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STATISTICAL MECHANICS OF VELOCITY AND MAGNETIC
FIELDS IN SOLAR ACTIVE REGIONS

V. KRISHAN
Indian Institute of Astrophysics, Bangalore 560 034, India

(Received 19 December, 1983; in final form 29 October, 1984)

Abstract. A statistical mechanics of the velocity and magnetic fields is formulated for an active region
plasma. The plasma subjected to the conservation laws emerges in a most probable state which is described
by an equilibrium distribution function containing a lagrange multiplier for every invariant of the system.
The lagrange multipliers are determined by demanding that the measured expectation values of the
invariants be reproduced. For a numerical exercise, we have assumed some probable values for these
invariants. The total energy of a coronal loop is estimated from energy balance considerations. Doppler
widths of the UV and EUV lines excited in the coronal loop plasma give a measure of the root-mean-square
velocities. Measurements of magnetic helicity are not available for the solar corona.

1. Introduction

Solar active regions are believed to be dominated by loop like or arch like structures
in emission. The spatial structure of these loops outlines the magnetic field geometry,
which may be current free or force free, Vaiana and Rosner (1978). Sakurai (1976) has
studied the motion of prominences of the arch and the loop type, deriving the equations
of nonlinear evolution of MHD plasma system making use of the principle of least
action. The time development of the prominence plasma exhibits various phases of
motion. It is the phase showing turbulent motions without any rising motion, that leads
to the steady loop system. In earlier papers (Krishan, 1983a, b) a steady-state model
of active region coronal loops was presented. The active region plasma is treated as a
turbulent magnetofluid. This magnetofluid when subjected to the invariance of total
energy, the magnetic helicity and the toroidal and poloidal magnetic fluxes acquires a
temperature profile which agrees well with the observed temperature structure of the
cool core and hot sheath type of loops. The spatial widths of the UV and EUV lines
excited in these loops were calculated and were found to be following the observed
gradation (Krishan, 1983b). The statistical theory of incompressible magnetohydro-
dynamic turbulence as described by Montgomery et al. (1978) was used in order to
delineate the spatial configuration of active region coronal loops. The main features of
the theory consist of using the MHD equations for an incompressible fluid. The
magnetic and velocity fields are expanded in terms of Chandrasekhar—Kendall
functions. A single Chandrasekhar—Kendall function represents a force-free state, the
superposition does not. The pressure profile of the plasma is obtained from a poisson
equation for the mechanical pressure as a function of the velocity and magnetic fields.
Taylor (1974, 1975, 1976) conjectured that the decay of energy to a minimum value
compatible with a conserved value of magnetic helicity leads to a force-free state
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representable by a single Chandrasekhar—Kendall function. In this state of minimum
energy, one can simultaneously invoke the constancy of total energy and magnetic
helicity. Montgomery et al. (1978) introduced the toroidal and the poloidal magnetic
fluxes as additional invariants. This resulted in several states being accessible for a fixed
value of the ratio of toroidal and poloidal magnetic fluxes and for a fixed value of the
axial and azimuthal mode numbers (r, m), respectively. In the present paper, we present
this steady state as an equilibrium ensemble. The statistical mechanics of the velocity
and magnetic fields is formulated in a phase space whose coordinates are the real and
imaginary parts of the expansion coefficients. The success of the lowest mode state
(m = n = 0) in accounting for the temperature profile of the cool core and hot sheath
loops has provided the motivation for studying the statistical distribution of the velocity
and the magnetic fields in this particular state (m = n = 0). An equilibrium distribution
is assumed in which the Lagrange multipliers are determined by requiring the expectation
values of the energy, the magnetic flux and the magnetic helicity to match the observed
average values of these conserved quantities. An estimate of the total energy in the
coronal loop can be made using the energy balance arguments Levine and Withbroe
(1977). There are no direct measurements of the magnetic helicity and magnetic fluxes
in the coronal loops. Therefore, the values of these quantities assumed here to be
indicative of the actual values could serve as a prediction to be verified by possible future
observations. It may be appropriate to point out that the measurement of the invariants
of MHD turbulence in the solar wind has been achieved Matthaeus and Goldstein
(1982). In the next section, the canonical distributions for the expansion coefficients of
the fields and for the conserved quantities are given. The statistical distribution of
velocity fields has been derived for the prominence plasma Jensen (1982). The present
work, in addition describes the distributions of magnetic helicity and magnetic fluxes.
Assuming a Gibbs distribution for the system enables us to determine the magnitude
as well as the probability distribution of fluctuations in the velocity and magnetic fields.
The role of these fluctuations in producing large-scale coherent structures is one of the
most important revelations of the MHD turbulence theory. The study of correlations
between fluctuations give us clues about the kinds of MHD modes like Alfvén waves
excited in the plasma. According to one suggestion, the heating and acceleration of
plasma particles in a coronal loop is achieved through Alfvén waves propagating in the
opposite legs of the loop. Such a situation corresponds to a finite velocity fluctuation
associated with a zero magnetic field fluctuation as discussed by Matthaeus and
Goldstein (1982). The presence of coherent loop like structures in the solar corona
provides an appropriate system for the applications of the results of MHD turbulence
theory.

