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ABSTRACT

The ubiquitous occurrence of the Dirac-Eddington
large dimensionless numbers when relating the
physical parameters such as mass, radius, angular
momentum etc. of typical astrophysical objects
11ke stars and galaxies to the fundamental
constants of atomic physics is currently inter-
preted 1n terms of constraints imposed on these
parameters as a result of physical processes
underlying the existence of these objects rather
than as chance coincidences, 1.e. these relations
can be understood 11n terms of the underlying
physics governing these objects. Again various
cosmological parameters such as the total number
of nucleons, the photon-to-baryon ratio etc. can
be expressed 1n terms of these numbers, which
again can be understood in terms of the physics
involved. In fact it would appear that
Eddington's cloud bound observer can also get
a good 1dea about the overall mass, size and
background temperature of the universe, apart
from his classic deductions on the masses and
luminosities of stars sans observations. Further
the weak and strong 1interaction coupling con-
stants can be 1ncluded 1n the Tlarge number
hypothesis (LNH) and dimensionless relations
connecting these constants to cosmological
parameters can be constructed. The gross para-
meters characterizing the wuniverse such as
overall size and mass can be arrived at from
microphysical considerations 1nvolving the
fundamental 1nteractions of elementary particle
physics with 1nteresting relations for the
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Hubble radius and closure density obtained
ertirely 1n terms of the coupling constants
underlying these interactions. SEveral other
interesting coincidences and relationships
connecting the parameters of cosmology and
elementary particle physics are pointed out.
The sigmificance of these 1nter-relations 1s
explored especially 1n connection with the
time wvariation of the fundamental constants
and the unification of cosmology and gquantum
physics. The above topics being close to Edding-
ton's interests seem particularly appropriate
for discussion at this meeting.

1. INTRODUCTION

The Eddington-Dirac dimensionless large numbers arose
1n discussions 1nvolving physics and cosmology as follows: If one
considers the ratio of the electrostatic force between a proton
and an electron to the gravitational force between them one obtains
a large number, 1.e. ez/Gmpme':,lOm, the electrostatic force being
proportional to e2, e being the electric charge (same for both
proton and electron) and the gravitational force being proportional
to the product of the proton and electron's masses (m_ and m, respec-
tively) multiplied by the universal gravitational constant G. The
inverse squared distance dependence being same for both these long
range forces of course cancels out. Now one can form another large
dimensionless number by expressing the so called Hubble age of
the universe (1.e. the time elapsed since the universal expansion
began) given by the 1inverse of the Hubble's constant H (1.e.
1/H) in unmits of the so called atomic time, given for 1nstance
by the time 1t takes 1light to cross a typical elementary particle
dimension (say the classical electron radius ez/mé'f'-a X 10'13 cms)
which 1s = 10'23 secs. The ratio of the two times 1s again a large
number,r-wloa0 which is remarkably the same as the first large number.
Another large number 15 the total number of nucleons 1n the universe
which 15 estimated as~1080. This number 1s the square of the
previous two large numbers, again quite remarkable as there was
no apriori reason to expect this or for that matter the equality
of the previous two large numbers. A dimensionless large number (LN)
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involving the Planck's constant i, m_ G and C is ( 1‘ic/(§mp
It being the 1nverse of the gravitational fine structure constant
(Gmpzﬁﬁc = 10'38) and hence expressing the strength of the gravita-
tional binding between protons we may expect this number (or 1ts
appropriate powers) to crop up in situation involving the gravita-
tional assembly of a large number of nucleons, 1.e. 11n celestial
bodies. Indeed the masses of most stars turn out to be within a
numerical factor of the mass Ms = ( ¥ic/Gm 2)3/2 m = M, M being
the solar mass. The Chandrasekhar 1limiting mass for white dwarf
stars (where the gravitational ‘charge’ sz is balanced by the
quantum ‘'charge' #ic of the degenerate Fermi gas) 1s again precisely
Ms' If we denote the LN 1.e (‘ﬁc/Gmpz) by N 1t turns out that
several physical parameters characterising stars can be expressed
as simple powers of N1 multiplied by the appropriate quantum physical
fundamental constants.

