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Plasma Heating in a Sheared Magnetic Field
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Abstract. The mechanism of spatial resonance of Alfven waves for
heating a collisionless plasma is studied in the presence of a twisted mag-
netic field. In addition to modifying the equilibrium condition for a
cylindrical plasma, the azimuthal component of the magnetic field gives
extra contribution to the energy deposition rate of the Alfven waves.
This new term clearly brings out the effects associated with the finite
lifetime of the Alfven waves. The theoretical system considered here
. conforms to the solar coronal regions.
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1. Introduction

The magnetohydrodynamic waves are believed to be the potential candidates for
heating a plasma. Since these waves are known to exist in great abundance in the
solar atmosphere, they present themselves as the natural choice for heating the coro-
nal plasma and the chromosphere-coronal transition regions. The magnetohydro-
dynamic waves, for example acoustic waves, Alfven waves and their other modified
equivalents could be generated through the Lighthill mechanism i.e. direct generation
by the turbulent convective motions, for example in the photospheric layers. The
low frequency acoustic waves may lose major portion of their energy in the photo-
sphere through radiative damping. On the other hand, the steepening of the wave
front of the acoustic waves, as they propagate, results in shock formation, in which
case, they deposit their energy over larger spatial scale. Alfven waves, as suggested
by Alfven (1947), may lose their energy by ohmic losses due to the finite electrical
conductivity. Piddington (1956) proposed viscous damping to be more important
than Joule heating in the corona. Uchida and Kaburaki (1974) invoked the decay
of slow MHD waves—produced through nonlinear coupling of Alfven waves—
in order to explain the excessive heating of the active regions. The coupling of the
waves has been studied using quantum field theoretical methods (Kaburaki and
Uchida 1971). The coupling of Alfven waves and the fast mode waves in a stratified
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medium and its significance in heating the solar corona has been discussed by Melrose
(1977). Plasma heating by spatial resonance between shear Alfven waves has been
proposed by Chen arnd Hasegawa (1974). Ionson (1978) and Wentzel (1979) applied
this resonance absorption mechanism for heating the coronal loops. The terms—
energy deposition rate of the waves and the plasma heating rate have been used syno-
nymously in the literature. Actually, in the fluid treatment usually performed, there
is no provision for the transfer of this deposited energy to the particles. A wave-
particle interaction has to be invoked to calculate the heating rate of the plasma
particles. In this paper, we calculate the energy deposition rate of the Alfven waves
in an inhomogeneous plasma in a twisted magnetic field. The inhomogeneous coronal
density model is derived in a cylindrical geometry from the equilibrium condition
in the presence of the twisted magnetic field. We find that the results in a cylindrical
geometry are qualitatively different from the ones in a planar geometry considered
previously. In addition to an extra contribution to the dissipation rate, we find
that an arbitrarily small value of the parameter B = ratio of the gas pressure to the
magnetic pressure, is not allowed in the present analysis.

2. Dissipation rate

We consider a plasma system with mass density p(r) in a magnetic field B = [0, By(r),
B,(r)], where By = Bar and B, = B, a being a constant. This represents a uni-
formly twisted magnetic field with the pitch of the field given by 27/a. The radio
evidence for the existence of the twisted magnetic fields in the corona has been pre-
sented by McLean and Sheridan (1972). The equilibrium gas pressure P(r) and the
magnetic field B(r) satisfy the condition

2
E[P(r) +£2]+ﬂ’___0, (1)
or 2ul  pr

Making use of the adiabatic equation of state, one finds the spatial variation of the
mass density p(r) in the limit ar € 1 to be

p(r) = po exp (— BE/uPy)

