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We calculate the range of eigenfrequencies of radial pulsations of stable strange quark stars, using the general relativistic pulsa- 
tion equation and adopting a realistic equation of state for degenerate strange quark matter. 

Nuclear matter at high densities is expected to 
undergo a phase transition to its constituent quark 
matter, of  which "'strange matter",  consisting of  an 
approximately equal number  of  u, d and s quarks 
(together with electrons to provide electrical charge 
neutrality), would be the lowest and true ground state 
of  matter [ 1 ]. Further studies of  strange matter [ 2 -  
4] support this idea and suggest the possibility that 
strange matter may exist in various forms ranging 
from "'strangelets" of  size 5-200 fm to huge "strange 
quark stars" of  mass ~ M  c (MQ=so la r  mass) and 
radius -~ 10 km. There so-called strange stars have a 
rather different mass-radius relationship than neu- 
tron stars, but for stars of  mass=  1.4 M o ,  the struc- 
ture parameters of  quark stars are ve~' similar to those 
o f  neutron stars. Since pulsars are believed to be (ro- 
tating) neutron stars, and since available binary pul- 
sar data suggest their masses to be close to 1.4 ,~tlc~, it 
has been conjectured [4] that at least some pulsars 
could be quark stars. Among the criteria suggested for 
distinguishing a quark star from a neutron star are 
the neutrino cooling rate [ 5-7 ], transport properties 
such as bulk viscocity [ 8,9 ], and sub-millisecond pe- 
riod rotation rates [ 10]. 

Recently, Haensel et al. [ 1 1 ] have emphasized that 
pulsation properties of  a neutron star can yield infor- 
mation about the interior composition, namely, 
whether the interior has undergone a phase transi- 
tion to quarks. The main idea is to know the damping 
times, which will be modified if there is a quark mat- 
ter core. In their study, Haensel et al. [ 1 1 ] used a 

polytropic model for the equation of  state (EOS) for 
nuclear matter as well as quark matter, and the new- 
tonian pulsation equation to calculate the eigenfre- 
queneies. The strange quark mass and the quark in- 
teractions arc important for the structure of  quark 
stars [ 4 ]. This suggests that the EOS of  strange quark 
matter will have a role to play in determining the pul- 
sation features of  quark stars. Clearly, for a more ex- 
act understanding of  the vibrational properties of  
quark stars, use of  a realistic EOS for quark matter, 
and the general relativistic pulsation equation, are 
desirable. Cutler et al. [ 12 ] have calculated the fre- 
quencies and damping times of  radial pulsations of  
some quark star configurations, using the general re- 
lativistic pulsation equation, but for quark matter, 
adopted the MIT bag model in its simplest form, 
namely, non-interacting and massless quarks. The 
purpose of  this paper is to calculate the range of  ei- 
gcnfrequencies of  radial pulsations of  stable quark 
stars (using the general relativistic pulsation equa- 
t ion) and to investigate the sensitivity of  the eigcn- 
frequencies on the EOS. 

The EOS used by us incorporates short-range 
quark-gluon interactions perturbatively to second 
order in the coupling constant a¢, and the long-range 
interactions are taken into account phenomenologi- 
cally by the bag pressure term (B).  We incorporate 
the density dependence o f  a~ by solving the Gell- 
Mann-Low equation for the screened chargc. The 
parameters involved, the strange quark mass ( ms ), B 
and the renormalization point (~to), are obtained by 
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demanding that bulk strange mat ter  be stable at zero 
temperature and pressure, with energy per baryon less 
than the lowest energy per baryon found in nuclear 
matter.  For completeness,  we also do the calculations 
for the MIT bag model. 

The spacetime for a spherically symmetr ic  gravi- 
tating system is described by the Schwarzschild metric 

ds2=e"cZdt2-r~(dOZ+sin20 dO 2 ) - e a d r  -' , ( 1 ) 

where u, 2 are functions o f r  only [ 13 ]. The equations 
for the hydrostatic equil ibrium of  degenerate stars in 
general relativity are [ 13 ] 

dp G ( p + p / c 2 ) ( m + 4 ~ z r 3 p / c  2) 
dr - r 2 ( 1 - 2 G m / r c  2) ' (2)  

dm 
d~  = 4rcr2P " ( 3 ) 

Here p and p are the pressure and total mass energy 
density. Given an EOS p (p ) ,  eqs. (2)  and (3)  can be 
numerically integrated, for a given central density, to 
obtain the radius (R)  and gravitational mass 
M =  m ( R ) of  the star. 

