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Abstract. We presentab initio calculations of both the dipole and quadrupole polarizabilities within the framework of the
relativistic coupled-cluster theory. We directly solve the first order perturbed equation arising from a general one-electron
perturbation, thereby avoiding an explicit summation over intermediate states. This method can be applied to a wide range of
problems including the high precision calculations of very small but finite parity non-conserving and CP violating amplitudes.
We discuss in detail the computational methods used in the calculations and investigate the trends of electron correlation effects
for the dipole and quadrupole polarizabilities.
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1. Introduction

There have been continuous attempts to improve the calculations of polarizabilities in atoms [1–8].
Due to their wide range of applications, both atomic physicists and quantum chemists have applied
various types of theories to determine them accurately [7–12]. A knowledge of these quantities is useful
in optical frequency standards [13,14], paritynon-conservation [2,15], and in testing the accuracy of the
lifetimes of the excited atomic states [4,7] etc. A fairly common approach that is used in the calculation
of polarizabilities is the sum-over-states approach, where one needs to calculate the intermediate states
that make significant contributions and also the excitation energies [7,8]. A possible advantage of
this approach is that in certain cases one can use the experimental energies to obtain accurate values
of the polarizabilities [7]. On the other hand, it has two major drawbacks: First, this is not anab
initio method and second it is not possible to include contributions from all the intermediate states,
but rather a selective number of states for practical reasons. In some cases, non-relativistic theories
have been employed to calculate polarizabilities and the relativistic corrections are considered in an
approximate manner [16,17]. These quantities have been calculated using the scalar relativistic Douglas-
Kroll [17–19] and the Dalgarno-Lewis [5,10,20] approaches [11,12,17]. Sometimes molecular codes
with pseudopotentials [18,21] and finite field coupled-cluster (CC) method [22] have been used.
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Relativistic coupled-cluster (RCC) theory has been employed recently to calculate a variety of atomic
properties [23,24]. This method is capable of treating electron correlation rigorously as it is equivalent
to all order many-body perturbation theory [25,26]. We generate our wave functions for the calculations
in the present work using this method. To calculate both dipole and quadrupole polarizabilities, we
present a new approach based on the RCC theory. The key aspect of this approach is that it implicitly
includes all intermediate states in the first order perturbed wave functions. By calculating these wave
functions with dipole or quadrupole operators as perturbations and evaluating the expectation values
of the corresponding operators, it is possible to determine the dipole and quadrupole polarizabilities,
respectively. In this approach, one does not have to consider the core-orbital contributions separately.
It clearly has the potential to yield accurateab initio results. This method can be extended to evaluate
dynamic polarizabilities and hence to determine the van der Waal’s co-efficients for like atom alkali-
metal pairs [5,8,20,27] and hetero-nuclear alkali-metal interactions [12]. A similar approach can also
be applied to calculate polarizabilities in alkali clusters [28]. In addition, this method can be used to
calculate the first order perturbed wave functions due to parity non-conserving (PNC) and CP violating
amplitudes. Interestingly, polarizabilities of negative ions like Be−, Mg−, Ca− and Sr− can also be
determined in this approach.

We have applied our method to three alkali atoms (Li, Na and K) and alkaline earth ions (Be+, Mg+

and Ca+) to calculate their dipole and quadrupole polarizabilities for ground and excited states. We
consider dipole polarizabilities for the ground states and two excited states. Quadrupole polarizabilities
are calculated only for the ground states in these systems.

First, we discuss the theory underlying atomic polarizabilities. In Section 3, we give the details of our
computational procedure for determining the the unperturbed and first order perturbed wave functions.
We then proceed to present our results in the next section and that is followed by some concluding
remarks.

