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ABSTRACT

The effects of spacetime curvature and rotation on the pulse profile of fast pulsars are studied using a rota-
tionally perturbed spherical metric and a representative choice of the equation of state for neutron star matter.
Spacetime curvature is found to produce a divergence in the pulse width and a deamplification of the pulse
intensity. Rotation is found to produce an asymmetry in the final pulse profile accompanied by a tilt of the
pulse cone axis from its original direction of emission. The astrophysical implications of these results per-
taining to the pulse characteristics of fast pulsars are discussed.

Subject headings: pulsars — relativity

I. INTRODUCTION

The recent discovery of millisecond pulsars (Backer et al.
1982; Boriakoff, Buccheri, and Fauci 1983) has generated a lot
of interest in the effect of rapid rotation on the structure of
neutron stars and the various physical processes associated
with such objects. The extremely rapid rotation rates of such
pulsars pose the problem of their stability against breakup
under centrifugal forces. The requirement of rotational stabil-
ity would imply that these objects must be quite compact,
having a large surface gravity (Datta and Ray 1983). An inter-
esting consequence of rotation that has not been explored so
far is the modifications, due to the general relativistic effect of
dragging of inertial frames, in the trajectories of photons pro-
pagating near the pulsar. The large spacetime curvature (i.e., a
large surface gravity) and large rotation are expected to lead to
a modification in the pulse profile. In addition, rotation will
introduce a certain amount of time delay in the arrival of
photons and a reorientation of the plane of polarization
(assuming it to be linear) of the pulse. The purpose of this
paper is to present a detailed study of these effects with a view
of applicability to the 1.5577 ms pulsar PSR 1937+214 and
fast pulsars of this class. A preliminary summary of this work
has appeared elsewhere (Datta and Kapoor 1985).

The Kerr solution, which is the full rotational analog to the
spherically symmetric spacetime, does not have a correspond-
ing appropriate interior solution amenable to a straightfor-
ward theoretical treatment. In this paper we use a rotationally
perturbed interior spherical metric to take the rotational effects
into account.

Our calculations suggest that the effect of spacetime curva-
ture is to produce substantial amounts of divergence in the
beam width of the emitted pulse and reduction in the pulse
intensity. Rotation produces a tilt of the pulse cone axis (from
its original direction of emission) and deforms the cone, leading
effectively to an asymmetry in the flattened pulse profile. As a
consequence of this, there will be a time delay in the arrival of
photons emitted within the cone.

The format of the paper is as follows. Section II describes the
rotationally perturbed geometry and the corresponding metric
tensor. The calculations of photon trajectories in this rotation-
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ally perturbed spacetime are given in § II1. Section IV describes
the calculation of photon arrival times and the redshift factor
(which is important in deciding the final pulse intensity
distribution). The calculation of the final pulse profile is shown
in § V. Section VI lists the choice of the equation of state of
neutron star matter; and finally, the results and their implica-
tions pertaining to the pulse characteristics are given in § VIL

II. THE ROTATIONALLY PERTURBED GEOMETRY

The metric (signature: + — — —) we adopt to describe the
rotationally perturbed spacetime, which also matches at the
surface to an external metric, is (Hartle and Thorne 1968):

ds* = ggdx*dx*, (0, $=0,1,2,3)
= e¥'dt? — e?¥(d¢p — wdt)?
— edh* — e dr? + 0(Q%/Q.3) . 68

Here Q is the angular velocity of rotation and Q, = (M/R?)'/2,
where M and R are the mass and radius of the nonrotating
neutron star. For the sake of simplicity, we put ¢ = 1 = G. The
metric components correspond to an interior with

e = e®®{1 + 2(hy + h, P,)}, )
e?¥ =r?sin? 6{1 + 2(v, — h,)P,} , (3)
et = r*{1 + 2(v, — hy)P,}, 4)
o2 1+ 2(mgy + m, P,)/(r — 2m) ’ 5)
1—2m/r
and to an exterior with
e =e P =1 —2M'[r + 2J*/r*, (6)
e* =r?sin? 0, )
et =r. (®)

Here M’ = M + M, where 6M is the rotationally induced
mass deformation. The quantity P, is the Legendre polynomial
of order 2, w is the angular velocity of the cumulative dragging
of inertial frames, and hy, h,, my, m,, v, are all functions of r
that are proportional to Q2. We retain only the spherical defor-
mation terms characterized by subscript 0 and neglect the
quadrupole deformation terms characterized by subscript 2
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(see Ray and Datta 1984). J is the angular momentum of the
neutron star, given by

s =R (4o 9
6 \dr),_g’ ©)

where @(r) = Q — o(r) is determined from

d( ,. do - dj
dr<]dr>+4rcodr—0, (10)
Jjr) = = (1 = 2m/r)'1? (11
do 43P
bt m+ 4nr' P , (12)
dr 1 —2m/r
with the boundary conditions
®(c0) =0,
do
(@), w
(0) =Q .

Here m is the mass within a radius r, and P is the pressure at r.
The nonvanishing elements of the metric tensor are

doo = e2v _ wzezw ,

gy = —€7,
922 = —e, (14)
g3z = —e,
Jo3 = we?V .