2 ) . 1038,

To gi1ve some examples:

: = 2y3/2 - n. 32
Mass: MS (‘1'Tc/(;mp ) X mp NgT mp
Radius:
(Typical Main-Sequence Star) Rs = Nlm X
Bohr radius = le X ‘P'IZ/mee2
Rwh1te dwarf = lex Ti/mec Rneutron star‘=N11/2 x h/mvc
Angular momentum 3 ‘]Star = le'h (h = quantum umt of angular

momentum)
Life time of hottest stars tS = N1 X T'i/mpc:2

and several such relations as we shall see later, 1ncluding typical

relations for galaxies (mass N17/4 mp, etc.,) and the universe {mass

lemp, etc.,).
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II. LARGE NUMBER COINCIDENCES IN ASTROPHYSICS

Now we can understand the above typical relations for stellar
objects in terms of the physics i1nvolved in their structure and evolu-
tion. For 1instance the virial theorem tells us that for the star
to be in equilibrium the radiation pressure (given by ~ (KT)4 (th3
T being the temperature) should not exceed the kinetic gas pressure

Ns RS 3 KT, NS and Rs being the total number of nucleons and the

radius respectively. Using the virial theorem relation, KT = GNS
mp2 Rs-l and equating the above two pressures then gives the equili-
brium number of nucleons for which the star 13 atab]e as:
N = (6m 2me) ¥ 2 e N 21057
s = (6m"/fic) 1 =10°7,

which 1s the coincidence we observed earlier. Again the Chandrasekhar
mass for a white dwarf 15 obtained as N13/2m by balancing the
pressure of the relativistic degenerate fermion gas (proportional

to number density n4/3)

. with the gravitational force proportional
to nz. The radius of the equilibrium configuration can also be obtain-
ed 1n the above cases and gives NIL? x Bohr radius and Nlbz X ﬂ/mec
for mainsequence stars and white dwarfs respectively. The relation
involving the stellar I1ife time can be accounted for as follows.
If L be the Tuminosity of the star and™ be the fraction of rest mass
energy converted into radiation 1n nuclear fusion reactions (n= 0.008)
then the Tifetime tS of the star is ts = (n NsmpczlL). Now the
maximal luminosity of a star of given mass 1s given by the so called
'Eddington luminosity' for which the radiation pressure on the stellar
material just balances the inward gravitational pull (at higher lumi-
nosities than the Eddington 1imit the stellar material will be blown
away by radiation pressure). The Eddington 1imt on the luminosity
1S given by L = NS G mp2 c/k and if the opacity k 1s the one corres-
ponding to Thompson (electron-photon) scattering as 1s 1indeed the
case for the hottest stars, then k = 0O t/mp, Ot = %;— (e2/mec2)2 is

the Thompson scattering cross-section. Writing Cr as Op = a? Bz
éﬂ/mpc)z; o = ezfﬁc, B = mp/me and substituting for K and L 1in the
formula for tS

2 .2
Nowna“ B°~ unity (!) so that
t = CﬁYmpcz) x (ﬂb/Gmpz)
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= Ny x (‘h/mpcz), which was the relation given

earlier. So it 1s no coincidence that ts = N1 x atomic time !
For the angular momentum (Js) of a typical star we have ‘]s = Ms
vsRs’ where Ms, Vs and Rs are typical mass, rotational velocity
2 3/2"_I 2,172
and radius. As seen aboves Ms= (fic/Gm_“) 3 R_= (fic/Gm_“) 7" .
22y and V. = (GM/R)V2 =62 (nic/am ¥4 P 0 B2 cposan’2) -1
(B5) nd ¥y - (MR, p )Y '
mee ) 12
x( il Substituting the above expressions for Ms' R(j
2
me
and V_ we have :
s 3