2. Theory

The energy shift,∆E(Jn,Mn) of any state|JnMn >, with principal quantum numbern, in a direct
current (dc) electric field�E = E ẑ can be expressed as

∆E(Jn,Mn) = −1
2
α1(Jn,Mn)E2, (1)

whereα1(Jn,Mn) is defined as the static polarizability of state|JnMn >. Further,α1(Jn,Mn) can be
divided as

α1(Jn,Mn) = α1
0(Jn) +

3M2
n − Jn(Jn + 1)
Jn(2Jn − 1)

α1
2(Jn), (2)

Hereα1
0(Jn) andα1

2(Jn) are known as the scalar and tensor polarizabilities, respectively. From the first
order perturbation equations, these parameters can be expressed as the sum over intermediate states

α1
i (Jn) = −2

∑
k �=n

|〈JnJn|z|JkJk〉|2
En − Ek

, (3)

wherei represents either0 or 2, z is theẑ component of the position vector�r andE’s are the unperturbed
energy levels. Sincez can be expressed in terms of the spherical harmonics of rank one (Y 10(θ, φ)),
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the above matrix elements will be non-zero between opposite parity states satisfying the E1 transition
selection rules. Theαi’s can be expressed in terms of the reduced matrix elements of the E1 operator
(D = e�r) as follows

α1
0(Jn) =

−2
3(2Jn + 1)

∑
k �=n

|〈Jn||D||Jk〉|2
En − Ek

(4)

and

α1
2(Jn) =

(
40Jn(2Jn − 1)

3(2Jn + 3)(2Jn + 1)(Jn + 1)

)1/2∑
k �=n

(−1)Jn+Jk+1

{
Jn 1 Jk

1 Jn 2

}
(5)|〈Jn||D||Jk〉|2

En − Ek
.

Similarly, the static quadrupole polarizability can be expressed as

α2
0(Jn) = −2

∑
k �=n

|〈JnJn|Q|JkJk〉|2
En − Ek

(6)

=
−2

5(2Jn + 1)

∑
k �=n

|〈Jn||Q||Jk〉|2
En − Ek

,

whereQ = − e
2(3z2 − r2) is the E2 operator which has different selection rules than the E1 operator.

3. Computational method

The above expressions for both the polarizabilities can be expressed in a general form as

α(JnMn) = 〈Ψn|O|Ψn〉
= 〈Ψ(0)

n |O|Ψ(1)
n 〉 + 〈Ψ(1)

n |O|Ψ(0)
n 〉 (7)

= 2〈Ψ(1)
n |O|Ψ(0)

n 〉,
where the wave function of thenth state can be written in terms of the original atomic wave function and
the first order correction due to the corresponding dipole or quadrupole operatorsO(= D or Q); i.e.

|Ψn〉 = |Ψ(0)
n 〉 + |Ψ(1)

n 〉. (8)

We show that it is possible to calculateα(JnMn)’s by calculating both the|Ψ(0)
n 〉 and|Ψ(1)

n 〉 using
a coupled-cluster method which circumvents the sum-over-states approach mentioned above. In our
approach, we obtain the first order perturbed wave function as a solution to the following equation

(H(DC)
0 − E(0)

n )|Ψ(1)
n 〉 = (E(1)

n −Hint)|Ψ(0)
n 〉, (9)

whereH (DC)
0 andHint are the Dirac-Coulomb (DC) and the E1 or E2 operators, respectively. TheE

(0)
n

andE(1)
n are the zeroth and first order energies of thenth state, respectively.
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3.1. Calculations of unperturbed wave functions

The starting point of our development is the relativistic generalization of the valence universal coupled-
cluster theory introduced by Mukherjee et al. [29,30] which was put later in a more compact form by
Lindgren [25,31]. In the relativistic analogous of CC theory, to be hereafter called as the RCC theory,
the atomic wave function|Ψ(0)

v 〉 for a single valence (v) open-shell system is expressed as

|Ψ(0)
v 〉 = eT (0){1 + S(0)

v }|Φv〉, (10)

where we define|Φv〉 = a†v|Φ0〉, with |Φ0〉 as the Dirac-Fock (DF) state for the closed-shell system,
which is taken as the vacuum with respect to the DF vacuum. The curly bracket in the above expression
represents normal ordered form.