The equation governing infinitesimal radial pulsa- 
tions of  a nonrotat ing star in general relativity was 
given by Chandrasekhar  [ 14 ], and it has the follow- 
ing form: 

"~ d~ +H~_=O.2 ~ (4)  
F + a ~ r  r 

where ~(r)  is the lagrangian fluid displacement and 
co" is the characteristic eigenfrequency. The quan- 
tities F, G, t t  depend on the equil ibrium profiles of  
the pressure and density of  the star, and are given by 

F =  - e - ;'e 'Tp  / ( p + pc 2 ) . ( 5 ) 

> F [ l d v  162 ~ )  d F  d p l  
O = - e -  e [ rpt,5-d; r + 5 + + P ~ r  + I ' d r  

X ( p + p c  2 ) - ~ ( 6 ) 

e-~e " (4  dp ( d p / d r )  2 ) 
H =  ~ \ r  dr p + p c  2 A 

8riG e" ( 7 ) 
+ c-- Z - p ,  

where F i s  the adiabatic index, defined in the general 
relativistic case as 

I ' =  ( 1 + p c 2 / p )  dp 
d(pc 2) 

and 

(8) 

A = - -  - -  
d). Fp + 2p d F  2F  dp 2Fp 
dr r 7 dp ---7 + r dr r 2 

l d v [ d 2  ~+2 d F  

, ~ {d v'~: d 2 v 
- : '  PkT,-)- rp (9) 

The boundary conditions to solve the pulsation 
equation (4)  are 

~ ( r = 0 ) = 0 ,  (10) 

@(,-=R) 

dp e "''2 0 ./2~) 
= - - { - ~ r  - V P T ~ ' ( r 2 e -  = 0 .  (11) 

r = R  

Eq. (4)  is of  the Sturm-Liouvi l le  type and has real 
eigenvalues o.o < o.~ < --. < o.~ < .... with the corre- 
sponding eigenfunctions ~o(r), ~ ( r )  . . . .  ~,,(r) . . . . .  
where ~,,(r) has n nodes. 

At high baryonic densities, bulk strange matter  is 
in an overall colour singlet state, and can be treated 
as a relativistic Fermi gas interacting perturbatively. 
the quark confinement  property being simulated by 
the phenomenological  bag model constant (B).  
Chemical equilibrium between the three quark fla- 
vours and electrical charge neutrality allows us to cal- 
culate the EOS from the thermodynamic  potential of  
the system as a function of the quark masses, the bag 
pressure term (B) and the renormalizat ion point l~o. 
To second order in ac, and assuming u and d quarks 
to be massless, the thermodynamic  potential is given 
by [15] 

g?=Qu +g2a +-Q~ +f2,m +g2~, (12) 

where .Q, ( i = u ,  d, s, e) represents the contributions 
of  u, d, s quarks and electrons and £2,n~ is the contri- 
bution due to interference between u and d quarks 
and is of  order a~: 
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sc2~ _ _ 1 [ 8o~ 
4n2l~ 4 1 n 

2 2 

- 1 6 ( ~ )  1 n ( ~ ) - 3 1 , 3 ( ~ )  ] ,  (13) 

£2~ =£2~ ( / ~ / ~ d ) ,  (14) 

.(2~=- ~t~ { (1_22 ) , / 2 (1_~)~  
• 4 7 ~ 2  

+~/. ln{ [ 1 + ( 1 - / . - )  '/2 ]/,;.} 

_ 8o~. [ 3 ( ( l _ 2 Z ) l / z  
7~ 

-22  ln{[l + ( 1 - 2 2  ) I/2]/2})2 

- 2 ( 1 - 2 2 ) 2 ] }  , (15) 

rim, = ~5 8U~,U~ In -1.9U~U~ 

- 19.3{/~ 2 , , In [/a~/(U~, +/ ta)  ] 

3 2 "~ + U,~ In [/~a/(Uo + Ua) 1} 

- 4 ( ~  + ~ ) { ~  In [~,/(u~, + ~ ) 1  

+ u~ In [ ~ / ( u  ~ + u~) l } 
4 )4 • 9 + :~ (/1. - J2d ln( I/z;-/~a I / ~ d )  

+ ~ m m ( u ~  + uS) ln[(m + m)- ' /uo~ 1 

- ~ ( / ~ -  ~,~) l n ( ~°~ ] ,  (16, 
\ # d / J  

~ =  12~2. (17) 

Here/~, is the chemical potential of the ith particle 
species and ).= mJl~. We neglect the strange-quark 
contribution to order o~ and higher in the thermo- 
dynamic potential f2~. The screened charge o~ is ob- 
tained by solving the Gell-Mann-Low equation [ 15 ]: 

dac(/~_~_.~) = ( 58 d/t ~ d ) 

460 
3--~. c~c (u ) ,  (18) 

which includes the effects of the strange-quark mass 
in the lowest order. The higher order contribution to 

the Gell-Mann-Low equation due to strange quarks 
may be ignored because these are important only at 
low densities where the coupling is strong but the pair 
production of massive strange quarks is unimportant 
(see ref. [ 15 ] for further discussions). 