12
J; (main sequence) =(‘hc/Gmp2)5/2(_’"E)

12

[ 3]z

Me

2

=108 = N2

Similarly for a neutron star (NS)

. 2,3/2
I“INs B (ﬂc/Gmp ) mp; RNs;; fic 1/2. h
Gmp2 m.c

m, 1s the pion mass (the neutrons are separated by a distance
h/m_c, the range of nuclear 1nteractions on the average, thus the
value of RNS) and VNs (GMNs/RNa)m‘ As before putting together

the formulae for MNs’ RNS and VNs give
312 _ 107
Ins «f e 5/2<mp ) (G/‘ﬁc)ll2 = 107%
kapz Mar

Similarly for a white dwarf: (WD)

3Jr
Jup = (hc/em 2)%/2 fm /6 \ V2
p Mo ‘fic

=1077 fi, so that angular momentum 1like the mass is
more or less the same for all stars being N12 i, white dwarfs and
neutron stars having lower angular momentum the reason being that
the star during 1ts evolution loses mass and for a neutron star
1t 1s distinctly Jlower as seen because a substantial portion 1s
transferred to the expanding envelope during the supernova
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explosion. We shall see later how other physical parameters 1like
magnetic moment of stars can also be expressed 1n terms of powers
of N; times the corresponding microscopic quantity, i.e., Bohr
magneton efi/2mc for magnetic moment etc. Again a typical inter-
stellar magnetic field (10'6 gauss) when compared with the upper
1imit for magnetic fields 1n neutron stars the so called critical
Schwinger field (1.e. when the Larmor radius mcz/eB becomes equal
to the elecron's Compton wavelength fi/mc, giving Bf~-'m2c3/e‘?‘\N1013

gauss) once more gives a ratio N11/25 1019,

The above analysis can also be extended to galaxies,
mmposing constraints on their physical parameters which also turn
out to be related to the ubiquitous Nl' An estimate of the
typical mass and size of a galaxy can be arrived at by considering
a collapsing gas cloud of mass M contracting to radius R (so that

the virial temperature T _, GM’"Q ’ KB = Boltzmann constant) and
- KgR

KBT~ 1 Rydberg~p(2mec2 2 10eV, the heated up cloud cools chiefly

by bremsstrahlung emission, the cooling time being tc - (mec2/

KBT)'UZ. ﬁ/nri. el (n = number density) Now for the cloud to be

supported by pressure, tc should be less than the free-fall time,

tee s (R3/am V2 i e t. < tee giving:

- 8 2 12 2 ..
R=a .(ﬁc/Gmp ) (mp/me) h:2\<.10 kiloparsec {(Kpc).

m
e
With corresponding :
5 2\2 12 10 7/4
M2 « (‘h’c/Gmp ) (I‘_ﬂp/me) m, Z 10 Ma::Nl . m_p
which agrees well with the obsered scales for galaxies.
As 1is well known, the so called Jeans mass characterises the
initial fluctuations or inhomogenities which ultimately evolved
into galaxies, masses smaller than the Jeans mass are dissipated
by pressure forces. The Jeans length 1s given by 1Jz CS/@,
CS being the velocity of sound, C5 = (KBT/mp) » T being the
average temperature of the ambient gas. The Jeans mass 1s MJ-v
1 3~C 3,,3/2 172
Pl s /87" p

So we can write for the angular momentum of a typical galaxy

» the rotational velocity of the mass ~ Cs'
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objects, ‘]G"’ MJ1J C ~ C 5/t’izp. Another well known coincidence
nvolving N; to wh1ch we shaH return later 1s that the ratio of
the nucleon number densﬂ:y n to the photon number dens1ty (KT/ﬁc)
s N e (Gmp ,‘ﬁc) ; so that 2 = KT/‘ﬁc) (Gmp /‘ﬁc)m.
Hence substituting for and CS in JG’ we get the following formula
for the angular momentum of a typical galaxy, expressed 1n terms
of h as:

