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Summary. We aim to illustrate the role of hot protons in enhancing the magnetoro­
tational instability (MRI) via the "hybrid" viscosity, which is due to the redirection 
of protons interacting with static magnetic field perturbations, and to establish that 
it is the only relevant mechanism in this situation. It has recently been shown by 
Balbus [1] and Islam & Balbus [11] using a fluid approach that viscous momentum 
transport is key to the development of the MRI in accretion disks for a wide range of 
parameters. However, their results do not apply in hot, advection-dominated disks, 
which are collisionless. We develop a fluid picture using the hybrid viscosity mech­
anism, that applies in the collisionless limit. We demonstrate that viscous effects 
arising from this mechanism can significantly enhance the growth of the MRI as 
long as the plasma {3 ~ 80. Our results facilitate for the first time a direct compari­
son between the MHD and quasi-kinetic treatments of the magnetoviscous instability 
in hot, collisionless disks. 

Key words: MHD: Viscosity - Instability in Hot - Accretion Disks 

1 Introduction 

The microphysical source of viscosity in accretion disks has been a long­
standing puzzle. Since the early 19908, there has been a growing consensus 
that magnetic fields generated by the magnetorotational instability (MRI) 
are key to providing the required viscosity in cold accretion disks ([2] (and 
references therein), [4], [14]}. The standard treatment of the 1\100 is valid 
only for collisional plasmas, which can be described in the MHD approxima­
tion. However, the plasmas comprising hot, two-temperature accretion flows, 
like those described in [8] and [19] (hereafter SLE) are clearly collisionless. 
This is also the case for the radiatively inefficient, advection-dominated ac­
cretion flows (ADAFs) treated in [15] and [16]. Filho ([9]), Kafatos ([12]) and 
Paczyllski ([17]) had initially suggested that viscosity due to collisions between 
hot protons might be important in two-temperature accretion flows, although 
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the effects of an embedded turbulent magnetic field were not included in their 
treatments. Subramanian, Becker & Kafatos ([23]; hereafter SBK96) proposed 
that a hybrid viscosity, due to protons colliding with magnetic scattering cen­
ters, might be the dominant viscosity mechanism in such accretion disks. In 
this paper we investigate the implications of the hybrid viscosity for the devel­
opment of the MRI in hot disks. In particular, we show that this mechanism 
can be used to establish an interesting connection between the fluid models 
and the quasi-kinetic treatments used by previous authors to study the viscous 
enhancement of the growth rate during the early stages of the MRI. 

2 MVI in hot accretion disks 

Balbus ([1]) and Islam & Balbus ([11]) employed an MHD approach to study 
the effect of viscosity on the development of the MRI, and discovered a ro­
bust instability which they call the magnetoviscous instability (MVI). In the 
MVI, angular momentum is exchanged between fluid elements via viscous 
transport, which plays a central role in the development of the instability. 
Balbus ([1]) does not address the physical origin of the viscosity that is cen­
tral to the development of the MVI, and therefore his results are stated in 
terms of an unspecified coefficient of dynamic viscosity, 'TJ. Islam & Balbus 
([11]) assumed the plain Spitzer (collisional) viscosity due to proton-proton 
collisions in their treatment of the MVI, but this particular mechanism is not 
effective in hot, collisionless disks. There have been some recent attempts at 
quasi-kinetic treatments of MRI-like instabilities in collisionless plasmas (e.g., 
[18], [20], [21]). It is interesting to note that the pressure anisotropy concept 
discussed in these papers is somewhat similar to the idea embodied in the 
hybrid viscosity formalism of SBK96. This suggests that it may be possible 
to develop a "fluid" picture based on the hybrid viscosity that would be ap­
plicable in hot disks, hence bridging the gap between the two paradigms. The 
hybrid viscosity concept of SBK96 relies only on the momentum deposited by 
particles propagating along magnetic fields lines between adjacent annuli in 
the disk. . 