In the single and double excitations approximation coupled-cluster (CCSD) method, we have

T (0) = T
(0)
1 + T

(0)
2 ,

(11)
S(0)

v = S
(0)
1v + S

(0)
2v ,

whereT (0)
1 andT (0)

2 are the single and double hole-particle excitation operators for the core electrons

andS(0)
1v andS(0)

2v are the single and double excitation operators for the valence electron along with
necessary core electrons, respectively. The energies and RCC operator amplitudes can be determined by
solving the coupled-cluster singles and doubles equations as given below:

〈ΦL
0 | ̂H(0)eT (0) |Φ0〉 = δL,0 E

(0)
0 (12)

〈ΦK
v | ̂H(0)eT (0)S(0)

v |Φv〉 = −〈ΦK
v | ̂H(0)eT (0) |Φv〉 + 〈ΦK

v |{1 + S(0)
v }|Φv〉 E(0)

v

= −〈ΦK
v | ̂H(0)eT (0) |Φv〉 + E(0)

v + 〈ΦK
v |S(0)

v |Φv〉〈Φv| ̂(H(0)eT (0)){1 + S(0)
v }|Φv〉, (13)

whereL = 1, 2 represents single and double excitations from the closed-shell state andK = 1, 2
represents single and double excitations from a single valence state. ForL = 0, we get the closed-shell
energyE(0)

0 and forK = 0, we get the energyE (0)
v with the valency electron ‘v’. The difference

between these two energies give the ionization potential (IP) energy of the corresponding valence
electron. In the above equation, the wide-hat notation represents contraction and we have used the

relation: (e−T (0)
H(0)eT (0)

)c = ̂H(0)eT (0) , where the subscript ‘c’ represents only the connected terms
for the expression of the left hand side.

We consider the Dirac-Coulomb (DC) Hamiltonian for the calculation of unperturbed wavefunctions
given by

H(0) = [H(0)
0 ] + [V (0)

es ]
(14)

=
N∑
i

[
cα · pi + (β − 1)c2 + Vn(ri) + U(ri)

]
+

 N∑
i>j

1
rij

−
N∑
i

U(ri)

 ,
whereH (0)

0 is the DF Hamiltonian andV (0)
es is the Coulomb residual term in atomic unit (au) obtained

using the mean field potentialU(ri) that is included perturbatively to all orders in the RCC method. Here
α andβ are the universal Dirac matrices.
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To solve the amplitude equation given by Eq. (12), we formulate the following matrix equation 〈Φp
a|
︷ ︸︸ ︷
HN (eT (0) − 1) |Φp

a〉 〈Φp
a|
︷ ︸︸ ︷
HN (eT (0) − 1) |Φpq

ab〉
〈Φp

a|
︷ ︸︸ ︷
HN (eT (0) − 1) |Φpq

ab〉 〈Φpq
ab|
︷ ︸︸ ︷
HN (eT (0) − 1) |Φpq

ab〉

( t
p(0)
a

t
pq(0)
ab

)
=−
( 〈Φp

a|HN |Φ0〉
〈Φpq

ab|HN |Φ0〉
)
, (15)

where we have useda, b, c . . . andp, q, r . . . indices for occupied and unoccupied orbitals, respectively.
|Φp

a〉 and|Φpq
ab〉 are the single and double excitation wave functions, respectively, with respect to|Φ 0〉.

The above equation in vector form can be expressed as

A(X) · X = −B. (16)

The matrixA itself depends explicitly on theT (0) operator amplitudes. The non-linear terms present
in A can be split up as effective one-body terms and two-body terms. First these effective one-body and
two-body terms can be calculated and stored in RAM on the computer. These intermediate parts can
be contracted further with respectiveT (0) operators of theX vector. The solution of the above matrix
equation can be expressed as

Xj(i) =
−Bj −

∑
l �=j Ajl(X)Xl(i− 1)

Ajj
, (17)

whereAjj andAjl are the diagonal and off-diagonal element of the matrixA, respectively. The diagonal
elements are determined from the effective one-body terms and off-diagonal elements are determined
from effective one-body and two-body terms. The off-diagonal contributions are shown diagrammatically
in Fig. 1. The above equation is solved self-consistently using Jacobi iterative method withi representing
iteration number for thejth element.