The above prescription for the rotationally perturbed
geometry is valid for strong gravitational fields but in the limit
of uniform rotation with a rate that is slow compared to Q_, the
critical speed for centrifugal break-up. Neutron star models
rotating at the secular instability limit (Tassoul 1978)

Q, = (0.27)'2Q, (15)

(assuming the star to be homogeneous) and relevant in the
context of the millisecond pulsar PSR 1937+ 214 are within
this bound.

III. PHOTON TRAJECTORIES IN THE ROTATIONALLY
PERTURBED GEOMETRY

The four-velocity vector for the source of photon emission is

u"‘=%, x*=(t,r0,¢), (16)

with
ul =dtfds =e (1 —vH) 12, (17
v, =e''(Q - w), (18)

and
dr/ds=0; df/ds=0. (19)

The quantity Q, the angular velocity of the star as seen by a
distant observer, is given by

d¢/ds = Qdt/ds , (20)
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whereas v, is the emitter’s tangential velocity as seen by a
locally nonrotating observer (so that v, = 1 will correspond to
the location of the light cylinder radius). The emitter describes
a corotating circular orbit around the rotating star in the
spacetime (eqs. [ 1], [6]-[8]).

Due to the rotation of the star, the trajectory of a photon
emitted in a general direction from a point r, will get dragged
away from its original direction of emission in addition to
getting bent due to spacetime curvature. The net angle of
deflection in the trajectory will be given by (here I" stands for

affine parameter)
P dd/dy
~o= J drjar ¥

21

where D denotes the remote observer’s location.

We denote the polar angle of emission made by the line of
sight through the center of the star with respect to the axis of
rotation by 6,. So 6, = 0 will correspond to looking along the
pole, and 6, = n/2, along the equator. Since we use a perturbed
spherical metric, we can take 6, to be approximately identical
to the angle of inclination according to the remote observer,
since the polar bending of the photon trajectory in the per-
turbed exterior Schwarzschild spacetime would be small as
compared to the azimuthal bending. In other words, the
photon emitted at the polar angle 6, continues to move in the
same plane passing through the center of the star.

The integral in equation (21) can be evaluated from a knowl-
edge of the equations of motion of the photon corresponding
to the external geometry using the Lagrangian technique.

The equations of motion are the Euler-Lagrange equations:

L)
where, for the metric (1),
= 1[e¥1? — 472 — e20* — 2% — wi)*] .
(23)

Here x*=(t,r, 0, ) and a dot represents derivative with
respect to an affine parameter I'. Equation (22), corresponding
to the coordinates ¢ and ¢, gives respectively

(24
(25)

Gost + gssd=—h,
Jool + Gosd =7,

where h and y are constants of motion, identifiable respectively
as the orbital angular momentum and the energy of the photon
as measured by an observer situated at infinity. The ratio
q = —h/y is finite and is defined as the impact parameter of the
photon.

Equations (24) and (25) give

@ _ (o3 — 9900)

dT' "~ gos* — goo 933~ 29
o @)

For photons, the metric (1) is
0 = e2¥dt® — e**dr? — e?¥(d¢ — wdt)? . (28)
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That gives where
d dt v, q) = A1 — eV~ 2V(x — )2 112
gty s oppe, oo 9(r, 4) = &I (x — )]
. 1+ wq, (36)
where eP[(1 + wg,)* — g e M)
_ /AT go3 — dgoo Although the amount of deﬂectiqn vyill be smal} for .small
x = djdl - — values of the azimuthal angle, a finite time delay will be intro-
933 — 4903 duced between two neighboring null geodesics with ¢ and
ge* 0 + do, which cannot be neglected. The implications of this fact
(30) will be discussed in § VII.

=0 Wit eg

The deflection angle (21) then becomes a function of the radial
emission coordinate and the impact parameter

D
_¢0 = J f(r’ qe)dr ) (31)
where
_ 903 — 4e Yoo
S04 = = T wg)gma e 1 — 7 — P
o(l + wg,) — g.e> >
= ev—l[(l + wqe)z — qezezv—zw]l/z s (32
with
g.=4q(r=r,, 0, 9). (33)

It is convenient to derive the value of the impact parameter
in the frame of reference of a locally nonrotating observer, that
is, one having the coordinates (r, 0) fixed and rotating with a
coordinate angular velocity w = d¢/dt. A Lorentz transform-
ation to the frame of reference of the emitter then gives
(Kapoor and Datta 1984):

_ e’ (v, + sin )
T 1+ e v, + Qsin ).,

9e (34)
where § is the azimuthal angle at which the photon is emitted
with respect to the radius vector of the source through the
origin of the system of coordinates as seen in the local rest
frame of the star. It increases in the direction opposite to that
of motion of the source. In the local rest frame, we choose the
azimuthal angle such that 6 =0 for a radially outgoing
photon, and § = 3n/2 for a tangentially forward photon. It
may be noted that not from all points on the circular orbit
would the photon, emitted at a particular value of J, be
received by the remote observer. The value (34) for the impact
parameter has been obtained by requiring that there will exist
a certain point P from where the photon will reach the remote
observer.

