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On the points of bifurcation along the sequence of rotating
axisymmetric masses with magnetic fields
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Abstract. It is shown that the poiats of bifurcation belonging to the third harmonics
aloag the sequence of Maclauria spheroids viewed from an inertial frame are dis-
tiact from the correspondirg points along the Maclaurin sequence considered
statioaary i a rotatiag frame and occur at eccentricity e = 0-73113 and ¢=0-99608;
the Maclauria spheroids having become dynamically unstable before the second
poiit is reached. A toroidal magietic fild leaves thess points uneffected, while
a general poloidal field may either raise or lower these points of bifurcation.
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1. Introduction

The virial equations of various orders provide a very elegant and powerful
method for investigating the equilibrium and the stability of rotating masses.
See Chandrasekhar (1969 hereafter referred to as EFE; and the references therein)
for their application to rotating liquid masses. The virial method has also been
used to investigate the oscillations and the stability of differentially rotating gaseous
masses in the presence of magnetic fields (Nakagawa and Trehan 1970; Kochhar
and Trehan 1971, 1973, 1974; Kochhar 1974). An interesting outcome of these
studies is the isolation of the points of bifurcation belonging to the second and the
third harmonics from an investigation of the complete frequency spectra. How-
ever, it is possible to isolate the point of bifurcation from a consideration of the
integral properties provided by the virial equations various orders (cf. EFE § 34).

The point of bifurcation, belonging to the second harmionics, where the Jacobian
and the Dedekind sequence of ellipsoids branch off from the sequence of Maclau-
rin spheroids in the presence of toroidal magnetic fields has been isolated by
Trehan and Singh (1975) using second order virial equations. In this paper, we
* use third order virial equations to isolate the points of bifurcation, belonging to
the third harmonics, along the sequence of Maclaurin“spheroids viewed from an
inertial frame, and discuss the effects of a torodial and a general magnetic field
on these points of bifurcation.

2. The equilibrium configuration

We consider a homc?geneous, axisymmetric, self-gravitating gaseous ﬁass rotating
with an angular velocity {2 (x) and pervaded by a magnetic field H (x) which vanishes
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at the surface. Both Q(x) and H (x) are assumed to be symuetric about tile

z-axis, which is taken to be the axis of rotation. We can express the velocityind

the magnetic field vectors as

U= w.Ql¢ (1)

and ‘

]
“3Z

He.re w, ¢, z define a system of cy;lindrical polar coordinates; 1,, 14, 1, are the
unit vectors along the three principal directions and the defining scalars 9, P and
T are azimuth independent.

The third order virial equations governing the equilibrium configuration are

2Ty, + 2Ty, s —2M,, p—2Mu s+ Wy o + Wy, 3
+84! (Hh + Mn; h) + sib (ﬂ, + Mnu) =0,

H = ly -+ oTlg + 1; -a% (w*P) 1, @

where
TU: r= i’ .f Pu(ulxk dxa (4)
1
My=g f H H x, dx, ®)
II, = | pxdx, (]
Wiyon = —% [ poyxidx. )]

In equation (7), v, (x) is the tensor potential at x due to a mass distribution
p(x") at x':

= [ HREGHEGEnY. ®

The equilibrium conditions governing the system are obtained from the steady state
virial equations of the second and the fourth orders; the former yield (Kochhar
and Trehan 1973)

Ty _Mu + Mas = FI;; (9)
where

F== A, —Ad; (1 —eb) = e*Byy (10

and the remaining symbols have their usual meaning. In equation (10), A,,..-..
and By, ... are the index symbols defined in EFE (§21), and e is the eccentricity

given by
a? = a2 (1 —é?), an
& = @3 > a, being the three semi axes.

The steady state fourth-order virial equations have been written in Ko@ar
(1974, eq. [3]). Since the velocity field has beén assumed to be toroidal and axisym-

metric, we have
T, u= Toa=0; Ty,u=—Tuu=4Tumn 12
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It should be noted that if the field is purely toroidal or if the poloidal scaler P is
a function of « alome. i.e., the poloidal field has a non-vanishing component only
along the Z-direction, the tensor ., ,, obeys relations similar to the second one
in equation (12).