2. The Equilibrium Distribution Function
The equations describing an incompressible ideal MHD turbulent plasma are:
ov
—a—+(V~V)V=(VxB)><B—VP, (1)
¢
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B
a—=\7><(VxB), (2)
ot
V-V=0, 3)
V-B=0. 4)

The three quadratic invariants of an incompressible MHD turbulent plasma as
discussed by Frisch et al. (1975) are:

total energy E = J d*x (V? + B?), Q)
the magnetic helicity H,, = J d>xA-B, (6)
the cross helicity H, = J d*xV-B, @)

where V, B, and A are respectively the velocity, the magnetic field, and the vector
potential. The magnetic field B in defined in Alfvén speed units, i.e. B = B/(47p,)"/?,
and the total energy E is given per unit density. The invariants, Equations (5), (6), and
(7) can be derived by using the MHD equations and by converting the time derivatives
of the invariants to surface terms. The invariance is assured for those boundary
conditions for which the surface terms vanish. This point is discussed in detail by
Matthaeus and Goldstein (1982). This system of constrains in an equilibrium ensemble
gives the average values of the linear quantities like magnetic field and velocity field to
be zero. In order to deal with systems which necessarily have net magnetic and velocity
fields, it is essential to demand a non-zero value of these linear quantities. This has been
achieved by proposing to constrain the toroidal and poloidal magnetic fluxes y, and y,
as well as the corresponding fluxes of the velocity field. In the present study we restrict
ourselves to the systems with (V) = 0. The magnetic fluxes are defined as

¢,=§ szj doA, 8)
and L n
Y, = J dzj doA,. 9

Here, a cylindrical geometry of the plasma has been taken with R and L as the radius
and the length of the cylinder. This geometry is most appropriate for studying coronal
loops. The magnetic and velocity fields are expanded in terms of Chandrasekhar-
—Kendall functions. In the present study, we represent the loop plasma by the lowest
state corresponding to m = n = 0 since this state has been able to account for the radial
temperature structure of the active region coronal loops quite well. The fields are
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expanded as

B= z 6(03 09 q) }'(09 09 q)F(()’ 09 q) ’

(10)
V=73 1(0,0,9)A0,0,¢)F(0,0,q),
P
where
X 0 .
F(0,0,q) = Co,o,ql:ee{ - 6_r Jo(YOqu)} + ezAOOqJO(yOqu)jI )
(11)

400q = £ Yoogq -

Co,0,, are normalization constants, ¢(0,0,q) and 7(0,0,q) are the expansion
coefficients. Here r is the radial coordinate in cylindrical geometry and » and m are the
axial and azimuthal wave numbers. Now 7,4, > 0 and are determined from boundary
conditions. The geometry of a coronal loop is shown in Figure 1. For a closed coronal

Z=0 Z=L
Sunspots Sunspots

Fig. 1. Geometry of a coronal loop.

loop, we choose the boundary conditions for a rigid and perfectly conducting surface
i.e. B,(r=R)= 0= V,(r = R). The eigenvalues for m = n = 0 have to be determined
from different considerations since the radial component of F vanishes for m = n = 0.
One notices that for each individual (0, 0, g¢) mode, the ratio of the toroidal flux y, to
the poloidal flux y, is