IV. PHOTON ARRIVAL TIMES AND REDSHIFTS

The times of emission and reception (at the remote observer)
of a photon are determined in the manner described below.
Consider a photon emitted from P at t = t,. In order for the
photon to arrive at the observerat Q att = T,

D dt/dr
T — =
fo J arjar "

D
= J g(r, gdr , (35)

e
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Closely connected with the above is the photon redshift
factor. Consider now another photon emitted from the circular
orbit at a world point P’ with the time coordinate t, + At,.
This photon will arrive at Q at a time T + AT with an impact
parameter g, + Ag,. A similar set of equations as before can be
written for this photon also, so that we have

D
AT — Aty = Aq, f (0g/0q.)dr , (37
where
09/04, = q.e”[(1 + wq,)” — >~ 2¢,?17%%  (39)
and
D
—Ado = Aq, J (9f/0q.)dr . (39)
Since
Ato/As = u° (40)
and
Ado/As = Qu° , (41)
equations (37) and (39) give
AT — u®As D (9g/0q,)dr
ey 4 — dre VI 7ATT 42
(—Quhy ~ 14D =15 aprag dr (42)
AT/As = u°[1 — QH(q,)] . (43)

Equation (43) gives the photon redshift factor and is equivalent
to the expression for the redshift factor of rotating neutron
stars reported earlier in Kapoor and Datta (1984) with the
following identifications:

AT/As =1+ z=vy/v, (44)
H(qe) = —(. - (45)

Here v, and v refer respectively to the frequencies of radiation
at the source and the observer. Apart from time delay, redshift
factor plays a nontrivial role in determining the final pulse
profile.

V. THE PULSE PROFILE

From the preceding section, it follows that the effect of
spacetime curvature will be to produce a divergence in the
beam width of the pulse. Furthermore, the dragging of inertial
frames brought on by rotation will deflect photon trajectories
in the direction of rotation by an amount that is a function of
the azimuthal angle at the emission location. This implies two
things. First, there will be a tilt of the pulse cone axis from its
original position. Second, there will be an overall asymmetry in
the final pulse profile because, as can be seen from equation
(34), the impact parameter is not symmetric in + 6. This asym-
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metry will, in principle, manifest itself in the observed pulse
intensity distribution.

To make explicit the pulse divergence effect, let us assume
that the axis of the cone of emission is directed radially away
(that is, 6 = 0) from the pulsar’s surface in the frame of refer-
ence of the emitter. Figure 1 shows schematically the deflection
¢, sufferered by a photon trajectory. The new value of J is
denoted by d,.,,, so that

¢0=5new_5+av (46)
where o is given by
tan o = —(r %)FD ; 47)

here r = D specifies the location of the observer from the
center of the pulsar, and d¢/dr is given by equation (31). To see
the role of the impact parameter in determining the deflection,
let us transform to a locally Cartesian set of coordinates at the
observer. Since rotational effects decrease with distance much
more rapidly that curvature effects, we can set 8, ~ 7/2; then

¢ .4

dr  D?’
The largest deflection will thus correspond to the case 6 = n/2,
when ¢ attains its maximum value. In real astrophysical situ-

ations, D » R and § « 1, so that we can approximate equation
(47) by

(48)

(tan o), = 0 . (49)
Therefore,
5new = 6 + ¢0(5) . (50)

As a measure of the divergence effect, we introduce a parameter
A, which we define as

A =A@, r,)

_ dénew
B dé r=re

—(14+%
B <1 " do >r=re ’ (51)

Vol. 297

This is an integro-differential equation where d¢,/dé is deter-
mined from equation (31). As a consequence of rotation,

AG, 1) # A—6,7) .

This is unlike the case of the spherically symmetric Schwarzs-
child spacetime, where although the spacetime curvature will
produce the beam divergence effect of similar extent, the sym-
metry in 46 is maintained. This can be easily seen if one
approximates the corresponding Schwarzschild expression of
equation (21) as follows:

S
%Sz—"—[u

sin® 8(2R — 3m5)
R ———:l ) (52)

12(R — 2m)

where the superscript S refers to the Schwarzschild case. Here
6 = n/2 for reasons of symmetry, and

¢ =("""sind),_¢, (53)
ms = 2GM/c? . (54)

Going back to the rotational case, it can be noticed that
A— 1 as §— +r/2, implying that for tangential emission, the
divergence effect will be very small.

The phenomenon of the pulse beam divergence, as outlined
above, has the important implication that the pulsar will, in
effect, behave as a diverging lens for its own radiation. As a
result, there will be a reduction in the intensity, which can be
understood in terms of the conservation of the energy flux. We
write the intensity deamplification factor as e:

1(0new)
T TI0)
1 sinéd
=— . 55
A sin d,,, (55)
For emission close to the cone axis,
1 6 1

In determining the final pulse profile, correction must be
made due to Doppler boosting (and diminution) effect. From
Liouville’s theorem, the observed specific intensity I, is related

Q

F1G. 1.—Schematic illustration of the photon trajectory in terms of the angles 6, ¢,,and J,,,,

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1985ApJ...297..413K

J. 2 1297 JAIBKD

]

[1985A

No. 2, 1985

to the emitted monochromatic specific intensity I, (at a given
d) by

I =1 v/vo)* = 1,(1 +2)72, (57)

where (1 + z) is the redshift factor given by equation (44). The
redshift correction to intensity through a factor
[1 + z(6 = 0)] 3 is inherent to the pulse. Over and above this,
the intensity will get enhanced for photons emitted in the
forward direction (i.e., for 6 < 0) and reduced for photons
emitted in the backward direction (i.e., for 6 > 0). We define a
net deamplification factor €, which corrects € for Doppler
boosting (for § < 0) and diminution (for § > 0) as

¢ e{l + Z(O)}3 ’ (58)

1 + z(9)

in accordance with Liouville’s theorem. For fast pulsars such
as PSR 1937+ 214, the quantity v, will be a significant fraction
of unity. Hence, the correction due to Doppler boosting will be
nontrivial.