With the help of the above relations and proceeding as in Kochhar (1974) we
obtain the following equilibrium relations

Tu,u— My, u = Flys — Mg, 1, —2My3, 18 (14)
and

Tu;as"'Mn;sa=F1uaa_Mas;ss+2M1a;13- (15.)
When rotation is uniform and the magnetic fields are absent, equations (14) and
(15) reduce to equation (9). In this case thus one need not consider the fourth

order virial equations. When the magnetic field is purely toroidal, we recover
equilibrium relations of Kochhar (1974).

3. 'The points of bifurcation belonging to the third harmonics

Suppose that the system is now slightly perturbed from its equilibrium state and
the resulting motions are characterized by a Lagrangian displacement ¢ (x, t).
The existence of a point of bifurcation implies the existence of a non-trivial time-
independent ¢ which will deform the equilibrium configuration in such a manner
that the sysem is carried over to another equilibrium configuration. In other
words, at a point of bifurcation, not only should the equilibrium conditions be
satisfied (identically or trivially) but the first variation of the integral properties
due to the Lagrangian displacement ¢ should also vanish non-trivially (EFE § 34).
1t is easy to see that the integral relations provided by the equation (3) are satisfied
identically by virtue of the triplanar symmetry of the configuration. Thus a
necessary and sufficient condition for the occurrence and the isolation of the points
of bifurcation belonging to the third harmonics is that the first variation in equation
(3) must vanish non-trivially:

281‘”.' % + 28T¢,,” —.—ZSMH;E '—ZSM‘E;!
+ SW'H; & +8Wﬂ=; ] + 8:’1 (SHL- + SM“;E) + slk (SHJ + sMn; J) = 0;

(16)
here 34 denotes the first variation in the quantity 4 brought about by the Lagran-
gian displacement £ (x).

We shall now consider two cases. First, when the rotation is uniform and the
magnetic fields are absent, i.e., the case of uniformly rotating Maclaurin spheroids
viewed from an inertial frame. As we shall see, virial equations provide an exact
solution in thiscase. In § 5, we consider the general case when differential rota-

tion and a magnetic field, having both toroidal and poloidal components, are
present.

4. The sequence of Maclaurin spheroids viewed from an inertial frame

We now consider the case of uniform rotation and no magnetic field. We set
SM.,; ¢ =0 in equation (16). Suspending the summation convention and
letting i j+ k denote distinct indices, we can:group the eighteen ' relations con-
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tained in equation (16) (with 8M,,, = 0) as follows:

48Ty, ; + 28W,, ¢ + 2801, = 0, (17)
48Ty, + 48Ty, , + 28W,y, , + 28W,,. , + 20T, = 0, (18)
48T, ; -+ W, , — 0, (19)
48Ty, 48T, ; +28Wy, , +28Wy, = 0. (20)

Since the perturbations giving rise to the points of bifurcation are volume preserving,
we can eliminate 817, between equations (17) and (18). It is convenient to combine
them in a particular manner and we get

4 (BT“., P _ST”; i "—'28T5“ ,) “"‘ SS“H = 0, (21)
where (EFE § 12, eq. [84])
SS‘” = 28 W“; F 28 W!“ { ‘_"48 W”; D (22)

It is not necessary to consider all the relations contained in equations (19)-
(22). Following Chandrasekhar’s arguments (EFE § 40), we need consider only
the following relations which have an odd parity with fespect to the index 1:

43Ty, p + 20Wig,2 =0, @23
48Ty, 3 -+ 28Wig, s =0, 24
4 (8Thy,1 —8Ts,1 — 28Ty, ) + 85199 =0, 25
4 3Ty, s — 28T, 0) + 38y = 0. (26)
The quantities 87", , and 8, , can be expressed in terms of the virial
Via={ pEx X dx. @n
It is convenient to define the symmeirized virial
Vie="Vi, 6+ Vi s + Vi 000 (28)