Initial guesses for the first iteration are given by

(tpa)
(0)(1) = 0

(18)

(tpq
ab)

(0)(1) =
〈pq| 1

r12
|ab〉

εa + εb − εp − εq
,

respectively. The initial value for the(tpa)(0)(1) is zero which follows from theBrillouin’s condition [25,
26] andε’s are the DF single particle orbital energies. Zero in the superscript represents for the
unperturbed states.

The open-shell CC amplitudes determining Eq. (13) can be expressed in a similar approach as〈Φp
v|
︷ ︸︸ ︷
HNe

T (0) −∆Ev|Φp
a〉 〈Φp

v|
︷ ︸︸ ︷
HNe

T (0) |Φpq
vb〉

〈Φpq
vb |
︷ ︸︸ ︷
HNe

T (0) |Φp
v〉 〈Φpq

vb|
︷ ︸︸ ︷
HNe

T (0) −∆Ev|Φpq
vb〉

( s
p(0)
v

s
pq(0)
vb

)
=−
 〈Φp

v|
︷ ︸︸ ︷
HNe

T (0) |Φv〉
〈Φpq

vb|
︷ ︸︸ ︷
HNe

T (0) |Φv〉

 .(19)

Or, in vector form

(A − ∆EvI) · X = −B, (20)

whereI is the identity operator. In fact, in this equation A and B are known quantities asT (0)- amplitudes
are already evaluated. The above equation is non-linear because of the fact that the electron affinity
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(xxvi) (xxvii) (xxviii) (xxix) (xxx)

Fig. 1. Goldstone diagrammatic representation of off-diagonal elements for singles (a) and doubles (b) unperturbedT(0)-
operators. Boxes and double lines are the necessary effective one-body and two-body terms, respectively. Dotted line represents
bare two-body termVes and solid line representsT (0)- operators.

energy (∆Ev) itself depends onS(0)
v operator amplitudes. For the Jacobi iterative method, the above

equation can be solved by expressing

Xj(i) =
−Bj + (∆Ev − εv)Xj(i− 1) −∑l �=j AjlXl(i− 1)

Ajj
. (21)

The initial values of the above equation are taken as

sp(0)
v (1) =

f(p, v)
f(v, v) − f(p, p)

(22)

s
pq(0)
vb (1) =

〈pq|V (pq, vb)|vb〉
f(v, v) + f(b, b) − f(p, p) − f(q, q)

,

wheref(i, j)andV (pq, vb)are elements of effective one-body and two-body terms ofA. The off-diagonal
elements are shown diagrammatically in Fig. 2.

To illustrate the fact that the RCC method is an all order perturbative method, we decompose our RCC
operators in terms of many-body perturbation theory (MBPT) and show diagrammatically in Fig. 3. It
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Fig. 2. Goldstone diagrams for off-diagonal elementsS
(0)
v determining equations. Boxes with two open-lines and four

open-lines represent effective one-body and two-body terms withT(0)- operators which are known for the open-shell RCC
equations. Operator diagram with double arrow representsS

(0)
v - operators and lines with double arrow represent valence orbital.
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a q a q

S(0)

(0)
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(a)

Fig. 3. A schematic diagrammatic representation of RCC diagrams forS
(0)
1v andS

(0)
2v in terms of lower order MBPT diagrams.

