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Summary. Starting from the equation of continuity in phase space we set up the
macroscopic equations for collisionless stellar systems. We recover the tensor
virial equation and obtain, for the first time, the tensor equivalent of the energy
equation, which gives the rate of change of the kinetic energy tensor K;.

These equations are then used to study the dynamical evolution of
homogeneous spheroidal stellar systems where the velocity distribution is not
assumed to be isotropic as has been done in previous investigations along these
lines. Relaxation of the constraint of velocity isotropy significantly affects the
evolution of the cluster.

When the ‘pressure’ is zero, the system’s behaviour is identical to that of a
pressureless gas cloud (Lin, Mestel & Shu).

In the general case when pressure is non-zero, and the total energy is negative,
the cluster executes finite amplitude oscillations both in size and eccentricity.
However, unlike in the isotropic case, the amplitude of the oscillations depends
on the initial eccentricity; and the system does not oscillate between prolate and
oblate shapes.

When the total energy is positive, the system expands and is eventually
dispersed. However, unlike in the isotropic case, an oblate (prolate) system
remains oblate (prolate). We also show that these results apply even in the case of
heterogeneous spheroids.

1 Introduction

Chandrasekhar & Elbert (1972) have used the scalar virial equation to study the dynamical
evolution of a spherical stellar system. Using the relation for energy conservation

K+ W=E=aconstant, (1)
they rewrite the virial equations in the form

1 &1

———=2K+W=2E-W. ()
2 dr

Since both I and W can be expressed in terms of the radius, a, this equation gives the radius as a
function of time.
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Chandrasekhar & Elbert (1972) also use the tensor virial equation
dZ
— 1;=2K;+ Wy, 3
2 dr ! ®)

to study the dynamical evolution of a spheroidal cluster of mass points under the simplifying
assumption that the velocity distribution is (always) locally isotropic so that

Ky1=K»n=K33="K. 4)

The case of negative total energy has been reexamined by Som Sunder & Kochhar (1985,
Paper I), where it is shown that the system executes finite amplitude oscillations between prolate
and oblate shapes.

Here we consider the general case when the artificial constraint of an isotropic velocity
distribution is removed. For this we require a relation expressing the variation of the total kinetic
energy tensor Ki; with time. Such a relation, which is the tensor equivalent of the law of energy
conservation (1), can be obtained from the equations of motion for an N-body system (cf. Som
Sunder 1985). The evaluation of the quantities involved in this expression, however, require the
assumption of certain symmetries in both the mass and velocity distribution. For this reason it is
simpler to obtain these expressions for a system described by a continuous distribution function
f(x, u, ). This is the procedure adopted in the following section. In Section 3 we use these
equations to study the collapse of ‘pressureless’ homogeneous stellar systems. In Section 4 the
evolution of homogeneous systems with negative total energies is studied whereas Section 5
considers the case of systems with positive energies. Section 6 then studies the evolution of
heterogeneous spheroids.

2 The basic equations

We consider a stellar system, a star cluster or a galaxy, consisting of a large number, N, of stars
assumed to be mass points. The position, velocity, and acceleration of a particle with respect to an
arbitrary frame of reference are denoted by x, u, g while z=(x, u) represents the phase
coordinate. Since N is large the phase space representation can be taken to be a continuous fluid
with phase density given by the distribution function f(z, £)=f(x, u, £) (Lynden-Bell 1969). The
various tensors of interest can be defined in terms of the distribution function f(z, f).

The expressions for the moment of inertia, momentum, kinetic energy, and potential energy
tensors of order two are

Iij=Jrf(z)xixjdz=frg(x)xixjdx, (5)

L= [ S umida= | o mmax, ©)
r v

Ki]-=1/2[f(z) u,~u,-dz=1/2j o(x) u;u; dx, )

Wy=— f | ) ’)( o GG D

=———[fg(x)g( i ‘)3(’ GG 4 ®)

Here T represents the instantaneous phase-volume of the phase fluid; V the volume of the
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stellar system in coordinate-space; ¢(x) and g(x) the density and the mean value of q(z) for all the

particles at x. The expression for W;; in terms of f(z) is a generalization of the definition of the

potential energy as given by Lynden-Bell (1969). The second expressions in the right of equations