_W_z _ _Ii YoogJ0(Yoog R)
wp L A’OOqJO(’YOOqR)

Since both , and Y, are constants of motion, Ay,, can be determined from
Equation (12) for all g =1,2,3 ... where ¢ = 1 corresponds to the lowest value of

(12)
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2(0, 0, ). Thus we take two values of g and the corresponding eigenvalues are 4, and
A,. The integrals of motion take the form:

E = 25[1&1% + [nol?1+ ARSI + Im?], (13)

H,, =21&17 + 4 1& 7, (14)

Yr = —2mR[& 7060 030 R) + & meiJo(n R)), (15)
and

Y, = —2nL[&AgcoJo(20R) + &1 Ay e1do(1s RIS (16)

where E is the total energy and H,, is the magnetic helicity. One chooses the canonical
distribution subjected to the constraints E, H,,, };,, and , as

D = constant exp[ — «E — fH,, - 0Y,], 17)

where o, f, and d are the Lagrange multipliers. We known that the Gibb’s distribution
is applicable for a subsystem which is in statistical equilibrium with a larger closed
system. Here, in the present situation, each (0, 0, g) represents one subsystem. From
Equation (17) we can factor out the probability distribution for a particular subsystem
in the presence of remaining subsystems which act like a medium. It is in this sense that
the fluctuations in physical quantities for a subsystem are derived from Gibb’s distribu-
tion. If we represent the whole system by only one mode say (0, 0, 1), there are no other
subsystems and thus no medium, the fluctuations vanish as the chosen state (0, 0, 1)
forms a completely closed system, Lifshitz and Pitaevskii (1980). One can factor out
the probability distribution for expansion coefficients £(0, 0, ¢) and #(0, 0, q) as

P,(0,0,q) = K§ o, , exp[ —24%(0,0, ) [1(0, 0, g)|°] (18)

which gives

(10,0, 9)1*> = 3a71472(0,0,9) (19)

and

{In(0,0,9)|> =0.
The probability distribution for &(0, 0, g) is
P.f(o’ 09 q) = KS,O,q exp[ - {alz(oy 09 Q) + ﬁj’(os O, q)} X
x [£(0, 0, g) - 8p(0, 0, g) £(0, 0, 9)], (20)

where

p(0,0, g) = 27Rc(0, 0, ¢) VOOqu(}’OOqR) >

K§ o, and K7 , , are normalization constants.
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We find:
- 6p(05 09 q)
0,0, = ,
CO0.0.9 = S 20.0.9) + 20,0, 9)]
{1&(0,0,9)>) = [«4*(0,0, q) + BA(0,0,9)] ' x (21)

3 [; . 5 0%(0,0, 9) ]
2 4{a?(0,0,q) + A(0,0,9)}]

The average values of the invariants for the state (0, 0, g) are

2 252 2 2 2822
_/11+10590+)~1+ 15P1+

E = T
2x, 4x2  2x, 4x7 «
2 .2 2.2
ﬁm=_j«o_+/10‘spo+'11+'115»01, (22)
2x,  4x2  2x,  4x}

_ 502 0p?
l//t =21 »

2x, 2x,

where

Xo=aA2 + Bho;  x, = al]+ Ay,

Po = Poor = 2Ry %oJ1 (% R) ; Yo = 4o >
P1 = Pooz = 27Rc, nJi(nR); = A,
02(0, 09 ‘1) = [“L'ngqu{J(%(yOOqR) + 2J12(’})00qR) -

= Jo(Yoog R) 2 (00, R)}1~ '

4(0,0, q) are determined from Equation (12) for R = 10°cm. L = 5 x 10° cm and
/¥, = 1. We find A(0,0,1)= 4, = 2.2/R and 4(0,0,2)= 4, = —2.6/R. We neglect
higher roots of Equation (12) since according to Montgomery efal. (1978), for
A2 = (3.1/R)?> m = 0 = nis not the most probable state. So, now the system is composed
of two subsystems corresponding to two values of A(0, 0, g) and we go on to determine
the Lagrange multipliers in terms of the average quantities E, H,, and i, from
Equations (22) one finds:

L[+ 44,8 03]

X R 23

0 a4, (23)
2 21172

x1=1i[1+4A15 o7l , 24)
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where

E-AH,
* ao(he - A
2Oy = )

1

It is not possible to solve for a, S, and § without resorting to numerical methods since
these from algebraic equations of very high degree. We have found analytical solutions
under two limiting cases: (i) 44,62 p2 < 1 and 44, %p? < 1; and (ii) 44,6 pZ > 1 and
44, 8% p7 > 1. These conditions translate into a relationship between the magnetic
energy and the kinetic energy for each mode i.e. for every g. Thus 44,62 p; can be
expressed as

44,8°p5 =p(p - 1),

where

_ BIEO,0, D2y
<31n(0,0, D>

Therefore, 44,6%p3 < 1 says that p ~ 1 and hence an approximate equipartition of
magnetic and kinetic energy for each mode (0, 0, g). The opposite limit 44, 6% p3 > 1 says
that p> 1 and hence the magnetic energy is much larger than the kinetic energy.
Similarly one can conclude about the mode (0, 0, 2) corresponding to the eigenvalue A,
from the quantity 44, 6% p?. We discuss these cases below.

2.1. CaSEI:44,6°p2 < 1 and 44, 6%p3 < 1.
This gives:
aAd + By = L (25)
24,

and

1
add + Bhy = — . 26
1 :Bl 24 ( )

1

Here, we assume A,>0 and A4,>0 and take only the positive values of
aA?(0, 0, g) + BA(O, 0, g) since this is a measure of the width of the probability distribu-
tion of (|&(0,0, g)|?>. The values of a, B, and & are determined from the following
relationships:

o= [2(E - Alﬁm)(ﬁ - ioﬁm)]_ ! [ - {3E + %(/10 + /ll)ﬁm} +
+ {Ez + %(}.0 + A)PH? ~ 8A AgH2 — E(Ag + il)ﬁm}l/z] , 27)
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,B = - ’ (28)

and

p%(E_l_/llﬁm> p%(E—l_ A’OI—{m>

_ o o

S= -1, + . (29)
Ao('lo - '11) }“1(/11 - '10)

Now, E, H_,, and J, are to be obtained from observations. Since for the case of coronal
loops, there are no direct measurements of these quantities, we shall have to fix their
values from other considerations. For example, the value of E can be obtained from
energy balance arguments which give E ~ 1028 ergs (Levine and Withbroe, 1977). We
choose

E = E,; x 10?8 ergs
and

H, =H,,, x 10" ergscm .

m

The values of E,s and H,,,5, are fixed such that the positivity of «4? + fA is preserved.
As an example we take E,g = 1, H, 5, = 0.05. The two values of « determined from
Equation (39) are

o =2.04 x 10728 (ergs) !
and
a=0.98 x 10~28 (ergs)~!.

For the above chosen numbers o > 1 is the proper choice satisfying 4, > 0 and 4, > 0.
Equation (28) provides = 0.2 x 10737 (ergs cm)~'. From Equation (24) we find

§=10"3,(Gcm?)~!.

This combined with the conditions 44,6%°p2 <1 and 44,8%°p> <1 gives
¥, < 0.65 x 10'® G cm?. A representative choice of i, ~ 10!7 maxwell gives & = 10~ 1°.
Thus the distribution function for this particular indicative numerical example is

D ~ ¢~ 2-04E/E 5~ 0.01H/Hp o~ 0.0141/Ys (30)

We can factor out probability distribution for each subsystem and study their widths
as shown in Figures 2, 3, and 4, where F stands for E, or E, and same is true of H,,
and V2. The validity of the conditions 44, 6%p3 < 1 and 44,5 p? < 1 can be checked
by observing the relative contributions of the magnetic energy and the kinetic energy.
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Fig. 2. Distribution function of the energy E.

T T N N T TS A Y Y O I T
0O 10 30 50 70 90 10 130 150
Wy /Wy

Fig. 3. Distribution function of the magnétic helicity H,, and the toroidal flux .
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Fig. 4. Distribution function of the velocity.