3 Applicability of the hybrid viscosity 

Paczynski ([17]) and SBK96 noted that the presence of even a very weak 
magnetic field can effectively ''tie'' protons to magnetic field lines. Paczyllski 
argued that in this situation the ion-ion collisional mean free path is much 
larger than the proton Larmor radius and therefore the effective mean free 
path is equal to the proton Larmor radius. This led him to conclude that 
the viscosity would effectively be quenched in such a plasma. However, the 
protons in hot accretion disks are typically super-Alfvenic, especially in the 
initial stages of a magnetic field-amplifying instability such as the MRI, when 
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the plasma f3 parameter is quite large. This reflects the fact that tht:' ratio of 
the proton thermal speed to the Alfven speed is equal to (3,8/2)1/2. Since the 
magnetic field evolves on Alfven timescales, it can be considered to be static 
for our purposes. The motion of collisionless, charged particles propagating 
through a static, tangled magnetic field has been explored extensively in the 
context of cosmic ray propagation (e.g., [5], [6], [10]). It has been conclusively 
established that the particle transport does not obey Bohm diffusion for a 
wide range of rigidities and turbulence levels (see, e.g., Fig. 4 of [5] and Fig. 4 
of[6]). In particular, the low rigidity, low turbulence level case appropriate for 
our situation obeys the predictions of quasi-linear theory quite well, and the 
mean free paths are much larger than the Larmor radius as expected. 

Under these conditions, SBK96 demonstrated the importance of a new 
kind of viscosity called the "hybrid viscosity," in which angular momentum is 
transported via collisions between protons and static irregularities ("kinks") 
in the magnetic field. In this picture, a proton spirals tightly along a magnetic 
field line until its gyro-averaged guiding center motion (and hence its gyro­
averaged momentum) is changed via an encounter with a kink. During the 
encounter the proton therefore exchanges angular momentum with the field. 
which transfers the resulting torque to the plasma. The effective mean free 
path used in the computation of the viscosity is set equal to the distance 
between the magnetic kinks (i.e., the field coherence length). \\'e express the 
hybrid viscosity mechanism in terms of a pressure anisotropy in § 6.1. 

Here we examine the implications of the hybrid viscosity for the devel­
opment of the MVI in hot, two-temperature accretion disks around underfed 
black holes. We assume that the accreting plasma is composed of fully ion­
ized hydrogen. The physical picture involves the perturbation of an initially 
straight magnetic field line that eventually leads to the instability (see, e.g., 
Fig. 1 of [1]). Since the proton Larmor radius is negligible in comparison to a 
macroscopic length scale, we can effectively think of the proton as sliding along 
the field line like a bead on a wire. The proton is forced to change its direction 
upon encountering the kink associated with the initial field perturbation. In 
such a situation, the effective mean free path, A, used in the description of 
the hybrid viscosity should be set equal to the wavelength of the initial per­
turbation. We demonstrate that the hybrid viscosity is the principle mediator 
of the MVI during the early stages of the instability. 

4 Hybrid viscosity in hot accretion disks 

The structure of hot, two-temperature accretion disks was first studied in 
detail by SLE, and later by Eilek & Kafatos ([8]) and SBK96. The closely 
related advection-dominated accretion flows were analyzed by Narayan & Yi 
([15]), Narayan, Mahadevan, & Quataert ([16]), and many subsequent authors. 
In this section, we investigate the nature of the viscosity operative in hot, two-
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temperature accretion disks based on a simplified set of model-independent 
relations that are applicable to both ADAF and SLE disks. 