Here we have used ‘a’ represents occupied (core) orbital, ‘p’ and ‘q’ represent unoccupied (particle) orbitals and ‘v’ represents
valence orbital. ForS(0)

1v , we have the restrictionp �= v.

implies that ourS(0)
1v operator (Fig. 3(a)) contains leading order pair-correlation effects andS

(0)
1v operator

(Fig. 3(b)) contains leading order core-polarization effects of the MBPT method, respectively.
The most important triple excitations have been considered by constructing the excitation operators
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(i) (ii)

(iii) (iv)

T

S S
Ves

Ves

Ves

Ves2v

2 T2

2v

(0)

(0) (0)

(0)

Fig. 4. Typical Goldstone diagrams representing leading order triple excitations over the CCSD method. Double arrow in the
diagrams represents valence electronv andVes is the residual interaction.

from Ves, T (0)
2 andS(0)

v2 [32] as

S
pqr(0)
vbc =

{ ̂
VesT

(0)
2 }3body + { ̂

VesS
(0)
v2 }3body

εv + εb + εc − εp − εq − εr
, (23)

where{. . .}3body are the appropriate three-body excitation operators fromvbr → pqr.
The above operators are used to construct the single and double open-shell cluster amplitudes by

connecting further with the CCSD operators and they are solved self-consistently. For the elementX j at
ith iteration, we have

Xj(i) =
−Bj + (Spqr

vbc )(i−1)
j Xj(i− 1) + (∆Ev − εv)Xj(i− 1) −∑l �=j AjlXl(i− 1)

Ajj
, (24)

and the approach is known as CCSD(T) method. Typical excitation operators those are considered in
these calculations are shown diagrammatically in Fig. 4.

3.2. Calculations of perturbed wave functions

In the presence of an external perturbation, it is possible to express the exact wave function of the
system in the presence of weak perturbed source as

|Ψv〉 = eT {1 + Sv}|Φv〉, (25)

where the cluster amplitudes are given by

T = T (0) + λT (1),
(26)

Sv = S(0)
v + λS(1)

v .
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HereλVext is taken as external perturbation. TheT (1) andS(1)
v operators are the corrections to the

cluster operatorsT (0) andS(0), respectively. Ifλ is very small, of the order of electron charge, one can
consider only the first order terms in Eq. (26). Therefore, Eq. (25) can be written as

|Ψv〉 = [eT (0)
T (1){1 + S(0)

v } + eT (0){S(1)
v }]|Φv〉, (27)

which can be explicitly separated as given in Eq. (8).
The perturbed amplitudes forT (1) andS(1)

v operators are solved using the following equations

〈ΦL
0 | ̂
H(0)T (1) +Hint|Φ0〉 = 0, (28)

〈ΦK
v | ̂

(H(0) − E
(0)
v )S(1)

v + ̂
H(0)T (1) +

̂
H(0)T (1)S

(0)
v +Hint +

̂
HintS

(0)
v |Φv〉 = 0, (29)

where L,K = 1, 2 and the effective Hamiltonian operators with overline defined asH (0) =
(e−T (0)

H(0)eT (0)
)c. These are computed after determiningT (0) amplitudes. The wide-hat symbol

as usual represents the connected terms. HereH int is the interaction Hamiltonian for the external
potentialλVext.

In the matrix representation, with the CCSD approximation, one can express Eq. (28) as(
〈Φp

a|H(0)
N |Φp

a〉 〈Φp
a|H(0)

N |Φpq
ab〉

〈Φpq
ab|H(0)

N |Φp
a〉 〈Φpq

ab|H(0)
N |Φpq

ab〉

)(
t
p(1)
a

t
pq(1)
ab

)
= −

( 〈Φp
a|Hint|Φ0〉

〈Φpq
ab|Hint|Φ0〉

)
, (30)

wheretp(1)
a andtpq(1)

ab are the perturbed single and double excitation amplitudes, respectively.
Or, in vector form one writes

A · X = −B. (31)

Thejth element of the vectorX, which representsT (1) operator, can be solved using the Jacobi iterative
method by expressing

Xj(i) =
−Bj −

∑
l �=j AjlXl(i− 1)
Ajj

, (32)

wherei represents iteration number andj the element number.Ajl andAjj are the off-diagonal and
diagonal elements of the matrixA. Bj is thejth element of the matrixB.