J

6 * Tm( 19 ¢ 13y V5210100, fien, 2. 1,

291

This would explain the empirical observation that the mass and
angular momentum of galaxies are respectively N} “9/2" 5/2 A’
whereas the mass and angular momentum of star aré’ mp and
leﬁ. Thus the mass of a typical galaxy 1s N va times the mass
of a star whereas 1ts angular momentum 1s Ny times that
of a star. This 1s consistent with another empirical relation
which 1s now well known, 1.e. that the angular momentum of a wide
range of celestial objects ranging from planets to galaxies, goes
as the square of their mass, 1.e J~rM°. This 1s also valid for
black holes where one can write: J = G/c Mz; (i.e for extreme kerr
black holes). For other bodies ( J = (G/V) Mz) In the next section
we shall see that a similar results holds for elementary particle
resonances, their angular momenta rising as mass squared for the
higher spin states, the slope of the so called Regge trajectories
being (GJ— /‘nc)~(1Gev)' Now according to Blackett, the angular
momentum and magnetic moment (H) of astrophysical objectsare related
according to:

H = gy_?a, one.
c
We can write this as:

o) (5 ()

we Bohr magneton x angular mom. in units of N x 14¢ x N1

o
e,

As magnetic moment = Magnetic Field (8) x volume, we can estimate
the magnetic fields of various celestial bodies. For the Earth,



this gives about 0.5 gauss, for the sun about 5 gauss for neutron
stars v--*lO12 gauss and for the galaxy about 10'6 gauss 1n agreement
with what 1s observed. We shall now try to understand how
Eddington's cloud bound observer could proceed further to deduce
that the mass and radius of the universe would be given by H1
e /m c and Nl2 mp. As a bonus he would also arrive at N 1/4 for
the rat1o of the number densities of photons to nucleons. Assume
that the microwave background could have been produced by pregalac-
tic supermassive stars which may have formed in the period between
decoupling and galaxy formation. C(Clusters of these objects could
form culminating their evolution eventually as black holes. Being
massive these objects would be radiation dominated and the total
luminosity of a large number of these objects in a cluster would
be given by the Eddington value, Lg = 4 GMc/k = ﬂrx—Gc—ZM where
M = MT = total cluster mass. If MT 1s the total cluster mass,
then general relativity 1mposes as 1s well known a Tlower 1imit
on 1ts spatial localisation or size given by Rm~ GMT/c2 and the
shortest time-scale that can be associated with the cluster 1s
then tmNGMT/ca. If during tm a substantial portion n (~1) of
the mass 1s converted into energy, then the maximum possible Tlumi-
nosity 1s given by LM"-‘"]MTCZ/GMT/C3 ~ c5/G; with m = 1 this becomes
the so called 'Gunn Tluminosity', which gives the upper Timit to
the power that can be radiated by the cluster, and as all the indivi-
dual objects are radiating at their maximal Eddington luminosity
we can equate above to LEBabove to L . Thus with LE = LM and substi-
tuting k =1:"T/mp 7r (e /m c the upper 1imit to the cluster

mass then turns out to be:

2 2
e e ‘ 78 2
MT"' h meodx 10" mgN, M o ;21
Gmm Gg )(Gmpz)p p™ "1 Tp™ 10 MO

The effective cluster size corresponding to the maximal luminosity
would be: (GM /cz)- 2
R z (e /m cz) (e /Gm m )~ m—‘-‘—cz

Very interesting to note that these re]atwns for the critical

mass and radius of the cluster compare well with the mass and radius
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of the universe quite naturally accounting for the Eddington-Dirac
Large Number relations. The effective temperature of the total
radiation produced by the cluster (assuming thermalisation has taken
place via grains, etc.) would be given by:

] LA
Teff = LT / 4fU'S'B Rm » where

rSB =1rZKB4 / 45f|3C2 1s the stefan Boltzmann constant. Using the
given expressions fcr LE and R = gives for Teff’

2 114
Gm il m
T e s\ —P— —= 11/8 L 10° K and
err ( 4’ ) ("ae ) ”

as baryon number 1s conserved we can estimate the maximal entropy
per baryon:

V2
S =4aT3/3nK=(e2)—1——) where
max B mecz Lp"p

Lp = (B G/Ca)w (the Planck length) and zp =‘ﬁ/mpc

Substituting values give Smax',:.'log photons/baryon le, comparing
well with what 1s observed. Rees has obtained a somewhat similar
relation for the entropy per baryon 1.e.