The gas in the disk can be considered collisionless with respect to the 
protons provided 

Aii >H, (1 ) 

where H is the half-thickness of the disk, and the ion-ion Coulomb collisional 
mean free path, AU, is given in cgs units by (SBK96) 

5 T? 
Aii = 1.80 x 10 Ni InA' (2) 

for a plasma with Coulomb logarithm InA and ion temperature and number 
density Ti and N i , respectively. We can combine equations (1) and (2) to 
obtain 

Aii = 1.20 X 10-19 Tl > 1, 
H Tes InA 

(3) 

where the electron scattering optical thickness, Tes , is given by 

(4) 

and (J"T is the Thomson scattering cross section. Equation (3) can be rear­
ranged to obtain a constraint on Tes required for the disk to be collisionless, 
given by 

1.20 X 105 Tf2 3 
Tes < In A '" 4 x 10 , (5) 

where T12 == T /1012 K and the final result holds for In A = 29 and T12 rv 1. 
This confirms that tenuous, two-temperature disks with Ti '" 1011_1012 K will 
be collisionless for typical values of Tes. 

The collisionless nature of hot two-temperature accretion flows established 
by equation (5) strongly suggests that the plain Spitzer viscosity is not going 
to be relevant for such disks, although the answer will depend on the strength 
of the magnetic field. The hybrid viscosity will dominate over the Spitzer vis­
cosity provided the ion-ion collisional mean free path Aii exceeds the Larmor 
radius, AL, so that the protons are effectively ''tied'' to magnetic field lines. 
We therefore have 

Aii > AL , (6) 

where the Larmor radius is given in egs units by (SBK96) 

T~/2 
AL =O.95 T , (7) 

where B is the magnetic field strength. Whether the disk is of the SLE or 
ADAF types, it is expected to be in vertical hydrostatic equilibrium, and 
therefore 
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(8) 

where ilK = (GM/r3)1/2 is the Keplerian angular velocity at radius r around 
a black hole of mass M, CS is the isothermal sound speed, and k and mp denote 
Boltzmann's constant and the proton mass, respectively. 

We can utilize equation (6) to derive a corresponding constraint on the 
plasma f3 parameter, 

(9) 

such that the hybrid viscosity dominates over the Spitzer viscosity. Bv com-
bining equations (2), (4), (6), (7), (8), and (9), we find that " 

T 9/ 2 R3/ 2 M, 
f3 < 3.71 X 1032 12 2 8 

Tes (InA) (10) 

where Ms == M/(108 M0 ) and R == rc2 /(GM). The minimum possible value 
of the right-hand side in equation (10) is obtained for the maximum value of 
Tes , which is given by equation (5). We therefore find that 

T 5/ 2 R3/ 2 M 
f3 < 3.09 X 1027 12 InA 8 (11) 

This relation is certainly satisfied in all cases involving the accretion of plasma 
onto a black hole, even in the presence of an infinitesimal magnetic field. We 
therefore conclude that the protons will be effectively tied to the magnetic field 
lines in two-temperature accretion disks around stellar mass and supermassive 
black holes, which implies that the hybrid viscosity dominates over the Spitzer 
viscosity in either SLE or ADAF disks. 

The results of this section confirm that protons in two-temperature accr& 
tion disks rarely collide with each other, and are closely tied to magnetic field 
lines, even for very weak magnetic fields. If a field line is perturbed, a typical 
proton sliding along it will follow the perturbation, and will thus be effectively 
redirected. This is the basic premise of the hybrid viscosity concept, which we 
will now apply to the development of the MVI. 

5 MVI driven by the hybrid viscosity 

Figure 1 of [11] shows that magnetoviscous effects significantly enhance the 
MRI growth rates in the parameter regime 

X;Sx, Y;:y, (12) 

where x I'V 1, Y I'V 1, and 



254 Subramanian, Becker & Kafatos 

X = 2.0 (kz H)2 
- !3 ' (13) 

with'T/ denoting the coefficient of dynamic viscosity and kz and k.l represent­
ing the z and transverse components of the field perturbation wavenumber. 
respectively. The maximum MVI growth rate is J3 ilK, which is 41 V3 '" 2.3 
times larger than the maximum MRI growth rate of (3/4) f2K. The conditions 
in equation (12) are derived from the dispersion relation given in equation (33) 
of [11 J, which is general enough to accommodate different prescriptions for the 
viscosity coefficient 7]. The condition X ;S x implies a constraint on !3 given 
by 

j3 2: 2(kz H)2 . 
x 

(14) 

