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Theory of Holographic Plane Gratings
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Theory of holographically recorded plane diffraction gratings (HRPDG) has been presented. In general
HRPDG will have curved grooves with variable spacing. The self focussing property of HRPDG has been
studied in detail. The curved form of the grooves is helpful in reducing the spectral image aberrations. Design
parameters and aberrations are Jdiscussed in detail. 1t is found that by proper choice of design parameters, the
aberrations can b reduced considerably and resolution can be improved.

1. Introduction

Holographically recorded diifraction gratings
(HRDG) have opened a potential field for instru-
ments designers. The attractive features of a holo-
graphic grating are large size, the number and
pattern of grooves, low scattered light and possibility
of aberration correction by controlling design para-
meters easily. The efficiency of the HRDG is not as
goad as that of the ruled grating but it is sufficient
for various applications. One may improve the exis-
ting gratng mnstruments in various fields such as
astronomy, high resolution spectroscopy, information
processing, etc. by the use of HRDG in place of
conventional ruled gratings.

Various types of mechanically ruled diffraction
gratings, studied theorctically and experimentally,
have been reviewed by Namiocka! The theory of
HRDG on spherical blanks and their applications to
spectrographs and monochromators have been
studied by Cordelle er a/.,* Murty and Das,** Hayat
and Piecuchard,® Namioka er a/%7 and Pouey.® A
general geomctric theory of HRDG, ray tracing
through HRDG and application to Seya-Namioka
monochromator have been studied recently by Noda
et al?® .

Murty et al.® have given the theory of certain
diffraction gratings produced by holographic methods.
They have described self-focussing plane gratings
also, but their treatment cannct be considered a
general one, covering all aspects.

Plane diffraction gratings suitable for spectro-
graphic applications have been successfully produced
first by Rudolph and Schmall® and by a group at
Jobin-Yvon Inc. on photoresist coated optical sur-
faces. It has been shown by Laberie? that, holo-
graphically, by using a convergent beam, a self-
focussing plane grating can be constructed.
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The object of the present paper is to develop a
general theory for self-focussing holographic plane
diffraction gratings and to investigate, based on this
theory, applications of these gratings for designing
spectrographs and monochromators. The procedure
followed is that of Noda et gl.? for concave diffrac-
tion gratings.

2. Groove Patterns and Grating Constant of HRPDG

Plane holographic gratings are made by recording
interference pattern on a plane grating blank coated
with a suitable photoresist and using two moncchro-
mclic coherent beams. Let us take the origin of a
rectangular coordinate system at the centre of the
grating blank surface at O (Fig. 1), the x-axis being
normal to the blank surface and the y- and the z-axis
as shown in Fig. 1. C (xc, ¥, 2z¢) and D (xp, ¥p, zp)

AZ

Fig. 1--Representation of the plane grating blank with
respect to the rectangular coordinate system
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are the recording sources. We assume the distances
OC and OD to be integral multiples of Ao, the wave-
length of the recording laser light and that the

zeroth groove passes through O. Then the nth groove.

is formed according to Ref. 9, at a distance

n 2 = [(CP) — (DP)] — [(CO) — (DO)] ...(1)
where P (0, w, I) is a point on the nth groove (see
Ref. 9).

One can have specific desired form of the grooves
by properly adjusting the design parameter, viz. (xc,
ye) and (xp, yp). For obtaining straight grooves one
should take x¢, xp = o and y¢, yp = oo . In general,
the grating constant will be a function of both w
and /. Let us take o (w, 0) grating constant, as defined
by Noda et al.® along the y-axis as

w Ao
= (CP—DP)~(CO—DO0)}js

(2)

The grating constant at the centre of the grating
blank is given by ¢ (0, 0) by evaluating Eq. (2) for
w = 0, Using cylindrical coordinates x¢ = r¢ cos 7,
Yo =rc sin ¥,xp=rp c0s & and yp = rpsin g,
where ri = x% + y2 and r} = x} -+ yj, we get

Ao
ZH\~ zi .\~
(1 + D) ’lzsinse(l +—;) 1’2sm}'
rc

e(3)

s (w,0) =

¢ (0,0) =

= N/T

where T represents the denominator of RHS of
Eq. (3). In order to keep o, positive,

-1/2 23 \12 '
sin & > (1-!— —ﬁ) (H— ) sin ¥ w(4)

Now using Eqgs. (2) and (3) we can write

s (w, 0)=5 (0, 0) T
{1[(CP —DP) — (co DO)] }
[0
(5)
and
n = [(CP — DPY = (CO — DO)}js (0,0). Z. ..(6)