The initial values for these elements are considered as,

tp(1)
a (1) =

〈Φp
a|Hint|Φ0〉

f(a, a) − f(p, p)
(33)

t
pq(1)
ab (1) =

〈Φpq
ab|Hint|Φ0〉

f(a, a) + f(b, b) − f(p, p) − f(q, q)
.

Here superscript (1) represents the perturbed operator and ordinary (1) in the parenthesis stands for the
first iteration. Similarly for the open-shell Eq. (29), we can have(

〈Φp
v|H(0)

N − ∆Ev|Φp
v〉 〈Φp

v|H(0)
N |Φpq

vb〉
〈Φpq

vb|H(0)
N |Φp

v〉 〈Φpq
vb |H(0)

N − ∆Ev|Φpq
vb〉

)(
s

p(1)
v

s
pq(1)
vb

)
=−
(
〈Φp

v|H(0)
N T (1) +Hint|Φv〉

〈Φpq
vb |H(0)

N T (1) +Hint|Φv〉

)
, (34)
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(ix)(viii)(vii) (x)

(vi)(v)

B- matrix
diagrams
for T (1)

O O O O

O

O O O

O

Fig. 5. B- matrix diagrams forT (1)- determining equation.O represents the perturbed interaction operatorD or Q.

wheresp(1)
v andspq(1)

vb are the perturbed single and double excitation amplitudes, respectively, with the
valence electron ‘v’.

In vector notation, the above matrix can be expressed as

A · X = −B. (35)

Thejth element of the vectorX, which representsS (1)
v operator, can be solved using the Jacobi iterative

method by expressing

Xj(i) =
−Bj −

∑
l �=j AjlXl(i− 1)
Ajj

. (36)

The initial values for these elements are considered as

sp(1)
v (1) =

〈Φp
v|H(0)T (1) +H(1)|Φ0〉

∆Ev − f(p, p)
,

(37)

s
pq(1)
vb (1) =

〈Φpq
vb|H(0)T (1) +H(1)|Φ0〉

∆Ev + f(b, b) − f(p, p) − f(q, q)
.

To calculate the polarizabilities, one now takesHint as dipole (D) or quadrupole (Q) operators. For
atomic PNC or CP violating studies the corresponding weak interaction Hamiltonian has to be considered.
Now, considering the interaction HamiltonianHint due to dipole or quadrupole operators, it is possible
to express the polarizabilities as given in Eq. (7). i.e.

αi(JvMv) =
〈Φv|{1 + S†

v}eT †
OeT {1 + Sv}|Φv〉

〈Φv|{1 + S†
v}eT †eT {1 + Sv}|Φv〉
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=
< Φv|{1 + S

(1)†
v + T (1)†S

(0)†
v + T (1)†}eT (0)†

OeT (0){1 + T (1) + T (1)S
(0)
v + S

(1)
v }|Φv >

〈Φv|{1 + S
(0)†
v }eT (0)†

eT (0){1 + S
(0)
v }

(38)

=< Φv|S(1)†
v O(0){1 + S(0)

v }
+{1 + S

(0)†
v }O(0)S

(1)
v + {1 + S

(0)†
v }(T (1)†O(0) +O(0)T (1)){1 + S

(0)
v }|Φv >

1 +N
(0)
v

.

where we have definedO(0) = eT (0)†
OeT (0)

.
For computational simplicity, we compute the above expression in stepwise. We defineO(= eT (0)†

OeT (0)
), which can be expanded using the Wick’s general theorem [25] as

O =Of.c. +Oo.b. +Ot.b. + . . . , (39)
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where we have used the abbreviationsf.c., o.b. and t.b. for fully contracted, effective one-body and
effective two-body terms, respectively. In this expansion ofO, the effective one-body terms are computed
first keeping terms up to

Oo.b. =O + T (0)†O +OT (0) + T (0)†OT (0). (40)

Obviously, the fully contracted (f.c.) terms will not contribute in the calculation based on the linked-

diagram theorem [25]. These terms are finally contracted with theS
(1)
v andS(1)†

v operators in the final
calculation. Contributions from the effective two-body terms ofO are computed directly. The following
types of RCC terms are considered for the construction of effective two-body terms

Ot.b. = OT
(0)
1 + T

(0)†
1 O +OT

(0)
2 + T

(0)†
2 O. (41)

Similarly, we also construct effective one-body and two-body terms combiningO andT (1) operators.