S~ e? / Gmpz) v (mp/me) (.%(2?)

by considering the characteristic nuclear burming time-scale (so
called Salpeter time (t~C°‘?/41TGmp) for radiation dominated objects.

The angular momentum for such a super cluster following
the earlier approach for stars and galaxies, 1s shown to be Jo Nlahq,
10120‘6, corresponding to that for the whole universe and the Blackett
relation gives the magnetic field {intergalactic) as 10'7 gauss.
III. A UNIFICATION OF THE PARAMETERS OF ELEMENTARY PARTICLES

AND COSMOLOGY
In his well known book Gravitation and Cosmology, Weinberg has drawn
attention to a curious empirical relation connecting the mass of
a typical elementary particle to cosmological parameters (Eq.16.4.2
of Weinberg):
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m, ’(TC_) pom is the pion mass and H0 = Hubble's constant.
This relation can be understood 1n the sense ot an operational
requirement that the gréavitsnponal self energy (Gm%/ﬁ) of a particle
of spread h/mc (So: 2°- = c) be at least measurable over a Hubble
time (llHo). The t1me-energy uncertainty principle then gives the
above relation. This relation also arises naturally as a cosmological
constraint on the upper limiting temperature of evaporating black
holes giving rise to a characteristic or fundamental length, given
by:

3 1/3 1
‘o=(§2—cr‘1r H) ST 7 Wt ¢ (1)
0 2mec m
(l/Ho = 1018 secs), the 1miting temperature being

Tmaxf‘mﬂg_l” 2x1012°K, interestingly the same as the Hagedorn tempera-
ture which ari<es 1n several bootstrap modeis of elementary particles.
Stellar mas. black holes would have a Hawking temperature of ~10'7
°K and so the ratio of this temperature to the Hagedorn temperature
1S again N11/2~1019. The question arises as to whether from micro-
physical considerations 1nvolving the fundamental interactions of
elementary particles we can arrive at the gross parameters charac-
terising the universe. We mention below two ways 1n which this
might be done. As gravity is a very long range force, the mediating
quanta ( the gravitons) must have a vanishingly small rest mass
(mg+o) (corresponding to the smallest possibie rest mass). Now
a mass m 1n general relativity cannot be localised 1n space to a
distance smaller than [-“m/(:2 and thus with the smallest possible
m, f.e. m_ we would obtain the smallest possible distance or length
scale in Nature, i.e. Gmg/ce. On the contrary, in quantum mechanics
a particle or system of mass M cannot be localised over a distance
smaller than $%/Mc in contrast to classical physics where a point
particle can be identified with a vanishingly small mass (localisation
proportional to m 1n Gm/cz) and localisation is inversely proportional
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to mass 1n quantum physics. The smallest possible length 1in the
quantum picture corresponding to the Targest possible mass whcth
we assume as the mass of the universe MU would then be ‘ﬁ/MUC. Now
1f we 1nsist for consistency that these two smallest length scales
(defined 1n different ways) be the same we would have:

2 _ -
Gmg/c -1‘\/MUC, or GmgMU = fic or

mMy = mp12, where mm2 = (fic/G) (2)