3. Light  Pith- Function
Let 4 [x, y, z) and- B(x ¥, z') be respectively a
point light source and an image point as shown in

Fig. 1. For the ray APB the light path function Fis
given by

F = (4P) + (PB) + nm\ f7)

where n, m and \ are rospectively the number of
the grooves counting {rom the centre of grating
blank, order of the spectrum and the wavelength of
light. Eq. (7) can be transtformed in terms of the
cylindrical coordinates of the points 4 (r, «, z) and
B(r', B, z'ywithaand 3 respectively the angles of
incidence and that of diffraction measured in the xy-
plane,

By the application of Fermat’s principle, viz
(0F/éw)=0 and (¢F, ¢/)=0, we car easily obtain [with
the condition (z¢/rc)=(zp/rp)], the grating equation,
magnification equation. ) «rizontal focal curve rela-
tion and vertical foeal curve rekation, as tollows:

(1 + = )_3' (sin « + sin Bq) = m (
i )= «.(8)
= (9
Y
cos®a  co¥* B (sinw + sin B) [cos? S __cos’y
r oo tsin & — sm K rp re
=0 ..(10)
T 1 sinet<nB/1 I ‘}_0 v
or T T sind —pmy \ o re!l (1)
We define here
_ su}_& — Nny_
7 cos®d  costy 12)
Ip re

With this notation we get the following solutions for
Eq. (10)

cos®a )
r == i 5
sin e |
\ ? .-.(13)
ro= RS B |
sanf
and
ry = 00
o g
r= R0 8 e (14)

SU & -+ Sin 3

The quantity R, behaves as the radius of curva-
ture. Obviousiy, tor « self-focussing grating, R,
should ,e finite and 1 ositive.

If we take R, = o0, Eq. (10) reduces to

cos* @ cos? B
RSt P}
¥ r

...(15)
which is the well known relation for an ordinary
ruled plane diffraction grating with constant spacing
and straight grooves. Earlier work*"** on curved
grooves shows that the self-focussing property is nos
the result of curved shape of the grooves which is
only helpful in reducing aberrations.
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It is evident from Eqg. (133 that in this case the
source curve and focal curve ure the same, just as in
the case of concave grating (Rowland circle). Simi-
larly, Eq. (14} gives the focal curves as in the case
of Wadsw orth mounting. Hercufter we will refer to
mounting given by Eq. (13) as type | und that given
by Eq. ( {41 as type 1l mounting.

For type | mounting, we get e condition for
zero astigmatism ..

cost & cox
p Ve Sine& -~ Sin P
- v P e e e e e =D (&
1 1 nascex+lan gsecf ¢ (= 8
'p re
-.(16)

For brevity, the LHS in Eq, (16) will hereafter be
denoted by #1 (rp, re, 6, 31k

For tvpe Il mounting, we get the condition for
zero astigmatism as

Silro, re, 6, %) = cos® B = D -..(17)

In this case, there will be two points oa the focal
curve for = 8 at which uastigmatism is zero except
for the case 8 = (I, whereas in type | mounting there
is only one peint at which astigmatism is zero.

4. Aberrations

The amount of aberration in an mage in a plune
located at o distunce r§ from O and perpendicular to
the diffracted principal ray can be easily computed
from Gaus-Seidel theory, sav up to O (1;w#) and the
displacements AB and Az" in the horizontal and verti-
cal directions respectively. from the  position
(r3, Bo, 23) specified by Egs. (8) and (9) can be com-
puted uncer the usual assumption z Kr, r;.

41 Tspe I Mounting

Let L be the tota] length of a groove projected
on the z-axis. From Eq. (11), we get for the length of
astigmatic images due to o point source,

o cos® 1 sin «

[ Tt = L[l ~ﬁ-3 {1 +(1-— 56];;) - 5}]
. (18)
From Eq. (18), [z'last depends upon rp, rc, § and
¥ recording parameters. So astigmatism can be mini-
mized by proper choice of these parameters. Fig. 2
represents the values of function Dy («, ) at different
wavelengths. In Fig. 2 the solid curves represent
D1 (x, 8) and the dashed lines, wavelengths in um at
different angles of incidence and diffraction. A proper
value of D; (a, B) to get zero astigmatism at a parti-
cular waveiength can be selected from Fig. 2. Fig. 3
represents f; (ro, re, 8, ¥) at different values of 8 and
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Fig.2—D; («, B) at different wavelené_ths (— gnd Aa,B)
(— — —) for different « and 8. wavelength in pm {g,=1m)

oa=1-€6 am
c;.-tum .
‘I!"L’,/ H

~s0l 1

Fig. 3—Plotof fy (rp, re, 8 Y) ( ) at different valuet
of § and v, and of gy atdp = 06328 um (—-=m)-2mu
Ao = 0'4579 pm (=———)