These operators again contracted with theS
(0)
v andS(0)†

v operators. Other neglected terms correspond
to higher order in residual Coulomb interaction and are neglected in the present calculation.

Contributions from normalization factors (Norm) are obtained using the following relation

Norm = 〈Ψf |O|Ψi〉
 1√

(1 +N
(0)
f )(1 +N

(0)
i )

− 1

 , (42)

with N
(0)
v = {S(0)†

v eT (0)†
eT (0)

S
(0)
v } for the valence electronv.
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In Fig. 8, we have contracted pair-correlation and core-polarization as diagrams as has been shown by
Fig. 3 with the dipole/quadrupole operators and have demonstrated how these effects to all orders in the
final calculations ensuring inclusion of large physical effects.

4. Basis functions

The DF single particle orbital|φi〉 is constructed as linear combinations of Gaussian type orbitals
(GTOs) as [33,34]

|φi(r)〉 =
∑

ν

ciν |fi,ν(r)〉 (43)

where the GTOs are given by

fi,k(r) = rke−αir2
, (44)

wherek = 0, 1, . . . for s, p, . . . type orbital symmetries, respectively. For the exponents, we have
used [33,34]

αi = α0β
i−1. (45)

In the present calculations, we have consideredα0 = 0.00525 andβ = 2.73 for all the systems.
Therefore, we can express the DF orbitals as

|φi(r)〉 =
∑

ν

ciν |fi,ν(r)〉
(46)

⇒ 1
r

(
Pi(r) χκ,m

iQi(r) χ−κ,m

)
=

1
r

( ∑
ν c

L
iνfi,ν(r) χκ,m

i
∑

ν c
S
iνfi,ν(r) χ−κ,m

)
,
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represents residual Coulomb operator and a and p represent, occupied and unoccupied orbitals, respectively.

wherecL
iν andcS

iν are the coefficients for the large (L) and small (S) components of the DF orbitals.
These coefficients are determined by diagonalizing the DF equation.

The kinetic balance condition [35,36] has been imposed between the large and small components of
the GTOs in order to avoid divergence of the self-consistent solution of the above DF equation. For
a finite nucleus all orbitals are generated on a grid using a two-parameter Fermi nuclear distribution
approximation given by

ρ =
ρ0

1 + e(r−c)/a
, (47)

where the parameter ‘c’ is thehalf-charge radius, and ‘a’ is related to theskin thickness which is defined
as the interval of the nuclear thickness over which the nuclear charge density falls from near one to near
zero. These values are tabulated by Vries et al. [37] for many atomic systems. We determine ‘c’ and
‘a’ for various atomic systems as given by Mohanty and Parpia [38]. The equations determining these
parameters are

a= 2.3/4(ln3)
(48)

c=

√
5
3
r2

rms −
7
3
a2π2

whererrms is the root mean square radius of the nucleus.

5. Results and discussions

In Table 1, we present the results of our dipole polarizability calculations for the ground states and two
excited states of the systems we have considered . These results are compared with experimental data. We
have also presented results of selected calculations which were obtained by a variety of non-relativistic
and relativistic many-body methods. Hartree-Fock results for many of the systems can be found in [71]
and some theoretical results using different perturbation theories are discussed by Schwerdtfeger [72].
Only a few experimental results are available for the excited states.