Thc vacuum polarization tensor n~(/t) for the 
strange quarks is given by 

~ ( ~ )  = ~ 3/12 

--~ [ ( l - 2 m ~ ) / l z  2](1 +4m~/12 2) ,/z 
-- I , , '2  

X 

( 1 +4m~/it '-)) . (19) Xarctanh 

In eq. (18), o~c(lto) is the value of o~. at the renor- 
realization point Jzo, where it is taken to be equal to 
1. 

The total energy density and the external pressure 
of the system are given by 

~=-Q+B+ ~ ~,n,, (20) 
l 

p = - n - B ,  (21) 

where n, is the number density of the ith particle spe- 
cies. For specific choices of the parameters of the the- 
ory ( namely, m~, B and Fro), the EOS is now obtained 
by calculating e and p for a given value of~, 

/ l -  ~a =/& =/lu +/~,., (22) 

by solving for it~ from the condition that the total 
electric charge of the system is zero. 

There is an unphysical dependence of the EOS on 
the renormalization point Po, which, in principle, 
should not affect the calculations of physical observ- 
ables if the calculations are performed to all orders in 
a~. [4,16]. In practice, the calculations are done per- 
turbatively and, therefore, in order to minimize the 
dependence on Po the renormalization point should 
be chosen close to the natural energy scale, which 
could be either Po-~ B ~/4 or the average kinetic energy 
of quarks in the bag, in which case/-to ~ 313 MeV. In 
the present study, our choice ofpo is dictated by the 
requirement that stable strange matter obtains at zero 
temperature and pressure with a positive baryon 
electric charge [ 17 ]. This leads to the following rep- 
resentative choice of the parameter values: 

315 



Volume 283, number  3,4 

Table 1 
Equations of stale for degenerate strange quark mailer. 

PHYSICS LETTERS B I1 June 1992 

p ( 1 0 ~ 4 g c m  - s )  P(IO s6dyn c m 2 )  

model 1 model 2 MITbag  (B=56  MeV fm -3) 

6.0 4.44 2.23 6.01 
8.0 l 0.13 7.83 12.00 

10.0 15.88 13.49 17.99 
12.0 21.63 19.17 23.99 
14.0 27.41 24.88 29.98 

16.0 33.20 30.16 35.97 
18.0 39.00 36.36 41.96 
20.0 44.82 42.12 47.95 
22.0 50.64 47.89 53.95 
24.0 56.47 53.67 59.94 

26.0 62.30 59.46 65.93 
28.0 68.14 65.26 71.92 
30.0 73.98 71.06 77.91 
32.0 79.83 76.87 83.90 
36.0 91.53 88.51 95.89 

40.0 100.32 100.16 107.87 
50.0 132.58 129.36 137.83 

Table 2 
Equilibrium strange quark star models. 

Equation of  state Pc ( I 0 ~'* g cm - s ) M / M o  R ( km ) Surface redshift (z) I'o ( ms ) 

model 1 24.0 1.958 10.55 0.487 0.488 
20.0 1.967 10.78 0.472 0.503 
16.0 1.951 11.02 0.448 0.522 
12.0 1.864 11.22 (I.401 0.548 

8.0 1.521 11.02 0.299 0.591 
6.0 0.997 9.93 0.192 0.624 
5.0 0.485 7.99 0.1 (14 0.646 

model 2 

MIT bag model 
( B = 5 6  MeV fm -3) 

24.0 1.863 10.09 0.483 0.468 
20.0 1.862 10.29 0.465 0.482 
16.0 1.829 10.49 0.435 0.500 
12.0 1.710 10.62 0.381 0.527 
8.0 1.281 10.14 0.263 0.568 
6.0 0.645 8.37 0.138 0.600 
5.0 0.092 4.48 0.032 0.622 

24.0 2.021 10.81 0.493 0.500 
20.0 2.033 10.04 0.480 0.514 
16.0 2.023 11.29 0.450 0.533 
12.0 1.947 11.52 (I.410 0.558 
8.0 1.635 11.41 0.310 0.604 
6.0 1.150 10.52 0.210 0.636 
5.0 0.666 8.98 0.130 0.659 
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E O S m o d e l l :  B = 5 6 M e V f m - 3 :  

m s = 1 5 0 M e V ,  / . t o = 1 5 0 M e V .  