VI. CHOICE OF THE EQUATION OF STATE

The structure of neutron stars depends sensitively on the
equation of state of neutron matter at high densities, especially
around p = 10! g cm™3. In this paper we have chosen the
following five equations of state based on representative
choices of neutron and nuclear matter interactions. These are:
(1) the Reid-Pandharipande (RP) model, (2) the Bethe-Johnson
(BJ) model I, (3) the tensor interaction (TI) model (for a
detailed discussion of these see Pandharipande, Pines, and
Smith 1976), (4) the Canuto-Datta-Kalman (CDK) model,
which includes the short-range interaction due to nucleon-
nucleon f°-meson exchange (f? = 2.91 case) (Canuto, Datta,
and Kalman 1978), and (5) the Friedman-Pandharipande (FP)
model, which is based on an improved nuclear interaction that
fits adequately two-nucleon scattering data and known nuclear
matter properties (Friedman and Pandharipande 1981). The
details regarding the composite equation of state and the cor-
responding rotating neutron star models are given in Ray and
Datta (1984).

VII. RESULTS AND DISCUSSION

Analysis of available binary pulsar data is consistent with a
neutron star mass in the range (1.4 + 0.2) M, M = solar
mass (Joss and Rappaport 1984). So, although no reliable mass
estimates are available for the recently discovered fast pulsars,
we adopt here the above value as the representative mass for
the purpose of illustrating the effects of spacetime curvature
and rotation on the pulse profile, taking PSR 1937 + 214 as the
example. For this pulsar Q = 4.0334 x 103 rad s™!; the rele-
vant parameters for the present calculations are listed in Table
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1 (see Ray and Datta 1984 for details). Since PSR 1937+ 214 is
close to the point of secular rotational instability, the results
presented here may be taken to be indicative of the maximal
effects of rotation.

There does not exist at present a general consensus on the
pulse emission mechanism. The proposed mechanisms can be
classified according to their location with respect to the
neutron star. In this paper we choose one of the more influ-
ential models, namely, the one in which the emission is
assumed to take place in the vicinity of the neutron star’s
surface in the form of a narrow conical beacon which rotates
with the neutron star (Radhakrishnan and Cooke 1969),
sweeping the pattern past the observer with a width (<10°)
that should be constant over many decades of frequency.

The theoretical framework presented in §§ III-V is general
and will apply to any emission model and initial pulse profile.
For the purpose of illustration, we take the initial pulse profile
to be a steep Gaussian, with the range —5° < § < 5°. The mass
(M") and radius (R’) that enter the calculations refer to the
rotating neutron star configurations, reported earlier in Ray
and Datta (1984). The bending of photon trajectories and the
final pulse profile have been calculated for various values of the
polar emission angle 6, for each of the equations of state, and
for r, = R’, 2R’, and 3R’. The integrals occurring in equations
(31), (35), and (51) have been evaluated numerically; an upper
limit of r = 700R’ is found to be sufficient for this purpose.

The main conclusion that emerges from our calculations is
this: the pulse cone width becomes divergent (we indicate this
by the index A) by a factor ~ 2. These are illustrated in Tables
2-6 (for several values of §,) corresponding to the various equa-
tions of state. Besides A, the tables list the values J,.,, and €.
The relative variations of the parameters over the different
equations of state is not significant. So, from this consideration
alone, it is not possible to discriminate among the equations of
state. These tables also include the corresponding values for
the Schwarzschild case and so facilitate a comparison between
the two cases. The comparison indicates that the effect of rota-
tion is small, and the spacetime curvature effect predominates.
It should be noted that in Schwarzschild case, any plane is
0, = n/2 plane, and there is no functional dependence on §; as
it is understood in the rotational case.

Figure 2 shows the final pulse profile, for different values of
0,, r.,= R’ and corresponding to the FP model, which is
believed to be the most realistic equation of state available.
Figure 3 is the same as Figure 2, but it shows a comparison for
different choices of r,, keeping 0, fixed (=n/2).

It may be noticed that the bending of photon trajectories is
almost linear in 6. This can be easily seen to follow (for small )
from equation (32) by noting that wg, « 1 and g, «r, and
making a binomial expansion of the right-hand side.

The asymmetry introduced in the pulse profile by the drag-

TABLE 1
BuLk PROPERTIES OF PSR 1937+214

Equation R R @(R)

of State M'/M g M/Mgy  (10°cm)  (10°cm)  (10*8 gem?s™)  (10%°s™Y)
RP........... 1.383 1.285 1.029 1.002 6.084 5.859
FP........... 1.416 1.308 1.119 1.087 6.492 5.285
CDK ........ 1.423 1.305 1.176 1.141 6.675 4939
BJ ........... 1.399 1.301 1.323 1.281 6.105 4274
T 1.390 1.270 1.691 1.629 6.636 3.015