= po exp (— a? r2/4B,y) ¥)]
uP
where, B, =%l o

and y is the adiabatic index. Using the standard magnetohydrodynamic equations,
relaxing the conditions of incompressibility, we find the equations for the radial
component of the plasma displacement vector ¢, and the total perturbed pressure
pto be:

az § [_—( aleBz )+(k||B)B§€(al—1)]
d2 "Ldr a k2 B® —¢ ryB(k, B
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and all perturbed quantities vary according to exp [i (k, z + 16 — wt)], [ is an inte-
ger. Equation (3) describes the coupling of the shear Alfven waves, the magnetosonic
waves and the acoustic waves in an inhomogeneous magnetoplasma system. The
singularity in the solution of equation (3), at the point where the phase velocity of a
given Alfven wave propagating in the inhomogeneous plasma becomes equal to that
of the local Alfven wave, has been discussed by Chen and Hasegawa (1974), Ionson
(1978) and Wentzel (1979). We wish to study the effect of this particular magnetic
field geometry on the singular solution and hence on the dissipation rate. An expres-
sion for the dissipation rate can be found from the relation

W _ 1 Re fJ CE* d%
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where

VXDb
n

J =

and E=iw ¢ X B. D

Substituting for all the perturbed quantities in terms of £,, one finds

aw iw B¢
— = Lz r, R [— %—— * gf
7 73 alkiBz—efr &
_|_ ((k“ B) (k.l. B) Bg (al - 1)___ BBI) f* g'} ]r0+7' (8)
T B@ kB —g g P

where L, is the extent of the system in z direction and £, = d¢,/dr. One can solve
equation (3) around the regular singular point » = r, by Frobenius’ method to get

o0 <0
¢ =c ay+ z (clan—l—czb")x"+czln|x|2a,,x" &)
n=1 n=0
wherex:r—ro-l—i'o‘,suchthat|r—r0|=[n[>]8[,
de, ,
0= C—r+ia
and
8=€l (ro)
de, ’ (10)
dr r=r,

¢ and ¢ being the real and imaginary parts of e. Substituting equation (9) in
equation (8) and evaluating at the upper and the lower limits, one finds

] de
dw B2 T
7if_:—'"'z.l;zroglc.?‘aolz{ dr r=r°
| @B,
2 B2 (ry [k, B 1
e Ay —tfmiaf. S
To le(l—-yB)

In equation (11), the first term is the familiar contribution obtained by earlier workers
in a planar geometry. In arriving at the first term, though the condition that | | > | 8|
has been made use of, the quantity 5 does not figure explicitly. The second term,
which is a direct consequence of the different equilibrium condition (1) for a cylindri-

© Indian Academy of Sciences ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1981JApA....2..379K

T 20 C379KD

78I APA:

rt

Plasma heating in a sheared magnetic field 383

cal plasma in a helical magnetic field, clearly shows the finite life time effects. The
presence of this term forbids the wave to approach the resonance point infinitely close
and 7 is a measure of the closest distance of approach. Thus, whereas the first term
allows the energy deposition in the limit 7 — 0%, the second term makes its contri-
bution little away from the resonance point. This could result in giving a finite width
to the absorption region.

3. Application to the solar corona

Resonant Alfven wave heating mechanism has been applied to the heating of coronal
loops by Ionson (1978). In view of the recent observations, where a highly inhomo-
geneous nature of the chromospheric—coronal transition region and that of the dense
corona has been emphasized, this mechanism could be operative over large portions
of the solar corona (Feldman, Doschek and Mariska 1979). These authors, from the
skylab data, propose that the transition zone and the corona may be confined to
small structures of high plasma density. The regions in between these structures
would contain a negligibly small amount of plasma relative to the plasma within these
structures. In such a case, one could envisage a model where the source of Alfven
waves—which could be a magnetic filament or a current sheet—lies outside these
high density coronal structures. We assume a cylindrical geometry where the half
cylinder is filled with the high density plasma in a helical magnetic field and the source
of Alfven waves is situated outside in a relatively low density region. This facilitates
to relate the constant (c,a,) of equation (11) to the energy density of the Alfven waves
produced external to the region to be heated. To be able to do this, one has to deter-
mine the solution of equation (3) at the boundary i.e. at r = 0. Then, by satisfying
the boundary conditions, one can relate the solution of equation (3) at the point r ~ r,
to that at » = 0, which in turn is related to the external source of Alfven waves. We
observe that in the present system r = 0 is a regular singular point and by Frobenius
method, we can find a series solution only for r > 0 and r < 0. Therefore, this forbids
a sharp boundary at r = 0 and one has to take the finite thickness of the boundary
into account. In this piece of work, we make a simplifying assumption and solve
equation (3) for / =0 i.e. k, = 0. In this case, we can find a general solution of
equation (3) in the interval 0 < r < ry in the form of a series