To get an estimate for m_, we note that any two nucleons
{in the universe) of mass mp while they 1interact gravitationally
by exchanging quanta, their mass would fluctuate by an amount: Ay
= mp/m, where N 1s the total number of nucleons 1n the universe
and the fluctuation 4 m could be identified with m_, the mass of
the mediating particles exchanged. Thus mg = mp/\fﬂ_ and equation(2)
then gives (noting that My = Nmp):

fﬁ_mpz =fc/G or N = (ﬂc/Gmp2)2= le (3)
thereby explaining apriori the coincidence noted earlier; a deduction
from microphysics. Considering that the proton and electron are
the only stable conserved particles one can construct three and
only three possible types of gravitational charges which would in
the dimensionless form be:

2 2
Gme /Mc, Gmp /Mic and Gmpme/ﬁc

and these would dominate the long range interactions between all
these particles in the universe. If N be the total number of
particles one can write the local fluctuations 1n these couplings
as:

\ITV'-GmeZ/ﬂc,rN—.Gmpz/ﬁc and ﬁGumEMc.

If N = 1079, we get the following 1ntriguing relations

for the three possible dimensionless constants:

2 2
[
NGNEZ,‘HC;‘,IO'S 1dgppified (1—1,5) (ELC) = W

™ Hic
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2
_ % — dimensionless weak interaction decay coupling
-~ Kc constant
(GF = universal Fermr constant = 1.5x10'49 ergs cm3)
2

2 9
\rN—.Gm /Ac o2 15 s = strong 1nteraction pion-necleon

P 1dentfy “hc  coupling constant

with

s/i..Gm me/hc;,l 10'2 1dent1 f ez/ﬁc (only protons interact

P with y strongly) electromagnetic

coupling constant (4)

It 1s to be noted that strengths of strong and weak 1nteractions
are 1n the ratio (mp/me)zru 108 and strength of strong and electro-
magnetic 1nteractions 1n the ratio (m /me)~103. So apart from
gravitation, there are three possible types of gravitational charges
and eqs (4) give their values 11n remarkable agreement with those
observed. In Sivaram 1982(a), a formula was obtained for the gravi-
tation mass m_ from the gravitational charge ¢ 2 . Gmpme as m_ =
g92/10c2; where 10 1s the fundamental length 1n equation (1)
(also using gszlmpc2 = e2/mec2; g 18 the strong 1nteraction charge
given 1n eq. (4) ) thereby giving
m =Gmgmemﬂ' (5) which
g fic
gives from the uncertainty principle the maximal range associated
with such fluctuations of energy due to the gravitational inter-
action as (this 1s to be 1dentified with the Hubble radius of the
universe):
2
RH = GmpﬂW\' (6)
One can use the following relations (eq.7) seen to arise

from the unification of weak, electromagnetic and strong 1nteractions

e2/2mpc2 = (GF/‘HC)I/2

2 2 _ 2 2 _
g_‘/2mpc e /Zmec ‘r’l/mTrC (7)

to elminate the masses mp, mg and m__from eq.(6) to give
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4 7.3\ 12
Ry = 9—8 (—E—cg ) ~ 1028 ¢ (8)
Ge
and the closure mass M = CZRH/G (from general relativity) gives
for the closure density:
16,
Py = Bl 341072 gec. (9)
anC~g GF

Eqs.{8) and (9) express cosmological parameters, solely 1in terms
of the coupling constants of the four fundamental 1nteractions.
(truly in the Eddington spirit). Also substituting for my in eq.(2)
from the relation given 1n eq.(5), we get the elegant relation:

_ 2
G Mo My My = Moy Tfic

4 _ 2
or mpme My my = mp] = (1ic/G) (10)
HWriting m, as Nmp4we have
m
No=—BL (11)
mp My My
and further from the equality: e2/2 mec2 = ‘h/m"C (cf.eq.(1) and
eq.(7) ):
— m 2._ 2
N- | el (12)
? mMe

relating the electromagnetic fine structure constant to the total
number of particles in the universe through the proton, electron
and Planck masses. Again the cosmological Robertson-Walker models,
the positiongnd momentum are not quite independent of each other
but connected by Hubble's law r = '(R/C)V and 1f V fluctuates by AV,
the distance also fluctuates by Ar = (R/C) AV and the kinetic energy
of a particle fluctuates by 1/2 m<.AV>2~mc2/VN'

mMAVAr = m (AV)2 R/C ~ 2 mCR/VN = nh
(for consistency with the uncertainty principle) h 1s then determined
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then determined by R and N and is = 107%’ erg sec.

