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A TIME DEPENDENT MODEL FOR SPICULE FLOW
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Abstract. A time dependent model for the flow of gas in a spicule is studied. In this model, the flow occurs
in a magnetic flux sheath. Starting from hydrostatic equilibrium, the flux sheath is allowed to collapse
normal to itself. The collapse induces a flow of gas along the magnetic field and this flow is identified as a
spicule. A variety of sheath geometries and velocity patterns for the normal flow have been studied. It is
observed that a large curvature in the field geometry and a large initial value for the normal flow are
necessary to achieve spicule-like velocities. The duration for which a large velocity of normal flow is
required is much shorter than the average lifetime of a spicule. It is proposed that the initial rapid collapse
occurs during an ‘impulsive spicule’ phase and it is the subsequent gradual relaxation of the flow which is
observed as a spicule.

1. Introduction

It is well known from observations that the magnetic field on the Sun is concentrated
into elements called flux tubes. These often take part in processes due to which their
geometry can be altered. A change in geometry of a flux tube may in certain cases
have a significant effect on the dynamics of gas within it. If the change in geometry is
sufficiently rapid, it is possible for a flow with a fairly large velocity to be initiated in
the flux tube. In this paper we examine the possibility that spicules are a mani-
festation of such a process.

Spicules are dense jets of gas moving upward with a velocity around 20 kms ™.
Observations have established firmly that spicules originate near the boundaries of
supergranules, thereby identifying them with regions of magnetic field concen-
trations. Owing to the high conductivity of the solar plasma, the spicule flow will be
channelled along the magnetic field. The driving mechanism for spicules is still
debatable, although several theories have been proposed (see Athay, 1976, for a
review). We investigate a model described qualitatively by Hollweg (1972), in which
spicules are identified with the gas expelled upwards when a magnetic flux sheath
undergoes lateral compression. Using the argument of mass conservation, Hollweg
calculates that it is possible for gas to be expelled upwards with a velocity of
40 km s~ in a sheet 1000 km high and 700 km thick undergoing compression with a
lateral velocity of 0.4 kms™'. However, before this model can be accepted, it is
necessary to consider the effect of compressibility and to include the dynamics in the
analysis. Recently, this has been done in Hollweg (1979) using a linear approach.
According to the findings in this paper, a large vertical flow can be generated as a
result of a ‘resonance’ between a fast MHD wave and gravito-accoustic wave. The
existence of such a ‘resonance’ is doubtful (Venkatakrishnan and Hasan, 1981).
Furthermore, the conditions for the generation of large flows based on a linear
analysis cannot be applied to spicule flow, as such conditions become invalid once
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nonlinear effects set in. Thus, the seed flow generated due to ‘resonance’ may
actually die out instead of being enhanced. The same criticism applies to the
conclusions of Roberts (1979), who also advocates a resonance condition for the
buildup of spicule flow.

In this paper, we examine quantitatively, using the nonlinear MHD equations, the
hypothesis that the collapse of a magnetic flux sheath may actually drive a spicule.
Since spicules have a finite lifetime, we consider the time dependent problem and
attempt to demonstrate different possible phases which may occur during their
lifetime.

For purposes of mathematical simplicity and also to focus our attention on the
vertical flow, we solve the MHD equations in a specified stream geometry in the same
spirit as Kopp and Pneuman (1976), who however, studied a totally different
problem.

2. Basic Equations

Let us envisage the spicule as a two dimensional structure in the y —z plane with
gravity acting in the negative z-direction. It is convenient to transform to a system of
co-ordinates (s, ») ‘moving’ with a field line where s denotes a distance measured
along a field line and n denotes a distance measured along a normal curve (in the
same plane).

Following Kopp and Pneuman (1976), we see that the unit vectors s and n satisfy
the following geometric relations:

3§ .96 a§ A a§ . a0
_=n_5 _=_) —=n_’
ot ot 3 R on on
h__90 9A__§  ah__ .6
ot at’ s R’ on on’

where R denotes the radius of curvature of a field line and 6 the angle the field makes
with the z axis.
The equation of motion along the field can now be expressed as

oV, oV, aV
+V, V+V,. =
ot as on

1 9P 0 V,V, 5 00
=—-—= +V,—+ +V,—, 2.1
s 0s geoso+V, ot R on 2.1)

where V denotes velocity, P pressure p mass density, and g acceleration due to
gravity.