NoTE—Mass ~ 1.4 M4 ; on the verge of secular rotational instability.
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TABLE 2 TABLE 3
RP MobEL FP MobEL
5new A € 6,,”, A €
3 + - + - + - s + - + - + -
Rotational Case Rotational Case
0, =03n 0,=03n
0°........ 0° 0° 2.545 2.545 0.154 0.154 [ 0° 0° 2.512 2.512 0.158 0.158
| ST 2.543 —2.547 2.540 2.549 0.154 0.155 ) DU 2.509 —2.514 2.507 2.517 0.158 0.159
2, 5.080 —5.099 2.535 2.554 0.153 0.156 2t 5014 —5.034 2.503 2.522 0.157 0.160
K ST 7.613 —7.656 2.531 2.559 0.153 0.157 3o 7.515 —7.558 2.498 2.527 0.157 0.161
B 10.142 —10.218 2.526 2.565 0.152 0.158 4......... 10.010 —10.087 2.494 2.532 0.156 0.162
S, 12.666 —12.785 2.522 2.570 0.152 0.159 S 12.502 —12.621 2.489 2.537 0.156 0.164
0,=0.5n 0, =0.5n
0°........ 0° 0° 2.240 2.240 0.199 0.199 0°........ 0° 0° 2.213 2.213 0.204 0.204
| O, 2.237 —2.242 2.235 2.245 0.198 0.201 ) U 2.210 —2215 2.208 2217 0.203 0.206
20 4.470 —4.489 2.230 2.249 0.197 0.202 2t 4416 —4435 2.203 2.222 0.202 0.207
3o 6.698 —6.741 2.226 2.254 0.196 0.203 3 6.617 —6.659 2.199 2227 0.201 0.209
S 8.921 —8.998 2.221 2.259 0.196 0.205 4. 8.813 —8.889 2.194 2.232 0.200 0.210
S, 11.140 —11.259 2217 2.265 0.195 0.206 S 11.005 —11.124 2.190 2.237 0.199 0.212
Schwarzschild Case Schwarzschild Case
0, =0.5n 0, =0.5n
0°........ 0° 0° 2252 2252 0.197 0.197 0°........ 0° 0° 2.226 2.226 0.202 0.202
| DU 2.252 —2252 2.252 2252 0.197 0.197 | DR 2.226 —2.226 2.226 2.226 0.202 0.202
2 4.504 —4.504 2.252 2.252 0.197 0.197 2. 4453 —4453 2.226 2.226 0.202 0.202
3o, 6.756 —6.756 2.252 2252 0.197 0.197 3o, 6.679 —6.679 2.227 2.227 0.202 0.202
4., 9.008 —9.008 2.252 2.252 0.197 0.197 4......... 8.906 —8.906 2.227 2.227 0.202 0.202
S 11.260 —11.260 2.253 2.253 0.197 0.197 S 11.133 —11.133 2.227 2.227 0.203 0.203
TABLE 4 TABLE 5
CDK MobDEL BJ MoDEL
Onew A € Onew A €
s + - + - + - ) + - + - + -
Rotational Case Rotational Case
0,=0.3n 0, =0.3n
0°........ 0° 0° 2.490 2.490 0.161 0.161 0%t 0° 0° 2.436 2.436 0.169 0.169
) TP 2.488 —2.493 2.486 2.495 0.160 0.162 | B 2.434 —2438 2.432 2.441 0.168 0.170
20 4971 —4.990 2.481 2.500 0.160 0.163 2 4.863 —4.882 2.427 2.446 0.167 0.171
K FUT, 7.450 —7.493 2.476 2.505 0.159 0.164 3o, 7.288 —17.329 2.423 2.450 0.166 0.172
4. 9.924 —10.000 2.472 2.510 0.159 0.165 4o 9.708 —9.782 2.418 2.455 0.165 0.173
St 12.394 —12.513 2.468 2.515 0.158 0.167 S 12.124 —12.240 2414 2.460 0.165 0.175
0, =0.5n 0, =0.5n
0°........ 0° 0° 2.195 2.195 0.208 0.208 0°........ 0° 0° 2.150 2.150 0.216 0.216
| DU 2.192 —2.197 2.190 2.200 0.206 0.209 | SR 2.148 —2.153 2.146 2.155 0.215 0.218
2, 4.380 —4.399 2.186 2.204 0.205 0.210 20, 4.292 —4.310 2.141 2.160 0.213 0.220
K JUTUR 6.563 —6.606 2.181 2.209 0.204 0.212 3o, 6.431 —6.472 2.137 2.164 0.212 0.221
S 8.742 —8.818 2.176 2214 0.203 0.214 4. 8.565 —8.639 2.133 2.169 0.211 0.223
Siiiis 10.916 —11.034 2.172 2.219 0.202 0.216 Seeviinnnn 10.696 —10.810 2.128 2.174 0.210 0.225
Schwarzschild Case Schwarzschild Case
0, =0.5n 0,=0.5n
0°........ 0° 0° 2.209 2.209 0.205 0.205 0°. ... 0° 0° 2.174 2.174 0.212 0.212
| 2.209 —2.209 2.209 2.209 0.205 0.205 1o 2.174 —2.174 2.174 2.174 0.212 0.212
2. . 4418 —4.418 2.209 2.209 0.205 0.205 2 4.347 —4.347 2.174 2.174 0.212 0.212
3o 6.627 —6.627 2.209 2.209 0.205 0.205 3o, 6.521 —6.521 2.174 2.174 0.212 0.212
U 8.837 —8.837 2.209 2.209 0.206 0.206 4. 8.695 —8.695 2.174 2.174 0.212 0.212
Seiens 11.046 —11.046 2.210 2.210 0.206 0.206 S 10.869 —10.869 2.174 2.174 0.213 0.213
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TABLE 6
TI MobEL
6new el
) + - + - + -
TI Model Rotational Case
0, =03n