As mentioned earlier, a proton sliding along a given field line is forced 
to change its direction when it encounters a kink/perturbation in the field 
line. The effective viscosity arises due to the momentum deposited in the 
fluid by the proton when it encounters the perturbation. In this picture, the 
perturbation wavelength plays the role of an effective mean free path. If we 
consider perturbations along an initially straight field line, as in Figure 1 of 
[1], then only the transverse component of the perturbation wavelength is 
relevant, and the effective mean free path for the proton is therefore 

(15) 

where e ~ 1, since the perturbation wavelength>. cannot exceed the disk 
half-thickness H (SBK96). 

In general, the Shakura-Sunyaev ([22]) viscosity parameter a is related to 
the coefficient of dynamic viscosity 'T/ via (SBK96) 

df2K 3 
O!P = -'11 R -- = - '11 ilK - ./ dR 2'/ , (16) 

where P = Ni k T j is the pressure in a two-temperature disk with Ti » Te. 
By combining equations (8), (13), and (16), we find that the condition Y 2: y 
can be rewritten as 

(17) 

Following Islam & Balbus ([11]), we expect that k.l ;S kz. By combining equa­
tions (14) and (17), we therefore conclude that j3 must satisfy the condition 

(18) 

We can also combine equations (14) and (15) to obtain the separate constraint 

!3 > 79 
~ e2x . (19) 
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Equations (18) and (19) must both be satisfied if the MVl is to significantly 
enhance the :MRI growth rates. Hence the combined condition for :3 is given 
by 

> (792Y) 
(3 ~ Max x.;2' ~ . (20) 

We can use equation (16) to calculate the Shakura-Sunyaev parameter 
Cl:hyb describing the hybrid viscosity. The associated coefficient of dY'namic 
viscosity is given by 

.A 
1Jhyb = ~ T}s , 

Al! 
(21) 

where .Aii is computed using equation (2) and T}s is the standard Spitzer col­
lisional viscosity, eval uated in cgs units using 

T5/ 2 

"Is = 2.20 X 10- 15 I~A . (22) 

The quantity 1Jhyb defined in equation (21) describes the effect of momentum 
deposition due to protons spiraling tightly along a magnetic field line over a 
mean free path .A. It differs from the expression given in equation (2.14) of 
SBK96 by a factor of 2/15, because we do not consider tangled magnetic fields 
here. Setting "I = 7Jhyb in equation (16) and utilizing equations (2), (8), (15). 
(21), and (22), we find after some algebra that the expression for Clhyb reduces 
to the simple form 

Cl:hyb = 1.2'; . (23) 

We can now combine equations (20) and (23) to conclude that in the case of 
the hybrid viscosity, the MVI is able to effectively enhance the MRI growth 
rates if 

> _ (79 1.7Y ) 
j3 ~ (3crit = Max x';2' x'; . (24) 

In particular, we note that if x '" 1 and Y '" 1, then equation (24) reduces 
to (3crit = 79 C 2 , since'; ::5 1. We therefore conclude that magnetoviscous 
effects driven by the hybrid viscosity will significantly enhance the growth rate 
(compared with the standard MRI growth rate) until the plasma f3 parameter 
reaches'" 80, or, equivalently, until the field strength Breaches", 10% of the 
eq uipartition value. This assumes that the dominant perturbations have'; ,.... 1, 
which is expected to be the case during the early stages of the instability. Once 
the field exceeds this strength, the growth rate of the instability during the 
linear stage will be equal to the MRI rate. 