From the defining relation (4) we obtain ‘
BTy, o= [ pdx [—&@. V)up,—& @ . V)ux,
+ uyy — uf, — g €yl 29
Substituting for p, from equation (1) and keeping in mind that 2 is now a constant
we can distinguish the following cases
(@ i#3, j*3
28Tq; p = 42° {Vc; wt 14 3 é + ("'")"H Vb; " "‘("‘)H't Vc; fasd d

— (P Ve o} (30)

() 1=3,Jj#3
26T, = 22 (Vs p — (I (1 — 81} V. jo 0} €)Y
(€) 8 Top.y =0 (32

Here, j* is 2 if j is 1 and vice versa; and 3* = 3.

With the help of equations (30) and (31), we can express the various 5T, in
terms of the ¥, We shall now assume
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{ pbdx =0 (33)
which ensures that the centre of gravity remains stationary. In view of equatmn
(33), we can express 8W,,,, in terms of the ¥y, 4 (EFE § 23).

We consider equation (25) first. Making use of equation (30) and relations in
§ 23 of EFE, we obtain

(QF — By, v (Vl; n— Vi) =0, (34)
where
By, = By + &® Big.. 3%
Accordingly a neutral point occurs when
Q2= By +a® By (36)

for a displacement for which V;, 1% Vig.
Bquation (36) is equivalent to

sin-le 15 — 5¢? J- 118¢4 — 12868

T T3 = G £ 404 — 329 @37
and is satisfied when
e=0-73113 and @ = 030331 (38)

The point of bifurcation (38) belonging to the third harmonics was obtained from
an investigation of the complete frequency spectrum in Kochhar and Trehan
(1974). Further, it should be noted that the corresponding point of bifurcation
for the sequence of Maclaurin spheroids considered stationary in a rotating frame
occurs when

=2(By + @* By) (39)
which corresponds to :
e=0"89926 and 02 == 0-44015 (40)

(EFE § 41).

We now consider equations (23), (24) and (26) which must be supplemented
with the condition expressing the solenoidal nature of the Lagrangian displace-
ment

1 |
E;E(Vm + Vi) + PX Viss = 0. 41

To be consistent with equation (25) and exclude the point of bifurcation (36), we
set

Vyn =Vis= Vi +2Vy; @)
In view of equation (42), equation (41) takes the form

4 : 1

E"iVlzn'l'j;’s Vigg =0 (43)

Substituting the expressions for the relevant 37, . and W, ,
and (24), we find that Uik 4z in equations (23)

208 V3,13 + 2 (By + 3a,® Byy; — 24,2 Byyp) Viju=0~0, (44
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20y, 4 f‘"(zBu + 3ag® Bygg — @ Byyy) Vygg == 0. 45
By virtue of the relations between the index symbols, we can easily verify that
2(By + 3a:* By, — 2432 Byyg) = 2By3 + 304 Bygy — @,* Byyy = B (say)

(46)
Making use -of equation (43) we can rewrite the two equations (44) and (45) as
8% (1 —e?) Vy, 19— BV =0, “n
208 Vg, 13— BV 153 = 0. (48)
from which we conclude that
Va,s=4(1 f“‘e’)Va; 1 49)

We now turn our attention to equation (26). It is convenient to combine it
with equation (23) and write

' 4 (sTu;] ‘—'38Tlg; 2 —28T13; 3) + 3S133 "_68Wm; 2= 0 (50) :
which leads to
4% (1 —e3) (3 —8e?) Vg0 + 12 —2(1 —ed) Cl Vs = 0, (51
where
H
C=31Bu + Bu + (@' +20) Bl —~ 5 Q0 + 09 B ()

In arriving at equation (51) explicit use has been made of equations (41), (42) and
(49).