0°........ 0° 0° 2.353 2.353 0.181 0.181

) B 2.351 —2.355 2.348 2.358 0.179 0.182

2. 4.696 —4.716 2.343 2.363 0.178 0.183

3o 7.037 —7.081 2.338 2.368 0.177 0.185
4......... 9.373 —9.452 2.334 2.374 0.176 0.187
S, 11.704 —11.828 2.329 2.379 0.176 0.188

0, = 0.5n

0°........ 0° 0° 2.080 2.080 0.231 0.231

| S 2.077 —2.082 2.075 2.085 0.229 0.233
20, 4.150 —4.170 2.070 2.090 0.228 0.235
3o 6.218 —6.262 2.065 2.095 0.226 0.238
4. 8.281 —8.360 2.061 2.100 0.224 0.240
S, 10.339 —10.463 2.056 2.106 0.223 0.243

Schwarzschild Case
0, =0.5n

0°........ 0° 0° 2.114 2.114 0.224 0.224
| SR 2.114 —2.114 2.114 2.114 0.224 0.224
20 4228 —4.228 2.114 2.114 0.224 0.224
3o 6.341 —6.341 2.114 2.114 0.224 0.224
4ol 8.455 —8.455 2.114 2.114 0.224 0.224
Seviiinn. 10.569 —10.569 2.114 2.114 0.225 0.225

NoOTE TO TABLES 2-6.—Azimuthal bending, divergence index A, and deam-
plification factor € corresponding to the model rotational cases and the Sch-
warzschild case (emission taken at the pulsar surface).

ging of inertial frames due to rotation is brought out by the
index A. The pulse profile gets deformed in the direction of
rotation, the cone becoming compressed for the backward
emission (i.e., for § > 0) and stretched for the forward emission
(i.e., for 6 < 0). The deformation is not uniform; it increases as
one goes from backward to forward emission angles. The

419

deformation extent, however, is small and is more clearly dis-
cernible in Tables 2—6 than in Figures 2 and 3.

The factor € increases as one moves away from the pulse
cone axis. As distinct from ¢, the net deamplification factor €
has a decreasing trend in §(>0) (calculated here for 6, = 0.3n
and 0.57; see Tables 2-6). For the case of the forward emission
(6 < 0), there is a reversal of the above trend. The importance
of Doppler boosting (or diminution, as the case may be), no
matter its actual magnitude for the range of 6 considered here,
is thus clearly discernible. Figure 4 gives a plot of € as a
function of r, for the rotational as well as the Schwarzschild
case (for which €’ = € and is symmetric in + ).

Another interesting result of our calculations is the
“sweeping ” of the entire pulse cone in the direction of rotation
of the pulsar, thus imparting a tilt to the cone. The tilt is to be
understood in terms of the net bending suffered by a § = 0 (i.e.,
radial outward) photon. An analytic expression for the tilt
angle (for wg, « 1 and q, « r,),is

> wd
—¢o(5=0)=j =

Te

D dr r(Q — w)
B L r? I:ezv(l + v, e"’_v):lrme - )

Table 3 gives the amount of tilt as well as time delay for
backward- and forward-emitted photons for all the equations
of state used here and for various values of r,. We find that
A > 1,even at r, = 0.8R; (R, = light cylinder radius), indicat-
ing that the beam divergence effect (for normally radiated
emission) extends almost to the light cylinder radius. The effect,
however, is essentially unimportant for the relativistic beam
model, in which case A ~ 1for 6 ~ + /2.

In view of the high degree of linear polarization in the emis-
sion from many pulsars, it is worth mentioning the rotation of
the plane of polarization due to the dragging of inertial frames.
Since an inertial compass near the surface of a rotating neutron
star precesses with an angular velocity w, the plane of polariz-
ation will rotate with the same velocity (Zeldovich and

\ EOS: FP MODEL

\ ----Gaussian Pulse
——Diverged Pulse
re = R’

10 12

8(degrees)

F1G. 2.—Net deamplification factor € vs. azimuthal angle for two values of 6, (solid curves). The dashed curve corresponds to the initial (Gaussian) profile.
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-
2 1.0~ EOS FP MODEL
m: /// \\ 6g =TI/2
2 / \

-12 -10 -8

———Gaussian Pulse
Diverged Pulse

12

6(degrees)

F1G. 3.—New deamplification factor €' vs. azimuthal angle for r, = R’, 2R’, 3R’ (solid curves). The dashed curve corresponds to the initial (Gaussian) profile.

Novikov 1971). This can be thought of as the relativistic analog
of Faraday rotation. For emission along the polar axis, the
amount of rotation of the plane of polarization (in the direc-
tion of the rotation of the pulsar) is

P d p 1
J; wédr=Lwe‘2”drz5rew(re)

e

and has a value of ~1°. The effect is quite small, and in the
absence of a reference, is of academic interest only.