¥, when re=2 rp. Putting the value of fi= Dy, from
Fig. 3, one can get the values of $and 7 at different
values of @, taking As = 06328 pm (———)
curve) and A¢ = 04579 pm (— — —curve). In this
way one can determine the set of recording para-
meters for zero astigmatism at a particular wave-
length. Thus it is obvious that there exists a set of
parameters for which the grating will be. better as
compared to other sets at a particular wavelength. -

Now as HRPDG can be equivalent to .that of
congave diffraction gratings, it will be worthwhile tg
compare the astigmatism of a HRPDG and 4 ,‘mcc.hf
anically ruled concave diffraction grating thb
straight grooves and a holographically recorfied con-
cave diffraction grating (HRCDG) that Is astig-
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matism corrected on a spherical surface. We assume
op = 1 pmand @ = 10°. Let us also assume that by
proper choice of the recording parameters in the case
of HRPDG and HRCDG the astigmatism is zero at

= 05156 pm, ie. B = 20°. Table 1 shows the
values of astigmatism [2'at]/L in the case of these
three diffraction gratings. It can be seen from Table 1
that the astigmatism in the case of HRPDG is less
as compared to that of mechanically ruled concave
diffraction grating and greater than that of HRCDG.
In this example, we have taken r¢ = 2rp, fi = 0'9];
and & = 18° 6, y =— 18" 47" when )y = 0°6328 pm
and 8§ = 15°, y =— 11'5° when Ao = 0'4579 pm;
a == 10°, B = 0°to 35"

The astigmatism cannot be made zero for rg=rp,
because in this case fi = o
and

[z’]ast cos* 8 sin a
L :[1 T cos® « sim [3]

The most troublesome aberration of mechanically
ruled plane diffraction gratings witt constant spacing
is coma. But in the case of HRPDG we can reduce
or eliminate for a particular wavelength this type of
aberration also, For a point source it is given, to a
first approximation by

Apc = B (143sin® BN/ [ sin*a | sin®B
€T 2R, sin* B costa " cos'p -
_BGinersing (sno_sny\] o
(sind—siny) \ r3 ~ rg ~(19)

- For elimination of coma type aberration we have
to choose recording parameters such that

Dy, B)=fa ...(20)

where

tar® ¢ sec « 4 tan®  sec

Da (G, p) = sin & + sin p

Table 1—Values of Astigmatism in Case of Three Diffraction
Gratings with Different Wavelengths (2 =10°, ag==1pm)

B* Wavelength, Holographic Mechanically Holographic

“wm plane ruled concave  concave

grating grating grating

o 01736 - 00306  —00216

5 02608 —02240 00381 —0°0401

10 03472 ~01320 0-0603 —0'0426

1s. 04324 ~0'0670 00966 00292
20 05156 - 0-1458 —

25 05962 00751 02063 0-0436

30 06736 01550 02765 01009

35 07472 02491 03542 01699

and

=R (2 2 51’1.—3’—)/(5111 5 — sin y)

- 5 (21

By calculating the values of the LHS of Eq. (20),
for different sets of « and 8, i.e. for different wave-
lengths, we can determine the right hand factor
f2 (rp, ¥c, 3, ¥, Ao) which is 2 function of rp, re, 8,
and Ay parameters.

In an analogous manner by plotting D: («, B) at
different wavelengths and also f (rp, ¥p. 8, 7, Ao) at
different 8 and y values at r¢ = 2rp, one can obtain
the set of parameters at different wavclengths for
elimination of coma at these particular wavelengths.

For elimination of astigmatism and coma simul-
taneously, the following condition should be satisfied
for selecting the recording parameters:

( Dy — cos* 3
D:| cos® §—cos? | - —n )
[ c08 ?( Dy — cos?y |

e . . . Dy -cos® 3 \* R
= (sin 6 —sin }')[sm 8—sin y ( Dr—cos y } :} (22}

The equation for the sccondary focal curve is
given by

. cos? a (sin & + sin
ot [ R e e 5D

7 — sin a}
...{23)

We see that these secondary focal curves cut the
primary focal curves only at one wavelength, ie.
zero astigmatism is achieved only at one wavelength.

