurcation (38) belonging to the third harmonics was obtained from 
an investigation of the complete frequency spectrum in Kochhar and Trehan 
(1974). Further, it should be noted that the corresponding point of bifurcation 
for the sequence of Maclaurin spheroids considered stationary in a rotating frame 
occurs when 

DI = 2 (Bll + Ol! Btu> (39) 

which corresponds to 

e = 0'89926 and U2 = 0'44015 

(BFE § 41). 

(40) 

We now consider equations (23), (24) and (26) which must be supplemented 
with the condition expressing the solenoidal nature of the Lagrangian displace­
ment 

(41) 

To be consistent with equation (25) and exclude the point of bifurcation (36), we 
set 

VI;;U = V 111 = Vl~ II + 2Vsl ll!' 

In view of equation (42), equation (41) takes the form 
4 ' 1 

all V'I 11 + - V183 = 0 Qaa 

(42) 

(43) 

Substituting the expressions for the relevant '8 T,. and 8 w,. in equations (23)' 
and (24), we find that I. I! II, ~ 

(44) 
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2QIIV8;:La -(2B:La + 3aall Bus _a,,2 Bui) VI88 = O. 
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(45) 

By virtue of the relations between the index symbols, we can easily verifY that 

2 (Bl1 + 3a12 Bw - 2aa2 Bll8J = 2Bu + 3a32 B188 - a12 Bus = B (say) 

(46) 

Making use .of equation (43) we can rewrite the two equations (44) and (45) as 

802 (1 -e2) Va;lS -BVl88 = 0, (47) 

2Qs Va; 18 -BVl88 =0. (48) 

trom which we conclude that 

(49) 

We now tum our attention to equation (26). It is convenient to combine it 
with equation (23) and write 

4 (STu; 1 -3ST1S;:I -28T18; 3) + 8S138 -68W12; 2 = 0 (50) . 

which leads to 
402 (1 - e::l) (3 - Bell) Vs; IS + [.Q2 - 2 (1 -ell) C] V 188 = 0, (51) 

where 
a 

C = 3lBaa + B1a + (a12 + lasS) B1aal- a1 s (2al:! + as!!) Bus. (52) aa 
In arriving at equation (51) explicit use has been made of equations (41), (42) and 
(49). 

Equations (47) and (51) lead to the following condition for the occurrence of 
a further neutral point 

Q2 = 2(1 -e2) C -, (3 -Sell) B; 

this is equivalent to 
sin-Ie 225 -351 ell + 134 e' -8e8 
-e- = (1 - ell)! (225 - 276 ell + 72 e4'::"'-~16-::-e6-::::) 

and is met then 

e = 0-99608 and Q2 = 0'22209. 

(53) 

(54) 

(55) 

This point could not be isolated from the small perturbation analysis of Kochhar 
and Trehan (1974). It should be noted that long before this point of bifurcation 
is reached, the Maclaurin spheroids become dynamically unstable to both second 
and third harmonics. In the case of Maclaurin . spheroids considered stationary 
in a rotating frame of reference, the corresponding point of bifurcation occurs 
at e = 0'96937 where 0 2 = 0'4141 [EFE § 41, eq. (68)]. 

5. Rotating axisymmetric masses with magnetic 1ie1ds 

We now consider the general case of a sequence of rotating axisymmetric masses 
with magnetic fields. We return io equation (16) and assume the following form 
~or the Lagrangian displacement (£FE § 33 d) 

f. ~ L.;_ x.. x. -,4, .. 0.:1 (56) 
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The particular form of the constant term here ensures a stationary centre of mass. 
The assumed solenoidal character of the Lagrangian displacement imposes the 
following restriction on the constants L 1; Ik : 

1: LI; Ii =---' 0 , i = 1, 2, 3. 
1 

(57) 

We should now express the various quantities occurring in equation (16) in terms 
of the L,; lk' Substituting for f. in equation (29), we obtain 

STCi; ~ = T li ; "''' L~; "'. -(T1i; Ill. + ZJ; lImll) L,; mil 

-(Till;"" + Z,; km .. ) L,; "'" -1- Til a,2~; II (58) 

where 

(59) 

By virtue of the axisymmetry of the configuration, the non-vanishing components 
of Zll Ilftn satisfy 

ZIII; U1J1 = - T 01*1/1*; i/ (60) 

where wand w* take the values 1 and 2, w* being 1 if CJJ is 2 and vice versa. 

The expression for 8 MIl; ~ in terms of the L i ; I" is [Kochhar 1974, eq. (18)J. 

8MII ; II =: 2M,.; 8111 Lj ; IN + 2M Ul IJIk LJ; " .. + 
+ MIl; fIIIj L,,; 11\& -1/5 M,ia.· Lk;". (61) 

In writing equation (61) explicit use has been made of equation (57). The expres~ 
sions for the 8 WII; II are available in terms of the VI; jk which are related to the 
Lt; III as follows 

VI; ill = ~; ",.1_,,, -lIS Le;" a,B lik' (62) 

Proceeding as in § 4 we need consider only the following equations 

4 (8T111; Il-SM1S;.) + 28 WIll; II = 0, (63) 

4 (8T18; 8 -8MJ3;.) + 28 WI8; 8 = 0, (64) 

4 (8 Tl,l; 1-8Ts1I11 -287;2; J -4 (SMu ; 1 -8M211; 1 -28M12; 2) 

+ SSw = 0, (65) 

4 (STu; 1 -28T1a; a) -4 t8Mu ; I -3M33; 1 -28MllJ; J + 88133 ==0. (66) 

The simultaneous (non-trivial) solution of these equations will lead to the neces­
sary and sufficient conditions for the existence of points of bifurcation belonging 
to the third harmonics. Equation (65) leads to . 