In Schwarzschild spacetime, photons emitted at +4J would
take the same time to reach a remote observer. With the rota-
tion of the neutron star, this symmetry will not be maintained.
The backward-emitted (i.e., > 0) photons will take a longer
time to reach the observer than the forward-emitted (i.e., § < 0)
photons. The difference in the arrival times of +6 photons,
referred to as time delay, can be calculated from equation (34).
It is largest for the equatorial photons and shows a consistent
increase as the emission point is shifted away from the surface
of the rotating neutron star. These are illustrated in Tables 7-9

0.28

0.26

0.24

0.22

0.20
1

R 2R’ 3R
fe
(ROTATIONAL)

’

R 2R 3R
re
(SCHWARZSCHILD)

(EOS:FP Model, 8g:T1/2)

FiG. 4—Net deamplification factor €' vs. radial emission location r, for various values of 4 and for rotational and Schwarzschild cases
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TABLE 7 TABLE 8
r,=R r,= 2R’
PuLse TIME DELAY FOR & (us) PuLSE TiME DELAY FOR 0 (us)
v, Tt v, TiLT
0, ) ANGLE +1° +2° +3° +4° +5° 0, (c) ANGLE +1° +2° +3° +4° +5°

RP Equation of State RP Equation of State
18°........ 0.044 92190 e 0.2 0.3 0.3 0.4 18°........ 0.093 189583 0.3 0.6 0.8 1.1 1.3
36......... 0.083 9.182 0.1 0.3 04 0.7 0.8 36......... 0.178 18.646 0.5 1.0 1.5 20 2.6
54l 0.125 9.171 0.2 0.5 0.7 09 1.1 S4......... 0.245 18.727 0.7 1.3 20 2.8 34
T2 0.135 9.163 0.2 0.5 0.8 1.0 1.3 T2t 0.288 18.793 0.8 1.6 2.4 3.2 39
90......... 0.142 9.160 0.2 0.5 0.8 1.1 14 90......... 0.302 18.819 0.8 1.7 2.6 33 42

FP Equation of State FP Equation of State
18°........ 0.049 102276 0.1 0.2 0.3 04 0.5 18°........ 0.101 20°008 0.3 0.6 0.9 1.3 1.6
36......... 0.093 10.270 0.2 0.4 0.5 0.8 0.9 36......... 0.193 20.092 0.6 1.2 1.7 23 29
S4......... 0.128 10.262 0.2 0.5 0.7 1.0 12 S4......... 0.265 20.199 0.8 1.6 24 31 39
72, 0.151 10.256 0.3 0.6 0.9 1.2 1.5 T2 0.319 20.288 0.9 1.9 2.8 36 4.6
90......... 0.158 10.253 0.3 0.6 1.0 13 1.5 90......... 0.328 20.322 1.0 1.9 2.8 39 4.7

CDK Equation of State CDK Equation of State

18%........ 0.052 102896 0.1 0.2 0.3 0.4 0.6 18°........ 0.106 202866 0.3 0.6 1.0 1.3 1.7
36......... 0.099 10.892 0.2 0.4 0.7 0.8 1.0 36......... 0.202 20.964 0.7 1.3 1.9 2.5 3.1
S54......... 0.135 10.886 0.3 0.5 0.8 1.1 1.3 54......... 0.278 21.090 0.8 1.7 2.6 35 43
2.t 0.160 10.882 0.3 0.6 1.0 1.3 1.7 72000t 0.327 21.194 1.0 20 30 4.0 49
90......... 0.168 10.880 0.3 0.6 1.0 1.3 1.7 90......... 0.343 21.235 1.1 2.0 3.1 42 5.2

BJ Equation of State BJ Equation of State
18°........ 0.060 122552 0.2 0.2 0.4 0.5 0.6 18°........ 0.119 232010 0.5 0.8 1.3 1.7 2.0
36......... 0.114 12.557 0.2 0.5 0.5 1.0 1.2 36......... 0.226 23.144 0.8 1.6 2.3 3.1 39
54 0.157 12.563 0.3 0.7 1.0 1.4 1.7 S54......... 0.311 23.329 1.0 2.1 3.1 42 5.2
72, 0.185 12.568 04 0.8 1.2 1.6 19 72000t 0.365 23.434 1.2 24 36 4.8 5.9
90......... 0.194 12.570 0.4 0.8 1.3 1.6 2.1 90......... 0.384 23.545 1.3 25 3.7 5.0 6.2

TI Equation of State TI Equation of State
18°........ 0.077 152625 0.2 0.4 0.6 0.7 09 18°........ 0.150 282241 0.6 1.3 1.9 25 3.1
36...c..... 0.146 15.653 0.3 0.7 1.1 1.4 1.8 36......... 0.285 28.539 1.2 23 3.5 4.7 5.8
S4......... 0.202 15.687 0.5 1.0 1.5 2.0 2.5 54l 0.392 28.951 1.5 3.1 4.7 6.2 7.7
72000 0.237 15.716 0.6 1.1 1.8 2.3 29 T2t 0.460 29.270 1.7 35 53 7.0 8.8
90......... 0.249 15.727 0.7 1.2 1.8 2.4 3.0 90......... 0.484 29.406 1.8 3.7 5.8 7.3 9.1

(for all the equations of state used here), which also contain the
values of v,, the emitter’s tangential velocity as seen by a locally
nonrotating observer.

Time delays would be larger if the cone angle were larger. If
the time delay equals the pulse duration, the complete pulse
will be detected by the observer. That is, by the time the emis-
sion cone sweeps past the observer, the photons at the largest
positive value of § will have just reached the detector. If,
however, the time delay between the maximum and minimum
values of 0 exceeds the pulse duration, photons with values
larger than a limiting value of ¢ will miss the detector. As a
result, the pulse will have a gradual buildup but a steeper
cutoff. This will be an additional contributory factor to the
asymmetry in the final pulse profile (aside from the inertial
frame drag effect and interstellar/planetary scintillation, if any),
and will constrain the pulsar’s duty cycle.