(5)—(8) are obtained by effecting an integration over the entire velocity space (cf. Binney 1982).
The dual of the tensor L, ; is the angular momentum of the system

A= kajiLi;j- 9)
i

(Note: the summation convention is not employed in this paper.) We write
u,-=ﬁ,-+'ll,-, (10)

where #; is the random velocity of the star. Then we can rewrite equation (7) in the form
(cf. Binney 1982)

Kl"=Ti‘+1/2Hi', 11
j J J

where

Tij: 1/24[ Q(X) ﬁlﬁ] dX,
v

IL;= | o(x)u;u;dx 12)
i~ ), i

represent respectively the contributions to the kinetic energy tensor from the mean and random
motions.

We define the moments of the accleration field namely the virial

Uy = f F(@) gix; dz= f 0(x)Zix; dx, (13)
r vV

and the ‘H-tensor’

H,,= f f(@) giu da= fvg(x)ﬁ x. (14)

We assume that the system is collisionless. The distribution function then satisfies the equation
of continuity (Lynden-Bell 1969)

f Sy 9 39
—+ > —fu,+ > —fg,=0, 15
2 axpf P Z aupfgp (15)

a =
from which the following theorem results:

Theorem: If q(z, ¢) is an attribute of an element of the phase fluid at z then

d _ dq
E frf(z, 1 q(z, t) dz—Jrf(z, B P dz, (16)

where

dg 3¢ & g O oq
—=—+2up——+ 8 — (17)
dr ot ;3 Tox, ami ou,

is the total time derivative as we follow the element in its motion through phase-space, and the
integration is carried out over I, the instantaneous phase-volume of the phase-fluid. The proof

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1986MNRAS.221..553S

FTIBBVNRAS. 2717 55350

556 G. Som Sunder and R. K. Kochhar

is analogous to that of the corresponding theorem in hydrodynamics (c¢f. Chandrasekhar 1969).
By substituting various expressions for g in equation (16) we obtain the various macroscopic
equations.

Thus with g=x,x; equation (16) yields

L (18)
Similarly setting g=u;x; in equation (16) we obtain

a j i
Combining equations (18) and (19) we get the virial equation

2

1;

]=4Kij+(Ui;j+Uj;i)- (20)
t

Multiplying equation (19) by £; and summing over i and j we obtain the equation for the rate
of change of angular momentum

d/lk 3
- = 2 Sk]l ije (21)
i,j=1

Virial equations of other orders may be obtained in an analogous fashion from equation (16) (cf.
Som Sunder 1985).
Substituting g =u;u; in equation (16) one obtains

d
2—Ky=Hyy+H: (22)

The contracted version of equation (22) expresses the variation of the total energy with time and
in the case of isolated systems, reduces to the energy conservation law (1) (¢f. Som Sunder 1985).

The relations (20)—(22) apply to any (collisionless) stellar system. We shall now confine our
attention to isolated non-rotating spheroidal stellar systems. In this case

07"
8i= ox,’ (23)
with the potential Z°(x) given by
W(x)=fo(z’) ! dz’=Gfg(x) : dx’. (24)
r —x'| o |x=x|

The virial therefore reduces to

..=__J'Jf( Yic ) il ’)( ’1 ‘)dzdz'=w,.,, (25)
and equation (20) takes the familiar form
1 dZI,-]- =2K.+W. (26)
2 df? o
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whereas equation (21) reduces to the law of angular momentum conservation
a Ar=0 27)
ar

In order to evaluate H;;; we choose the coordinate axes along the body axes of the spheroid and
assume that the mean velocity is a linear function of the coordinates (cf. Chandrasekhar 1969)

3
H= > qipXp. (28)
p=1

Hence making use of the fact that in the chosen frame of reference both I;; and W;; are diagonal
we have from equations (6) and (14)