Equations (47) and (51) lead to the following condition for the occurrence of
a further neutral point

2 =2(1—e)C—%(3—8eHB; - : (53)
this is equivalent to
sin-te 225 —351 e + 134 ¢4 —B8e®
e T —N@s —26E +RA—168 (34)
and is met then ‘
e=1099608 and £°=0'22209. - (55)

“This point could not be isolated from the small perturbation analysis of Kochhar
and Treban (1974). It should be noted that long before this point of bifurcation
is reached, the Maclaurin spheroids become dynamically unstable to both second
and third harmonics. In the case of Maclaurin .spheroids considered stationary
in a rotating frame of reference, the corresponding point of bifurcation occurs
at e = 096937 where Q%= 04141 [EFE § 41, eq. (68)].

5, Rotating sxisymmetric masses with magnetic fields

We now consider the general case of a sequence of rotating axisymmetric masses
with magnetic fields. We return to equation (16) and assume the following form
for the Lagrangian displacement (EFE § 33 d)

E;$L6;mxnxn—%'L¢:ual# (.56)
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The pasticular form of the constant term here ensures a stationary centre of mass.
The assumed solenoidal character of the Lagrangian displacement imposes the
following restriction on the constants L, ,:

EL;; = 0 ’ i= 1, 2, 3. (57)
]
We should now express the various quantities occurring in equation (16) in terms
of the L; ;. Substituting for § in equation (29), we obtain
ST‘:’; r = Tdi; mn Lx: ma "—(TJL',- me + ZJ; kmn) L(;mn

'—.(T‘k; o T Zl; kmn) LJ: mn ""ir TH a,z LE; . (58)
where
| d
Z;, Jmn=‘ifpuzs;-1lx,.\‘,,.x,, dx. (59)

By virtue of the axisymmetry of the configuration, the non-vanishing components
of Z,, ;, satisfy

Zy, vy = — Tupus, ;) (60)
where w and o»* take the values 1 and 2, o* being 1 if w is 2 and vice versa.
The expression for 8 My, , in terms of the L , is [Kochhar 1974, éq. (18)].
SMyx = 2Myy wp Loy e + 2M i Ly g +
+ My v Lag o — 15 Myyay® Ly, o0 . (61)

In writing equation (61) explicit use has been made of equation (57). The expres-
sions for the § Wy, are available in terms of the V,, ;, which are related to the
L;; » as follows

Vi, m = Li; mm L — 1/5 Ly, 4, @2 Iy 62)
Proweding as in §4 we need consider only the following equations
4 (BT1g, s —S8Myyp) + 28Wie, 3= 0, 63)
40T 153 —8Mys;5) + 2Wi5. 3 =0, ' (64)
4 (BT, —8T0g 1 —28T0g, 9) —4 (B My, , —O8May s — 28 My, 5)
+ 88y = 0, (65)

48T, 1 — BTy 5) —4 BMyy; L —3 My 1 — M, ) + 58155 =0. (66)

The simultaneous (non-trivial) solution of these equati i

. tri ¢ quations will lead to the neces-
sary and syﬁic:ent conc_htlons for the existence of points of bifurcation belonging
to the third harmonics. Equation (65) leads to

(6Flyyg0 — 3By, 1 Jygs -+ 2Myy; 15 + 2Myg, 19 —

—6May, 13 — 12 My, 15) Ly —Ly, 59 —2L;, 19} = 0. 67)
Thus a npeutral point occurs when
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3(By +a? B:_n —2F) 333 —2 Mn; 1~
""2Mm- 1t 6Maa- ut 12M13- 13=0 (68)

for displacements for which Ly, 3;% Ly, 3 + 2L, 137 0 and the remaining L,
vanish.

When rotation is uniform and magnetic fields are absent, equation (68) reduces
to

2F = By, + &* By, (69)

which is equivalent to equation (36) by virtue of equation (9). We thus note that
the trial function (56) is exact in the case of pure uniform rotation. When the
magnetic field is purely toroidal, equation (68) again reduces to equation (69)
(see remarks following equation (13)). Thus we conclude that the point of bxfur-
cation remains unaffected by the presence of a toroidal magnetic field.