What can all these relations tell us about the variation of the
fundamental constants? In the original Dirac cosmology, 1n order
to preserve the equality of the ratios of eZ/Gm My to Hubble age/
atomic time, it was suggested that G vary as E'l(q;t=epoch) and the
total number of particles vary as t2. In z;H the above relations,
we see tha the coupling constants of the other fundamental inter-
actions always occur 1n the form of the product VN. G, which means
that they vary as t°, 1.e. are constant with respect to epoch.
Even 1f G does not vary with time (as some very recent experiments
based on radar time delay from the viking probes on Mars seem to
suggest: (see for eg. Hellings, et al. PRL 51, 1609 1983) and N 1s
strictly conserved (which 1s reasonable) the product VN 6 is constant
with epoch. This would imply that the coupling constants of the
strong, weak and electromagnetic 1nteractions are constant 1n time
(cf. egs.(12), (4)). (In egs. (8) and (9) RH 1s to be 1nterpreted
as the maximal value of the closed universe radius and therefore
a constant). The tightest 1imits claimed for the constancy of the
weak(w), strong(s) and electromagnetic (E) couplings are based upon

149 148 from

the abundance ratio of the Samarium 1sotopes Sm and Sm
the Oklo Uranium Mine, the ratio of these 1sotopes 1s ~20.02 as
compared to the natural ratio ~ 0.9 the depletion being due to bom-
bardment from thermal neutrons over the several millions of years
of the running of the natural ‘reactor'. The capture cross-section

for thermal neutrons on Smm9

1s dominated by a strong capture
resonance and the Oklo samples 1mply that 1t has not shifted by
more than 0.02 eV over the past 2x109 years. As the position of
this resonance sensitively determines relative binding energies
of the different Sm 1sotopes with respect to W, S and E interactions,

0-17 _yr-l,

this would mmply time variations constrained by E/E$1

W& 107 2yr ! and s/s < 1079 L,
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ADDITIONAL NOT.,
I. Some other large number coincidences are:

(1) Entropy ﬂ; a solar mass black hole = 1077KB = N12KB = 1019
(i.e. N; ) times that of lMe star

(ii) Entropy of a black hole of Universe Mass = 10120 KB = N}SKB

(1ii) Entropy of a galactic mass black hole =10100 KB = le/ KB

(1v) PROTON decay time predicted by GUTS (1038 secs) to Planck
time (10"%s) RATIO is =108°.,( N, 2.)

(v) Maxima)l decay time of proton (by quantum gravity tunneling)
to Planck time RATIO 15 = 1000

(vi) Observational 1imt on cosmological constanta = 10
= A/Planck curvature =10120 =N13.

(vi1) Nuclear density/Mean density of interstellar space = 1038 =N1

10100’h Nl5/2

-56cm—2

II The Googol (1.e.

It was noticed that several of the large numbers ({especially those
100

) 1n Astrophysics.

concerning galaxies) involved the googol 10
(typical galaxy) = 101°Qn, entropy of galactic blackhole = googol
KB etc. An 1nteresting combination giving the googol 1s:

a2 34 \Y/6
%(3_“)1/3 (_i?m_p)(izzgahs - goagol (10100)
III Eq.(1) wmplies for a {the electromagnetic fine structure):
3m 3Gc 1/3
: (4-rr‘h2H )
IV In the true Eddington spirit, the mass given by: (Si1varam,
Physics Today 34, 108 (1981)

, 1.e. angular momentum

i = One gram. (a unified support
M n mF g ( PP
(‘S gsz/hc = 14) for the metric mass!)
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