Li;f=f o(x)u;x;dx =q;l;, (29)
v
o7 3
Hiy= | o) ——dx= 3 4 Wip=; Wi (30)
v ox; o

Since by assumption the system is non-rotating

3
/1](= E SkﬁLi;]'ZO. (31)
ij=1
Using equations (18), (29) and (31) we have
: (dl"’) 0 (%)) (32)
0T ) = 17]).
7 20, \ dt T J

Using equations (32) in equation (30) we see that the only non-trivial equations in equation

(22) are

dK,“ Wii dl,','

—_— (33)
dac  2I; dt

This equation can be integrated using equation (26) to yield

1 /dI;\?
Kii = +— s (34)

where y; are constants of integration. Combining equations (34) and (26) one obtains

dzlii 1 dIii 2 2,'{1
+—+2W,. (35)
dt I;

dar?  2I;

By substituting from equation (28) and (32) in equation (12) we see that

Tii = — (_—> 5 (36)
8I;\ dt

and hence from equations (34) and (11) we have
I1;1,,=y;=aconstant. (37)

Just as the virial equation can be obtained by taking the moments of the hydrodynamic equations
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of continuity and momentum transport (cf. Binney 1982) equation (37) may be obtained by
integrating the transport equation for kinetic pressure (cf. Delcroix 1965)

a___ O 0 39 3 ol
Q<_ ﬁlﬁ]+ 2 ﬁp —_— ﬁ,ﬁp) + Z_Qﬁ,ﬁ]ﬁp'*' pﬁ]ﬁp —
ot p=1 9x, p=19%p p=1 ax,
3 — 3 —
I 6u,~ - au]- —
+ 2 oujt, —+ 2 oull, —=0(8,U;+U;g), (38)
p=1 axp P=1 xp

after introducing the approximation (28) (cf. Som Sunder 1985). It should be noted that equation
(37) in the case of a sphere reduces to the well-known adiabatic law for a monoatomic gas.

We will be chiefly concerned with homogeneous spheroidal stellar systems with axes a;=a,
and a;. We choose our units of length mass and time such that

M=1, a;=1(att=0), G=1, (39)
so that equation (35) yields the pair of independent equations

d2a1 C1 31
el 4, (40)
dr* 24} 2 ajas

=———" A, 41
24 242 (“1)
where

¢;i=50y:; (42)

and the index symbols A; for a spheroid are given by (Chandrasekhar 1969)

y1—y 1-y

A=A,= —S(y)— —, (43)
y y
2 2yl-y
A= —= S(), (44)
y y
with
y=1-a3/a3, (45)
s —~1
sin
( \/y y>0
Wy
S(y)=¢ 1 y=0

sinh™!\/—y
5

In the following sections we use these equations to study the dynamical evolution of isolated
stellar systems for various initial conditions. The constancy of the expressions for the total energy

y<0. (46)
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(equation 1)

[ 1 /dlL,\?
E=K+W =Y, ) L
8 dt 21

p=1 IPP pp

1 dal 2 da:; 2 C1 C3 31
=—|2|—) +|— | +2—+—|-——S(y) (47)
10 dt dt 2¢7 2431 5 a

will serve as a check on the accuracy of the computation.

3 Collapse of ‘pressureless’ systems
In this section we investigate systems with zero ‘pressure’ initially, i.e.
Hi[:O atr=0. (48)

From equation (37) it follows that the relation (48) holds for all ¢, i.e. the system remains
pressureless, and since

xi=¢i=0, (49)
equations (40) and (41) take the form

P 2am (50)
d’a, B 3 —1—A

dr? __E a? > (1)

The equations are identical (except for multiplying factors) with equations (17) and (18) of
Lin, Mestel & Shu (1965) who consider the evolution of a spheroidal pressureless gas cloud. Thus
the behaviour of a ‘pressureless’ stellar system is similar to that of a pressureless gas cloud.