Now considering the case when a general magnetic field, having both toroidal
and poloidal components, is present, we first note that the first term in equation
(67) approaches zero at e = 0.73113 from positive values and is a decreasing func-
tion of e. Thus the point of bifurcation would be moved to higher (lower) values
of eccentricity if the magnetic terms are postive (negative). If the poloidal field is
along the axis of rotation, M,y ;3 + Mys, 12 = 0 and the magnetic terms are posi-
tive. The point of bifurcation is then moved to higher values of eccentricity.

These results should be compared with the corresponding results for second
harmonics, where the effect of a poloidal field is always to raise the point of bifur-
cation (Kochhar and Trehan 1973). Further while it is only.tbe component of
the polaidal field along the axis of rotation that affects the point of bifurcation
belonging to the second harmonics, all the components of a poloidal magnetic
field affect the point of bifurcation (55), belonging to the third harmonics. Equa-
tions (63) and (64) lead to

B
(FInn "‘Mu; 11 '—'Mn; 13 "‘Maa; n ""2M13; 13 —_2~0 11122) Lz; 12

3B .
—_ (Mn; 11+ Mg, s + o) I]m) Ly s + (Mu; 5% lm.s) X
X Ly =0, (70)

kY]
(4M13; 13 ’—g Iuas) Lg 12 + (Flms"“"g Ty1ss — Mg, 53 + 2M1, n) bs

X Ly; 13 — Ly 38 (Maa; 33 -F% Im;) =0. . )]

It is convenient to combine equation'(66) with equation (63) as follows

4 (STJI; 1 _35T12; 2 “ZBTB 0 —

— 4 (3Myy 1 — My, s — My —28M ;o) + 8Sis — 63 W), ”(712(;

Equation (72) yields
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(2—54' Fluaz + g'c Insa - 12Mm; 13 —4Maa; u) Lz; 12

- [;— (13 — 10¢®) Flyy2 _3_5? Iiass + 2My, 1 + 2M 3 19
—2My3; 1 —2Mgy; 33— 3Myy, 11] Ly 13
— (?‘ N —'% g5 — 2Mys, 13 — 2M 33, aa) Ly; 55 =0. 3
The solution of equations (70), (71) and (73) leads to an equation of the type
fre=0 , (14)

where the function g includes all the magnetic terms and vanishes when the magnetic
field is absent or is toroidal. In either case equation (74) becomes equivalent to
‘equation (53). Since f is a monotonically decreasing function of e, the point of
bifurcation will be raised to values higher (lower) than e = 0.99608 [(eq. (55)]
if g is positive (negative). At this stage it should be recalled (Kochhar and Trehan
1971; Kochhar 1974) that a sufficiently large magnetic field can suppress the
instability due to the second and the third harmonics, and the point of bifurcation
(74) may lie in the stable region. '

6. Conclusion

The points of bifurcation belonging to the third harmonics along the sequence
of Maclaurin spheroids viewed from an inertial frame are isolated using the integral
relations provided by the virial equations of various orders. These points are
distinct from their counterparts for Maclaurin spheroids considered stationary
in a rotating frame of reference and occur at eccentricity e = 0.73113 and
e = 0.99608. The effect of magnetic fields on these points is then considered. A
toroidal magnetic field leaves them unaffected, while a poloidal field consisting
of a component only along the axis of rotation raises the first point of bifurca-
tion beyond e == 0.73113. A general poloidal magnetic field may raise or lower
the points of bifurcation. These results should be compared with the corres-
ponding results for the point of bifurcation belonging to the second harmonics,
which is always raised by a poloidal magnetic field to values higher than the one
obtaining in the case of uniform rotation. Further, while the point of bifurcation
belonging to the second harmonics depends only upon the axial component of
the poloidal magnetic field, the points of bifurcation belonging to the third har-
monics depend on all the components of the poloidal magnetic field.
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