6 Relation to previous work 

It is interesting to contrast our result for the j3 constraint with those developed 
by previous authors using different theoretical frameworks. 
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6.1 Hybrid viscosity in terms of pressure anisotropy 

Before proceeding on to discussing the result for the (3 constraint, we first cast 
the basic hybrid viscosity mechanism in terms of a pressure anisotropy. Several 
similar treatments appeal to a large-scale pressure anisotropy, rather than an 
explicit viscosity mechanism (e.g., [18], [20], [21]). It is therefore instructive 
to show that the hybrid viscosity mechanism we employ can be cast in these 
terms. 

We follow the approach of SBK96 in considering a perturbation in the 
local magnetic field of an accretion disk. The pressure anisotropy due to the 
momentum fiu..x carried by the particles can be analyzed in the local region 
using cartesian coordinates, with the i-axis aligned in the azimuthal (orbital) 
direction, the y-axis pointing in the outward radial direction, and the x-axis 
oriented in the vertical direction. The unperturbed magnetic field is assumed 
to lie in the z direction, and the perturbed field makes an angle () with respect 
to the i-axis, and an azimuthal angle 4> with respect to the x-axis. In keeping 
with the hybrid viscosity scenario, we assume that the particles spiral tightly 
around the perturbed field line. In this situation, the component of the particle 
pressure in the direction parallel to the magnetic field, l'! I, is equal to the 
.i-directed flux of the i-component of momentum, Pzz • Likewise, the total 
particle pressure perpendicular to the field, PJ., is equal to the sum of the 
x-directed momentum in the x-direction and the y-directed momentum in 
the y-direction, denoted by Pxx and Pyy , respectively. Following the same 
approach that leads to equation (2.11) of SBK96, we obtain for the parallel 
pressure 

l'!1 = Pzz = 2 mp Ni cos2e x 

[ kTi (2kTi)1/2 '( ) ..] 
2mp - 7rmp u 0 ). cos() sme sm¢ , (25) 

where u(y) represents the shear velocity profile and the prime denotes differ­
entiation with respect to y. Similarly, the total perpendicular pressure is given 
by 

Pl. = Pxx + Pyy = 2mpNi sin2 () x 

[ kY:. (2kT ) 1/2 ] 
2m: - 7rm; u' (0) ). cos () sin () sin ¢ (26) 

Taken together, equations (25) and (26) imply that 

PJ. 2 
l'!1 = tan e . (27) 

This result characterizes the pressure anisotropy associated with the hybrid 
viscosity mechanism. Equation (27) is strictly valid only in the limit of zero 
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proton gyroradius, which is a reasonable approximation ill hot advection­
dominated disks. When the field line is unperturbed, so that it lies precisely 
along the z-direction, then () = 0, and equation (27) indicates that the per­
pendicular pressure tends to zero; in reality, owing to finite gyroradius effects. 
the perpendicular pressure would actually be a small, but finite quantity even 
in this limit. Early in the instability, when the field line is slightly perturbed. 
() has a small but non-zero value, and equation (27) predicts that the perpen­
dicular pressure starts to increase in relation to the parallel pressure. \lVe have 
cast the hybrid viscosity mechanism in terms of a pressure anisotropy in this 
section in order to make contact with that part of the literature in whieh vis­
cous momentum transport is treated solely in this manner. The quasi-kinetic 
treatments of Quataert and co-workers rely on a Landau fluid closure scheme 
for deriving the perturbed pressure. The pressure anisotropy implied br the 
hybrid viscosity mechanism (eq. [27]) is much simpler than the corresponding 
result obtained using either the fluid closure scheme of Quataert et aI., or the 
double adiabatic scheme ([7]) adopted by other authors. 