The results of numerical integration of equations (50) and (51) for the following initial
conditions

da_dos_ - (at t=0) (52)
e dr y=Yo. ’

are shown in Figs 1 and 2.
In the spherical case a;=az=a, the solution is given by the analytic expression

t=L[Va(l—a)+1/2005'1(2a—1)]. (53)

V2

In the spheroidal case, proceeding in a fashion similar to that of Lin et al. (1965), we obtain an
approximate series solution

a,=cos* 6,

1 @
= — 1 1 —_ —1 1
t ) [(0+ 128in26) 0 (6 /251n26’)],

E® 2
y=1—{E(0)+E(2)tan20[1+ o) tanﬁ]} , (54)
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Table 1. Values for the coefficients in the expansion 55.

a® E®

(0) ~_ ) ) i

Yo a a© E E E®
0.9 1.826 0.200 0.316 —-0.851 0.050
0.5 1.556 0.063 0.707 —-0.356 0.039
0.0 1.414 0.000 1.000 0.000 0.033
-0.5 1.327 —0.035 1.225 0.267 0.030
-0.9 1.276 —-0.062 1.378 0.447 0.025

where the various coefficients are given by the following sequence of relations:

v1=yo 1-yo
S(o)— ,
Yo Yo

EO= iy,

3 1/2
a©= [_ Ag@)} ,

Ago) =

E©®

E [a(o)]z (341721,
a@=—p@ Y10 ][5 370

( 5 o) |5

Yo v1=yo

a® 3 o 0 E @

a®~ sgopop [N e |

E®

— = SOOP+SGVT=y0-2}/ 31800~ VI-yaP). G5)

The values of these coefficients for a few values of yg are listed in Table 1. It is found that the series
solution is in good agreement with the results of numerical integration.

It is seen from Fig. 1 that the smaller axis always collapses to a point. In the spherical case the
collapse occurs in time t*=11/2/2. The collapse time increases with decreasing values of y, being
larger for a prolate than for an oblate system.

The collapse is accompanied by an enhancement in the asphericity of the system. As pointed
out by Binney (1980) both kinematic and dynamic processes are involved in the above effect. The
kinematic effect is that, if during a collapse both short and long axes are shrinking at the same rate
the short axis will go to zero before the long one. The dynamical effect, which Binney calls
‘self-tidal distortion’ is due to the fact that the shortest axis is subject to the greatest acceleration
towards the centre, and hence collapses faster towards the centre. As a result an oblate spheroid
becomes more oblate as it collapses and tends towards a disc, whereas a prolate spheroid tends
towards a spindle shape.

4 Systems with negative energy and non-zero pressure

If the initial ‘pressure’ is even slightly non-zero, we see from equation (37) that the pressure
tensor increases as the system collapses, and this in turn will stop the collapse. We now study such
systems which are characterized by a total negative energy E and in initial eccentricity yo. We
further assume that initially there are no mass motions so that the entire kinetic energy is in the
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Figure 1. The evolution of homogeneous spheroidal clusters with zero ‘pressure’. The figure depicts the behaviour of
the two semi-axes a; and a3 with respect to time measured in the units given by equation (39). The curves are labelled
by the values of y, to which they belong.

form of random motions, which we assume are isotropic, so that at t=0
T /=Tp=T5=0, [Ty =I1p=113;. (56)

Note that the assumption of velocity isotropy is only made initially and not throughout the
evolution as in Paper I. From equations (56), (36) and (47) it follows that

dal da3

—=—=0 att=0, (57)
dt dt

and that

c1=4[{0+S(yo)],

c3=(1—yp)cy, (58)

where

QZE/‘W()', W0=“3/5. (59)

W, is the potential energy of a sphere of unit radius. Using equation (58) we can integrate
equations (40) and (41) for various values of E and y,.

Consider first the case of a spherical stellar system, a;=a3=a. Equations (40) and (41) reduce
to the single equation

da ¢ 1

@ 2w 0
with

c=4[Q+1]. (61)
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Equation (60) should be compared with equation 140 of Field (1975) for a collapsing gas cloud
with internal pressure. It is seen that the equations are identical if y=%3 in Field (1975), showing
that the behaviour of a spherical stellar system is identical with that of a spherical gas cloud of
monoatomic particles. Equation (47) provides an integral of equation (60)

1<da 2 ¢/1 1
)
2\ dt 4\ 4> a

which in turn can be integrated to yield

1 2 . (4—c)a-2
t=i\/2{ E\/(C—4)a2+4a—c+-(4_—c)375[cos (—'—2_—C|—)—aﬂj|} (63)

with a=0 when ¢<2, a=1 when ¢>2.
We see from equation (63) that the system oscillates with a period

P=42/(4cy*=/[J2(- Q)] (64)

This result should be contrasted with the case of gas clouds, for which <45, and the gravitational

force always dominates over the pressure term and hence the collapse is never halted (Hoyle
1953; Field 1975).