b= d( —ry W
n=0

where r, is an ordinary point in the interval. The coefficients d, can be determined
by substituting solution (12) into equation (3) and comparing the coefficient of equal
powers of r on both sides. Another simplifying assumption we make is to consider
the low density medium as vacuum. We can decompose the magnetic field b of the
wave into two components b = b, 4 b,, where b; corresponds to the external driving
field. One can find an expression for these fields, satisfying the equations

V X by =V'b, =0,
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b "'l,l’zvei(kzz_ikrr—wt)
p = s

b]_ — ¢‘1 v ei(kzz-}-ik,r—wt)‘ (13)

In arriving at equation (13), solution on a planar geometry has been assumed since
this may be a good approximation for mode number / = 0. The first boundary con-
dition is the continuity of the radial component of the magnetic field at r = 0, i.e.

by = [ ky(0) B(0) £(0) — b, (0)] /&, (14)
The second boundary condition is the pressure balance condition
up©) =By (b +by)|, ¢ (15

where B, is the vacuum magnetic field. Substituting for p(0) and b,, b,, one finds

28,0) = 1100) BO) | 60) — - 50 (147 £+ 501 53) . a6

Y
0

Matching the solutions of equation (3), we find £,(0) = — (c; a,) and £(0) = 2 ¢,
ayfry for ry = ry/2 and d, =0. Here we have checked that the higher order terms
(for n = 2) in equation (12) are small. In a more general case, the treatment has
to be done numerically. From equation (16), we determine (c, @,) and substitute in
equation (11) to get

W _ 2 8O e 1 |
a R L +”1(f)3 )|
2 , a?r? 2 ln] an
i [alﬁoy(l _:;0,:)+ > o mt ) nl] |

where (a2 r2)/(4B, ) < 1.

One must remember that in the present treatment, an arbitrary small value of the
parameter (8, v) is not allowed because of the assumption a? r? < 8, y made while
deriving the plasma density profile from the equilibrium condition (1). As a matter
of fact, in the solar coronal conditions this number yB is not vanishingly small. The
second term, as has been mentioned earlier, brings out the finite lifetime effects. A
comparison of the resonant absorption dissipation rate and that of the Joule heating
rate shows, for the same energy density of the Alfven waves, the latter to be much
smaller than the former. The « dependent term in equation (17) could be positive or
negative depending on whether the magnetic field pitch is in the positive or in the
negative direction. This will give the dissipation rate to be more for one direction
of twist than for the other direction. The present treatment suffers from various
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assumptions and approximations. The first thing, which we plan to include in our
future work is the effect of finite k; in the solution. In fact, the assumption of k=0
may not be bad in the case of solar corona, since one desires the waves to propagate
throughout the plasma, unlike in the laboratory plasma. The second improvement
could be to replace the vacuum by a low density plasma, in which case the contribu-
tion from the displacement current needs to be taken into account. This investiga-
tion could be done in a nonuniformly twisted magnetic field. This would be in line
with Kuperus (1965) who has stressed the need to include more realistic magnetic
field configurations while studying the heating problem.

4. Conclusion

The energy dissipation rate of the Alfven waves in an inhomogeneous plasma by
spatial resonance absorption mechanism is calculated in a uniformly twisted magnetic
field. The physical significance of the additional contribution to the energy dissipa-
tion rate is to stress on a finite distance of the closest approach to the resonance
point by the Alfven wave. Inthe present model, arbitrarily small values of y8, are not
allowed. The smallness of 8, is controlled by the ratio of the azimuthal component
of the magnetic field to its axial component.
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