6.2 Relation to MVI treatment 

In their treatment of the MVI, Islam & Balbus ([11]) parametrized the vis­
cous transport in terms of an unspecified proton-proton collision frequency, 
1/. Their estimates of the growth rates in collisional plasmas agree fairly well 
with those derived using quasi-kinetic treatments. Based on their formalism, 
they conclude that the!3 regime within which magnetoviscous effects can sig­
nificantly impact the MRl growth rates in two-temperature accretion flows 
extends to !3crit ,...., 1. However, as they point out, their approach breaks down 
in the collisionless limit 1/ ~ 0, which describes the ADAF disks of interest 
here. It is therefore not surprising that their constraint on ,3 is significantly 
different from the one we have derived in equation (24). 

6.3 Relation to quasi-kinetic treatment 

Quataert, Dorland & Hammett ([18]) have treated the case of a strictly colli­
sionless plasma using a fairly complex kinetic formalism. Their results suggest 
that, for the case with B¢ = B z and kr = 0 (which is the one considered by Is­
lam & Balbus and ourselves), viscous effects will significantly impact the 11Rl 
growth rates for values of f3 that are several orders of magnitude larger than 
those predicted by our formalism. For example, their analysis predicts that a 
growth rate of 1.5 OK can be achieved if f3 ;;: !3crit '" 10-1 (see Fig. 4 of [18]) 
and Fig. 2 of [20]). On the other hand, Figure 1 of [11] indicates that a grov.1;h 
rate of 1.5 OK can be achieved in the:MHD model if X ~ 0.35, Y ~ 12, which 
corresponds to x = 0.35, Y = 12 in equation (12). Assuming that ~ '" 1 as 
before, equation (24) yields in this case the condition f3 ~ J1crit '" 225. Hence 
our MHD model based on the hybrid viscosity predicts that viscous effects 
will enhance the MRl growth rates down to much lower values of i3 than those 
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obtained in the quasi-kinetic model. This difference reflects the differing role 
of the particle pressure in the two scenarios. 

In our formulation, the viscosity is expressed by protons that deposit their 
momentum into the fluid upon encountering kinks in the magnetic field, which 
is anchored in the local gas. The importance of forces due to gas pressure 
relative to those due to the tension associated with the magnetic field thus 
scales as the plasma 13. On the other hand, gas pressure forces are only ..j1J 
times as important as forces arising out of magnetic tension in the quasi­
kinetic treatment of [18]. It follows that the value of /3crit computed using 
our :MHD model based on the hybrid viscosity should be comparable to the 
square root of the I3crit value obtained using the quasi-kinetic model, and this 
is borne out by the numerical results cited above. 

7 Conclusions 

In this paper we have investigated the role of hot protons in influencing the 
magnetoviscous instability described in [1] and [11]. We have shown that the 
only relevant viscosity mechanism in this situation is the "hybrid" viscosity, 
which is due to the redirection of protons interacting with magnetic irregular­
ities ("kinks") set up by the initial field perturbations. In particular, we have 
demonstrated in equation (24) that viscous effects associated with the hybrid 
viscosity will significantly augment the MRI growth rates for /3 ~ 80, which 
corresponds to a magnetic field strength B below", 10% of the equipartition 
value. For smaller values of (3, we expect the instability to grow at the MRl 
rate as long as it remains in the linear regime. This conclusion is expected 
to be valid in any hot, two-temperature accretion disk, including advection­
dominated ones. We have obtained this result using a relatively simple fluid 
treatment, based upon the general dispersion relation obtained in [11]. Our use 
of the hybrid viscosity concept alleviates an important drawback in the fluid 
application made by Islam & Balbus ([11]), because their treatment of viscous 
transport breaks down in the collisionless plasmas of interest here. The new 
results we have obtained allow an interesting comparison between the MHD 
approach and the quasi-kinetic formalism used by other authors. We show 
that the differences between the predictions made by the two methodologies 
stem from the differing treatments of the particle pressure. 

PS gratefully acknowledges the hospitality of the Jagannath Institute of 
Technology and Management, where part of this work was carried out. 
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