Turning now to spheroidal systems we note that the equations (40) and (41) are not the same as

1.0

e’
ee*
........

0.0

-1.0

-2.0

-3.0

-4.0
0.0 0.4 0.8 1.2 1.6

Figure 2. The evolution of homogeneous spheroidal clusters with zero ‘pressure’. The ordinate y is a measure of the
eccentricity (e2), positive for oblate spheroids and negative for prolate ones. The abscissa measures time in the units
given by equation (39). The curves are labelled by the values of y, to which they belong.
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Figure 3. The evolution of homogeneous spheroidal clusters with negative total energies. Case Q =—0.75. The curves
depict the behaviour of the semi-axis a; with time in the same units as Fig. 1.

those for a gas cloud (equations 133 and 134 of Field 1975). The reason is that whereas even
spheroidal gas clouds are characterized by isotropic pressure, spheroidal collisionless stellar
systems are not.

The results of numerical integration of equations (40) and (41) for various values of Q and y,
are shown in Figs 3-8.

Consider first the case of Q =—0.75. For all yy considered, K;;< | Wy, | initially and hence the a,
axis contracts (Fig. 3). This contraction is accompanied by an increase in pressure, which causes
the system to expand once again; these oscillations have a period of about P=3.5 [in the units of
equation (39)] which is about the same as that given by the relation (64). The amplitude of the
oscillation increases with decreasing y,. The eccentricity y also decreases initially (Fig. 4). At
about 2P, however, there is a steep rise and a fall after which the system slowly returns to y=y;.
The system does not, however, in general return to the exact initial conditions after a cycle, the
only exception being when the system is spherical, in which case the behaviour is identical with
that given by equation (63).

In the case when Q=—0.25 (Figs 5 and 6) K;;>| Wy | initially for all y, considered and the a,
axis expands and contracts in a period P=18. In this case the amplitude increases with increasing
yo- The eccentricity, y, once again shows a double-wave behaviour over the same period.

The case Q=-0.50 (Figs 7 and 8) corresponds to equilibrium when y,=0. When y,#0,
however, the a; axis oscillates with a period P=6.5 while the eccentricity shows a double-wave
behaviour over approximately the same period.
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Figure 4. The evolution of homogeneous spheroidal clusters with negative total energies. Case Q =—0.75. The curves
depict the behaviour of the eccentricity y with time in the same units as Fig. 2.

] ] ] | | ] ] ] I ]
0.0 4.0 8.0 12.0 16.0 20.0 24.0

t
Figure 5. The evolution of homogeneous spheroidal clusters with negative total energy. Case Q =—0.25. The curves
depict the behaviour of the semi-axis @; with time in the same units as Fig. 1.
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0.8\

Y

Yo=+0.90 N\, / \ /

565

-1.6F - ,
—— —Yg=-0.90 AN / W/
.......... Yo= +0.50 N/
B my°= -0.50
=24 ] | ] ] ] ] ] ] |
0.0 4.0 8.0 1.2 1.6 2.0 2.4
t

Figure 6. The evolution of homogeneous spheroidal clusters with negative total energy. Case Q=—0.25. The curves
depict the behaviour of the eccentricity y with time in the same units as Fig. 2.

1.5 e
/// \\\\ /// —————— \\\
4 ~ Ve
/ ~ ya N
— ,/ \\\ //
/ AN ’
7 N /
// )ﬁ—‘\ //
a4 1.0 /.\ < \\ 71\
\\ % ~— \\ //
0.5} — yO = 0.00
----- Yo+ 0.80
_____ y°=_0-90
i ] ] ] ] ] 1 ] ] ] 1
0.0 2.0 4.0 6.0 8.0 1.0 1.2
t

Figure 7. The evolution of homogeneous spheroidal clusters with negative total energy. Case Q=-0.50. The curves
depict the behaviour of the semi-axis @, with time in the same units as Fig. 1.
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0.8 % N SN N .