B.K. Sahoo et al. / A coupled-cluster approach to polarizabilities: Computational aspects 71

Table 1
Dipole polarizabilities in alkali atoms and alkaline-earth-metal ions ina3

0

Transitions Expts Others This work
Li
2s 2S1/2 164(3.4) [39], 148(13) [40] 164.111 [1], 165.01 [11], 164.6 [12] 162.29

164.2(1.1) [41] 163.73 [17], 165.2 [42], 164.5 [43]
170.43 [44], 169.55 [45], 165.8 [46]
164.1 [47], 163.91 [48], 164.08 [49]
164.8 [50], 164.21 [51], 164.0 [52]

3s 2S1/2 4136 [53], 4135 [54], 4121 [55] 4121.80
4088, 3770 [56], 3832 [57]

4s 2S1/2 12270.58

Na
3s 2S1/2 159.2(3.4) [39], 164.6(11.5) [40] 163.07 [7], 165.88 [11], 160.7 [12] 162.89

164.89 [17], 168.41 [44], 162.8 [51],159.2 [52]
4s 2S1/2 3100.66 [7], 3389.0 [53] 3099.37
5s 2S1/2 1290.31

K
4s 2S1/2 292.8(6.1) [39], 305(21.6) [40] 290.1 [7], 285.23 [11], 289.5 [12] 286.01

292.9(59) [58] 301.28 [17]
5s 2S1/2 4958.40 [7] 4837.18
6s 2S1/2 826.44

Be+

2s 2S1/2 24.93 [12], 25.04 [44], 24.63 [45],16.74 [59] 24.11
3s 2S1/2 635 [57] 575.70
4s 2S1/2 4935.78

Mg+

3s 2S1/2 34.62(26) [60], 33.0(5) [61] 33.68 [12], 37.2 [59], 34.144 [60] 34.59
33.8(8) [62] 34.0 [66], 38.7 [63], 38.9 [64]

4s 2S1/2 538.17
5s 2S1/2 4024.27

Ca+

4s 2S1/2 70.89(15) [60], 75.3(4) [61] 71.01 [12], 96.2 [59], 70.872 [60] 73.86
72.5(19) [61] 76.9 [66], 112.4 [63], 75.88 [65]

87(2) [67], 75.71 [68]
5s 2S1/2 951.97
6s 2S1/2 7597.05

We have also presented quadrupole polarizabilities in Table 2. To our knowledge, no experimental
results are available for these quantities. These quantities are useful for determining van der Waal’s
coefficients. We have compared our results with those of other calculations.They are in reasonable
agreement with our calculations.

6. Conclusion

We have developed for the first time a general method in the framework of relativistic coupled-cluster
theory to obtain the first order wave functions due to any one electron perturbation. This approach can
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Table 2
Quadrupole polarizabilities in alkali atoms and alkaline-earth-metal ions ina5

0

Atoms Others This work
Li 1423.266(5) [1], 1424(4) [5], 1448.11 [9], 1393 [12] 1421.28

1383 [21], 1428 [43], 1519.80 [44], 1486 [46]
1423 [47], 1430 [50], 1424 [52], 1423 [69]

Na 1885(26) [5], 1383 [9], 1796 [12], 1806.57 [21] 1899.67
2194.73 [44], 1878 [52], 1879 [69]

K 5000(45) [5], 5105.43 [9], 4703 [12], 4597 [21] 4919.71
5000 [52], 5001 [69]

Be+ 52.93 [12], 55.52 [44] 53.80
55.71 [59], 52.4 [70]

Mg+ 150.2 [12], 187.66 [59], 150.15 [66], 137.0 [70] 156.17

Ca+ 1171 [12], 727.55 [59], 1303.51 [66] 706.59

be applied to diverse problems in physics ranging from polarizabilities to probes of physics beyond the
Standard Model of particle physics. We have also investigated electron correlation effects from the dipole
and quadrupole polarizabilities calculations in six different systems and highlighted their behavior. We
have observed that higher order correlation effects for polarizabilities are important for the relatively
larger systems we have considered, thereby suggesting the suitability of our relativistic coupled-cluster
method for the present studies. Indeed, this approach can also be extended to determine frequency
dependent (dynamic) polarizabilities which we defer to our future studies. The computational aspects
of our work presented in this paper would certainly be of interest to theoretical atomic physicists and
quantum chemists.
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