The optimum grating width is given by

Wopt =
R? (sin & 4 sin 8)

( 50 \153 13
H) tan®a sine+tan®f sinf - B (sin« +si f,)_]
where

B __( sin & cos* & siny cost ¥
rp ré

) Rf/(sin 8—sin y)
...(24)

It is evident from the above result that by proper
selection of R. and B, i.e. recording parameters, the
resolving power, 095 (m/ag) Wop , of the HRPDG
can be considerably increased.

For maximum resolving power one should have

D3 (“’ ﬁ) = B (rC> rp, 8’ }’) "'(25)
where
(tan? a sin « + tan® P sin B)
(sin « + sin B)

Fig. 4 is a plot of D; («, B) (solid curve) at diffe-
rent wavelengths (dotted curve). Fig. 5 shows the

Ds (&, B) =
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Table 2—Parameters for the Design of a Typical HRPDG

for Type 1 Mounting
= 2rp
o°
~30°
08rp
(1) 1-2656 ym
(20=0"6328 um)
(2) 09158 pm
(Ao=0"4579 pm)

N\
AN
AN
N
N
IR |
~
g9 i~ O
0 10 26> 36° 40° s0° 60° 70 80 90
ﬁ —
Fig. 4—Variation of D3 (¢, B) with wavelength ( ) and
A (e, B) (——~). Wavelength isin pm and ap = 1 um

-7

20 40 €0 - 80
o7

Fig. 5—Variation of B (g, rp, 3 Y) with y for different
values of 8, with r _=2rp,
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variation of B (rc, rp, 8, ¥), With vy and for different
values of § for re = 2 rp. For maximum resolution
at a particular wavelength one can find out from
Fig. 4 the value of Dsand from Fig. 5 at D; = B,
one can find out the suitable values of § and ¥ at
c = 2 I'p.

4.2 Type II Mounting

In a way similar to those given above ome can

find out the various relations for type II mounting

Fig. 6—Variation of Wopt with 8 for different values of «

[Table 2]
18
C 530
-
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12h
[
Fl ol
t o
20
08E
08
o
10\________________—"
Oy -
¥ /
. D A 1 L
02 T v i
B

Fig. 8—Variation of Apc/(I’/2R.,) with B for different

values of «
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Fig. 9~Images obtained by ray tracing for the example studied {Table 2) [Nimage i
um: (2) 0'65264; (b) 0°86574; and (c) 106568}

and hence the required design parameters for a parti-
cular problem. From a plot of secondary focal
curves, we see that these curves cut the correspond-
ing primary focal curves at two points. That is in
this case we can get stigmatic images at two
wavelengths.

The optimum grating width is given by

Wapt .—=( _2_&)1/3[ tan B (sin « —ffsin B) sec— B]
«..(26)

It is obvious from this expression that by proper
choice of R, and B, i.e. recording parameters, the
resolution of HRPDG can be improved.

5. Design of Gratings

Now we shall apply the above treatment for
designing HRPDG, and give one suitable example
for type I mounting. The parameters for this example
are given in Table 2. Figs. 6, 7 and 8 represent the
variation of Wop , [2']aw/L and Apc with B for diffe-
rent values of «. It is found that & = 20°is the most
suitable value for this design covering the spectrum
from B == 0-30°. The coma is zero at one wave-
lIength and reduced at other nearby wavelengths. The
astigmatism is very high in this case. In general, the
Woptis I"'5cm for R, = 100 cm. At a = 20°, Wopt
is infinite at two wavelengths. These results shown
in Figs. 6, 7and 8 are quite general, that is, for
example, if Wop at other values of R, are required,
the values given in Fig, 6 should be multiplied by
R, In these design parameters one can choose the
suitable value of rp to make the grating as fast as
other commercially available gratings.

6. Ray-Tracing and Spot Diagrams

Following Noda et al,® the spot diagrams for
this example at Ajmage = 0°65264 pm, 0'86574 pm and
1'06568 pm are presented in Figs. 9 (a), (b) and (c),
respectively. These diagrams are only for Ap==0'6328
wm and the ccrresponding parameters as shown in
Table 2. It is evident frcm these diagrams that the
resulis predicted earlier in this paper are correct,

7. Ceonclusion

It is clear from this study that HRPDG car be a
useful optical element, comparable to a concave
diffraction grating. The self-focussing property of
HRPDG can be usefully exploited for designing new
types of spectrographs and monochromators. Details
of design etc. for the mountings suitable for such
spectrographs and monochromators based on these
investigations will be communicated elsewhere.
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