EOS model  2: B = 6 7  MeV f m -  3 ; 

m~ = 150 MeV, o~c = 0 .  

Model 2 corresponds to no quark interactions, but a 
non-zero mass  for the strange quark. 

In the l imit,  ms--,0 and o~c--,0, the EOS has the an- 
alytical form 

p =  -~ ( e , -  4 B ) ,  (23 )  

where e is the total energy density. Eq. ( 23 )  is the 

MIT bag model .  It is independent of  the number of  
quark flavours. 

Numerical  values of  pressure (p)  and total mass- 
energy density ( p = e / c  2) for the quark matter EOS 
models  used here are listed in table 1. For the sake of  
comparison,  we have included in this table the EOS 
corresponding to non-interacting, massless quarks as 
givcn by the simple MIT bag model  with B =  56 MeV 
fm-~.  Among these EOS, the bag model  is "stiffest" 
followed by models  1 and 2. Equilibrium configura- 
l ions of  strange quark stars, corresponding to the 
above EOS, are presented in table 2, which lists the 
gravitational mass ( M ) ,  radius (R) ,  the surface red- 
shift ( z )  given by 
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Fig. 1. Periods of radial pulsations as functions of the gravitational mass. The top two and bottom left boxes correspond to strange quark 
stars. The bottom right box is for stable neutron stars corresponding to beta-stable neutron matter, model U VI4 + U VII, ref. [ 18]. The 
labels 1,2, 3, 4, 5 correspond respectively to the fundamental and the first four harmonics. 
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z =  ( I - 2 G M / c 2 R ) - ' / 2 -  1 (24) 

and the period (Po) corresponding to the fundamen-  

tal frequency -{2 o defined as [ 12 ] 

~2o = ( 3 G M / 4 R  3 ) 1,'2 (25) 

as functions of the central dcnsity (Pc) of the star. 
We solvcd cq. (4) for the eigenvalue a by writing 

the differential equation as a set of differencc equa- 
tions. The equations were cast in tridiagonal form and 
the eigenvalue found by using the EISPACK routine. 
This routine finds the eigenvalues of a symmetric tri- 
diagonal matrix by the implicit QL method. 

Results for thc oscillations of quark stars corre- 
sponding to EOS models 1 and 2 are illustrated in fig. 
1. For purpose of compar i son ,  we have included in 

fig. 1 the results for quark stars corresponding to (a) 
the simple MIT bag EOS (non-interacting,  massless 
quarks and B = 5 6  MeV fm -3) and also (b)  neutron 

stars corresponding to a recently given neutron mat- 
ter EOS [ 18 ]. The plots in fig. 1 arc for the oscilla- 
tion time period ( = 2zr/ca) versus the gravitational 
mass (M).  The fundamental  mode and the first four 
harmonics are considered. The period is an increas- 

ing function of M, the rate of increase being progres- 
sively less for higher oscillation modes. Thc funda- 
mental  mode oscillation periods for quark stars arc 
fbund to have the following range of valucs: 

MIT bag model: 0.14-0.32 ms ,  

EOS model 1:0.10-0.27 ms ,  

EOS model 2 :0 .06-0 .30  ms .  

For neutron stars, we find that the range of periods 
for thc 1 = 0 mode is ~ 0.3 ms. For the higher modes, 

the periods are ~ 0.2 ms. 
Inclusion of strange quark mass and the quark in- 

teractions make the EOS a little "'softer" as com- 
pared to the simple MIT bag EOS (sec table 1 ). This 
is reflected on the value of the max imum mass of the 
strange quark star (sec table 2). For the pulsation of 
quark stars this gives, for l = 0  mode eigenfrequcn- 

cies, values as low as 0.06 ms. The main conclusion 
that emerges from our study, therefore, is that the use 
of realistic EOS can be important  in deciding thc 
range ofeigenfrequencies, at least for the fundamen-  
tal mode of radial pulsation. The results presented 
here thus form an improved first step of calculations 

on the lines presented by Haensel et al. [ I 1 ], whose 
numerical conclusions are expected to get altered. 
Such a calculation for hybrid neutron stars (i.e., a 
neutron star with quark matter core) along with the 
damping times due to dissipative forces and gravita- 
tional radiation reaction is under  preparation, and 
will bc reported in a future paper. 
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