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1985SoPh...95..269K

5SGPh, T 295, TZ69K

rt

278 V. KRISHAN

This can be seen as follows:

E=E,+E,,
2 2 2 2 2 2
FH=19— |:1+éﬂ]+i [1+(3 pl]
2x, 2x, 2x, 2x,
).3 2 2 }'% 2 .2
=——————[1+ &*pgd,] + ———— [1 + ¥°pi4,].
2(adg + Bo) 2(ad + BAy)
Since aA2 > B, and a3 > BA; we thus get
E Ly 1
720 24
L1
=
EV= )'2(()’ Oa q)<"7(03 Oa q)|2>
q
1 1 1
= — 4 — = —
200 20 «
Thus there is equipartition of energy.
2.2. CASE II: 44,0%p3 > 1 and 44, 8*pi > 1.
We find
op; ‘
o o , 3D
Y2 /A4,

x0—2\/A_0

and Equation (22) gives

Pox/f‘i—o"'Pl\/Z: -, (33)

a can be determined from Equation (33) for given E, H,, and ,. It is found that for
¥, = 1.9 x 10'®* maxwells, E = 10*® ergs and H, = 0.05 x 107 ergs cm, o=
=233 x 1028 (ergs)~!. A large value of « and , is needed in order to satisfy the
conditions for this case.

ais found to be very sensitive to the value of ,. For example for i, = 1.8 x 10'® max-
well, E = 1028 ergs,and H_, = 0.05 x 1037 ergs cm, o = 7.72 x 10~ 28 (ergs) ~ !. For this
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case ff and 0 are given by

M = %)

R T
P ot T [Gaia/A) = Unf2A)]

(34)

and

5 = ady Ao(Ay = Ao) . (35)

l: P10 _ Po iy :I

2 /4, 2.4,

We find that o = 233 x 1028 (ergs) ~ ! is appropriate for satisfying 44,6 p35 > 1 and
44, 8% p? > 1. The corresponding values of f and 0 are:

B=10"3(ergscm)~! and o=2.5x 10~ !¢ (maxwell)~'.

The distribution function of the ensemble can be written as
D ~exp[ —233E/E] exp[ - 50H,,/H,, ] exp[ — 450y,/y,] .

Again one can calculate the average values of the magnetic energy and kinetic energy
separately. We find since o > 1, most of the energy is in the form of magnetic energy.
The value of the quantity 44,%p3 = 2.75 x 10° and 44, 8%p? = 1.75 x 10°. For this
particular numerical example we find E,,/E,, = 10°. Thus this case may not represent
a realistic situation in the coronal loop since one observes root mean square velocities
of 30-50km s~ ! in the line widths. Besides the equipartition of energy between the
magnetic and the kinetic energies is a well trusted hypothesis in many astrophysical
situations. More quantitative insight into the distribution of magnetic and kinetic
energies can only be obtained for a general case without resorting to the limiting cases I
and II presented here which necessarily involves lot of numerical work. The present
study has, however, contributed in a positive manner in delineating the probability
distributions of the magnetic fluxes and the total energy of the system. This study, on
one hand proves the validity of the statistical treatment of magneto-hydrodynamical
turbulence and predicts the values of the invariants which cannot be measured at
present. Once the probability distributions are known, one can proceed to study the
evolution of fluctuations and their correlations as for example has been done by
Dobrowolny et al. (1980a, b), for the case of solar wind. The availability of data for the
solar corona similar to the solar wind could scrutinize some of these theoretical
concepts. This could further lead one to consider stellar atmospheres where such data
may never be available.

3. Conclusion

The statistical mechanics of the velocity and magnetic field is formulated in a phase
space whose coordinates are the expansion coefficients of these fields. The distribution
function for the equilibrium ensemble is calculated. Results are applied to the steady
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state of the active region coronal loop. The average values of the magnetic helicity and
the poloidal and toroidal fluxes are predicted assuming the average value of the total
energy being known. For analytical progress, two limiting cases are studied out of which
one represents the equipartition of energy and the other represents the dominance of
magnetic energy over the kinetic energy. The stage is set for studying the nature of
magnetic field and velocity field fluctuations, their interrelationship, their correlations
and their temporal behaviour in the solar coronal loops.
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