To summarize, the effects due to spacetime curvature make
the pulse cone wider (by a factor of ~2) and the pulse intensity
smaller (the peak gets reduced by a factor of ~5). The main
effect of rotation is to introduce an asymmetry in the pulse

profile; this effect, however, is comparatively smaller. These
effects are purely general relativistic, and will be over and
above any (frequency-dependent) effect on the propagation of
electromagnetic waves (such as ray bending, absorption, etc.)
through anisotropic/inhomogeneous magnetized plasma.
Observationally, most pulsars show a narrow pulse profile.
Our calculations would, therefore, suggest that at the emission
location, the pulse starts out in the shape of a narrow spike.
Since the brightness temperature of the source is directly pro-
portional to the intensity of radiation, this would have an
important implication, namely, the brightness temperatures of
pulsars in general (since the curvature effects are dominant
over the rotational effects) are larger by an order of magnitude
(in the emitter’s frame) than are presently presumed. In view of
Figure 3, this statement will be valid for the emitter located
anywhere between the pulsar surface and several times its
radius.

Note added in manuscript—Mention may be made here of
calculations that take into account post-Newtonian effects on
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TABLE 9
r,= 3R

PuULSE TiME DELAY FOR & (us)

v T
(c) ANGLE +1° +2° +3° +4° +5°

RP Equation of State

18°........ 0.137 262139 0.5 1.0 1.6 22 2.7
36......... 0.261 26.367 1.0 20 30 4.0 50
S4......... 0.359 26.664 14 2.7 40 53 6.7
72.0iiiiii. 0422  26.918 1.5 3.1 4.6 6.1 7.6
90......... 0444  27.018 1.6 3.1 4.8 6.3 7.9
FP Equation of State
18°........ 0.149 282143 0.7 1.3 1.9 2.5 32
36......... 0.283 28.437 1.2 23 3.5 4.7 5.8
54 0.389  28.823 1.5 31 4.6 6.1 7.7
T2 0.458 29.157 1.8 35 5.2 6.9 8.7
90......... 0.481 29.290 1.8 3.6 54 7.2 9.1
CDK Equation of State
18°........ 0.156 292369 0.7 14 20 2.8 34
36......... 0297  29.710 1.3 25 3.7 5.1 6.3
54......... 0.408 30.161 1.6 33 50 6.6 8.3
T2, 0.480 30.554 1.9 3.8 5.7 7.6 9.4
90......... 0.505 30.711 19 39 5.8 7.8 9.7
BJ Equation of State
18°........ 0.174  32°478 0.8 1.7 2.5 34 42
36......... 0.332 32.911 1.6 3.1 4.6 6.1 7.6
54 0456  33.565 2.1 40 6.0 8.0 10.0
T2, 0.536 34.147 2.2 43 6.7 89 11.2
90......... 0.564  34.385 24 4.6 6.9 9.2 11.5
TI Equation of State
18°........ 0220  40°051 1.3 2.6 3.8 5.1 6.5
36......... 0419  41.064 23 4.6 6.9 9.2 115
54......... 0.577  42.525 29 5.7 8.6 11.5 14.4
T2, 0.678  43.942 3.1 6.1 9.2 12.2 153
90......... 0.713  44.558 3.1 6.2 9.2 12.3 154

pulse arrival times. Epstein (1977), for example, has considered
the gravitational propagation delay and post-Newtonian cor-
rections to the elliptical binary orbit for PSR 1913 + 16, which
may be useful in determining whether the observed periastron
precession rate is entirely due to the general relativistic effects
of compact mass. However, the pulse arrival time analysis is
based on the assumption that the pulsar is an isotropic point
source of energy, and so qualitative changes in the pulse profile
due to rotationally induced dragging of inertial frames as dis-
cussed here are not manifest.

The neutron star structure parameters that we have used in
this work are for the star on the verge of secular rotational
instability (Ray and Datta 1984). The same quantities for the
dynamical instability can easily be constructed by noting that
the spherical deformations in mass and radius scale as Q for a
given nonrotating set (M, R). The secular limit, rather than the
dynamical one, is used because the former is a stronger
restriction on the rotational speed, and if the millisecond
pulsar is envisaged as a neutron star spun up, the secular
instability intervenes earlier than the dynamical. Shapiro,
Teukolsky, and Wasserman (1983) have considered published
models of equilibrium spherical nonrotating stars that can be
uniformly spun up to millisecond periods and will still remain
in hydrostatic equilibrium. Their treatment is general rela-
tivistic and valid for arbitrarily fast rotations of a uniform
density, centrally condensed Roche model, and suggests that
PSR 1937+ 214 may be rotating a factor of 2 slower than the
instability limit. The main conclusions reported here will,
however, remain valid, since our calculations show that the
effects of spacetime curvature dominate over those of rotation.

We thank Professors J. V. Narlikar, Ch. V. Sastry, V.
Radhakrishnan, and our colleagues at the Raman Research
Institute for helpful discussions. B. D. acknowledges the Indian
National Science Academy for the award of a Biren Roy Trust
Fellowship.
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