(6F11l81 - 3BU11 Iuu + 2Mll; U + 2M]'B; lA -

'- 6Maa; 11 -12 MJ8; Is) (Ll ; II - LJ; BB - 2L8; JJ = O. (67) 
Thus a neutral point . occurs when 
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3 (Bn + a12 Bll] -2F)/1l22 -2 M 11 • 11 -. . 
- 2M12; 12 + 6Maa;]] + 12M]3; 13 = 0 (68) 

for displacements for which ~; 11 =I L1; 12 + 2L2; 11 =I 0 and the remaining L,; /i 
vanish. 

When rotation is uniform and magnetic fields are absent, equation (68) reduces 
to 

(69) 

which is equivalent to equation (36) by virtue of equation (9). We thus note that 
the trial function (56) is exact in the case of pure uniform rotation. When the 
magnetic field is purely toroidal, equation (68) again reduces, to equation (69) 
(see remarks following equation (13». Thus we conclude that the point of bifur­
cation remains unaffected by the presence of a toroidal magnetic field. .. 

Now considering the case when a general magnetic field, having both toroidal 
and poloidal components. is present, we first note that the first term in equation 
(67) approaches zero at e = 0.73113 from positive values and is a decreasing func­
tion of e. Thus the point of bifurcation would be moved to higher (lower) values 
of eccentricity if the magnetic terms are postive (negative). If the poloidal field is 
along the axis of rotation, M u, 11 + M12; 12 = 0 and the magnetic terms are posi­
tive. The point of bifurcation is then moved to higher values of eccentricity. 

These results should be compared with the corresponding results for second 
harmonics,. where the effect of a poloidal field is always to raise the point of bifur­
cation (Kochhar and Trehan 1973). Further while it is only .. the component of 
the pol~icial field along the axis of rotation that affects the point of bifurcation 
belongirig to the second harmonics, all the components of a poloidal magnetic 
field affect the point of bifurcation (55), belonging to the third harmonics. Equa­

JioJ;ls (63) and (64) lead to 

( Flun - MIll 11 - Mu; ]I - M33; 11 - 2M13; J3 - 2~ 1]]22) L2; lJ 

- (MIl; 11 + Ma; It + ~~ 1m2 )La; ]3 + ( M13; 13 - ~ 11133) X 

X Lt. 33 = 0, . . (70) 

.( 4M18; 18 -: hJaa) La; 12 + (Flm3 - 3: I]las -Maa, a8 + 2M13.18) X 

X La; 13 -L1 ; aa (Mu; aa +~ laaaa) =0. (71) 

It is convenient to combine equation' (66) with equation (63) as follows 

4 (STll; 1 -38TlI; Z -2;Tl8; J-
-4(8Mu ' l -38Mn . , ,-3M3I!;1 -23M12; 8) + 8S183 -6&W];u = 0 

.' • (72) 

Equation (72) yields 
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(~ C . ) "5 Plm ! + 5" IJJS3 -12M13; 13 - 4M33; II L2; 1B 

[
1 3C . . 

- 5" (13 - lOeS) Elml - 5- 11133 + 2Mll , II + 2M12; 11 

- 2M13; 13 - 2Ma3; 33 - 3Ms3; 11] La; 13 

- (f 11133 - fs 13333 - 2M13; 13 - 2M33; 33) L1; 33 = O. (73) 

The solution of equations (70), (71) and (73) leads to an equation of the type 

f+g=O (74) 

where the function g includes all the magnetic terms and vanishes when the magnetic 
field is absent or is toroidal. In either case equation (74) becomes equivalent to 
equation (53). Since f is a monotonically decreasing function of e, the point of 
bifurcation will be raised to values higher (lower) than e = 0.99608 [Ceq. (55)] 
if g is positive (negative). At this stage it should be recalled (Kochhar and Trehan 
1911; Kochhar 1974) that a sufficiently large magnetic field can suppress tlie 
instability due to the second and the third harmonics, and the ·point of bifurcation 
(74) may lie. in the stll.ble region. 

6. ConclusiOn 

The points of bifurcation belonging to the third harmonics along the sequence 
of Maclaurin spheroids viewed from an inertial frame are isolated using the integral 
relations provided by the virial equations of various orders. These points ate 
distinct from their counterparts for Maclaurin spheroids considered stationary 
in a rotating frame of reference and occur at eccentricity e = 0.73113 and 
e = 0.99608. The effect of magnetic fields on these points is then considered. A 
toroidal magnetic field leaves them unaffected, while a poloidal field consisting 
of a component only along the axis of rotation raises the first point of bifurca­
tion beyond e,= 0.73113. A general poloidal magnetic field may raise or lower 
the points of bifurcation. These results should be compared with the corres­
ponding results for the point of bifurcation belonging to the second harmonics, 
which i~ always raised by a poloidal magnetic field to values higher than the one 
obtaining in the case of uniform rotation. Further, while the point· of bifurcation 
belonging to the second harmonics depends only upon the axial component of 
the poloidal magnetic field, the points of bifurcat·ion belonging to the third bar­
moQics depend on all the components of ' the poloidal magnetic field. 
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