........
............

0.0 2.0 4.0 6.0 8.0 1.0 12

Figure 8. The evolution of homogeneous spheroidal clusters with negative total energy. Case QO =—0.50. The curves
depict the behaviour of the eccentricity y with time in the same units as Fig. 1.

In general when the total energy is negative, i.e. <0, the a; axis executes finite amplitude
oscillations of period P=~7/[2(— Q)*/?]. The eccentricity also shows a double-wave behaviour
over this period. These results should be compared with those of Paper I, where it is assumed that
the velocity distribution always remains isotropic. In the anisotropic case the amplitude of the
oscillations in a; depends upon y,, whereas in the isotropic case it is independent of y,. Also,
though y oscillates, the system does not go from oblate to prolate or from prolate to oblate as in
the isotropic velocity case.

5 Systems with positive total energy

We now consider systems with a positive total energy E and a given initial eccentricity yq.
Equations (40) and (41) have been integrated using equation (58) for Q=E/| W,|=0.0, 0.5 and
1.0 and the results are illustrated in Figs 9 and 10.

It is seen from Fig. 9 that systems with positive energies expand and are eventually dispersed,
systems with larger energies expanding faster. When y,=0, the behaviour is given by the
analytical solutions (cf. Chandrasekhar & Elbert 1972)

2
t=\/?\/a—1(a—2) (when ¢;=4 or 0=0.0).

c— c—2
(whenc¢;>40r 0>0). (65)

For the same value of Q, the more oblate the system (i.e. the greater the y,) the faster it
expands. The expansion is initially accompanied by a rapid drop in the eccentricity (Fig. 10), i.e.
both oblate and prolate systems become more spherical. The eccentricity then tends to a finite
limit. The results are in general agreement with those of Chandrasekhar & Elbert (1972).
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Figure 9. The evolution of homogeneous spheroidal clusters with positive total energy. The curves depict the
behaviour of the semi-axis a; with time the same units as Fig. 1. The curves are labelled by the values of Q and y, to
which they belong.
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08 +0.90
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y O -
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N -----Q@=0.5
0.6 —Q:=1.0
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0.9 | | L1 | 1 | ] | |
0.0 2.0 4.0 60 80 10.0

t

Figure 10. The evolution of homogeneous spheroidal clusters with positive total energy. The curves depict the
behaviour of the eccentricity with time in the same units as Fig. 1. The curves are labelled by the values of Q and y, to
which they belong.
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However, in the present anisotropic velocity case an oblate (prolate) system remains oblate
(prolate) unlike in the isotropic velocity case where the eccentricity, y, may change sign.

6 Heterogeneous spheroids

We now consider heterogeneous spheroids with density distribution of the form (cf. Paper I)

3 2
p(x)=gc[1— > —’;] (66)

p=19p
where v=0. The case when v=0 is that of homogeneous spheroids considered in the earlier
sections. We assume that the form of the mass distribution (66) continues to be maintained as the
system evolves, i.e. v is independent of time. The moment of inertia and potential energy tensors
for such a system are given in Paper I. Choosing our units of mass length and time such that

oY)
)

[where the functions ¢(v) and y(v) are defined and tabulated in Paper I] we obtain

M=1, a,=1 (at t=0),

1, (67)

L1 =Y5aip(v), Ly=Y5a3¢(v),

%% 3 1A (v) W. 3aSA¢5() (68)
= —_—— V, =—_— 'V,
11 10 a; 19 33 10 a% 3

and since v is independent of time, substitution of these expressions in (35) yields the pair of
expressions

= Aq, 69
dr* 243 2 ajas ! (69)
da; ¢ 31

= —— — A, 70
dr* 243 243 > (70)
where

50y;
C;= 12. (71)

[p(v)]

Equations (69) and (70) are identical with equations (40) and (41) for a homogeneous spheroid
and hence the results of the earlier sections also apply to heterogeneous spheroids.
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