Consider a frame of reference fixed to a given field line. In such a frame, moving
normal to itself with velocity V,, let us denote the space and time derivatives as D/ Ds
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and D/ Dt, respectively. These satisfy the following operator relationships:

D o4 0
—=—+V,—, (2.2a)
Dt ot on
D 3
—=— 2.2b
Ds as ( )
From (2.1) and (2.2), we finally have:
DV, DV, 1 DP Do
+ V =———- 0+V,—+V,Vi/R. 2.3
Dt Ds pDS & Dt / @3
In a similar manner, the equation of continuity takes the form:
s 90 V, aV,
DV, Dlnp  Dlnp 00 Vo 9Va_, (2.4)

Ds D¢ Ds on R on

We close the set of equations by choosing an isothermal equation of state:

P=pa*, (2.5)

where a =v®RT s the sound speed, assumed constant, % is the gas constant, and T’
the gas temperature. The unknown variables in Equations (2.3)—(2.5) are P, p, and
Vi. We shall assume that the stream geometry is known at each instant of time by
specifying V,, and the initial field configuration. Noting that Equations (2.3) and (2.4)
are hyperbolic, we use the method of characteristics to arrive at a solution (Courant
and Friedrichs, 1948). The characteristic equations are

d

§=A+B/a on C., (2.6a)
dé_

—§—=A—B/a on C_, (2.6b)
dt

where
(s=InPxVj/a, (2.7a,b)
D
B=—gcosf+ VnD—tg+ V.V./R, (2.8)
a6
A=—Vs£+ V./R—-94V,/on. (2.9)

Equations (2.6a) and (2.6b) hold on the characteristic curves C, and C_ respec-
tively, whose equations are

C.: Et-= Vi+a, (2.10a)
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C.. —=V,—a. (2.10b)
d

Having transformed the equations into characteristic form, we are now in a
position to obtain a solution to our problem. Before attempting this, let us first
specify the stream geometry.

3. Stream Geometry

Consider first the magnetic field configuration at some initial time, say ¢ = 0, before
the collapse i.e. when V, =0. We choose the field to have the following potential
form:

B, =Byexp (—kz)sinky,
B, =Byexp (—kz)cos ky,

where k and B, are constants. The equation of a field line is easily determined as

sin ky =sin kyp exp (kz), 3.1)

where yp is the lateral distance of the line base from the axis of the flux sheath.
Furthermore, we see that

6=ky, (3.2)
R = (k sinky)™". (3.3)

Equations (3.1)-(3.3) specify the initial geometry of a field line. To determine the
geometric properties of the field once the collapse starts, it is necessary to prescribe
V., explicitly. In order to keep the analysis sufficiently general, we consider the
following two different forms for V,,:

(a) V, = Vysin ky/sin kyg, (3.4)
where
Vo= ViH(t —t))+ V,H(t; 1),
and
Vi = —V,; cos kyg; sin (ys/y;)/[sin (yg;/y;) cos (kys)] (/=1,2).

In the above, H denotes the Heaviside function and ¢, V,.1, ys1, ¥1, Va2, ¥B2, and y»
are constants chosen in such a way that at ¢ = #; the velocity is continuous.

(b) V, =V, e “* where V,and H are constants.

In (a) and (b), V, denotes the normal velocity at the base of a field line. The form
given in (a) guarantees that the geometric relationships (3.1)—(3.3) hold at all instants
of time, so that the initial form of the field is preserved. For the second from, the
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stream geometry for >0, can be determined by solving the following differential
equations:

%= V, cos 6, (3.5)
dz

—=—-V,sin#, 3.6
17 V, sin 6 (3.6)
de oaV,

4 as (3.7)

4. Method of Solution

For the purposes of our study, it is sufficient to consider a single magnetic line of force
and examine the flow along it as it moves normal to itself in a specified manner. The
geometric properties of a given field line are determined from Equations (3.5)—(3.7),
whereas the dynamical variables are found from Equations (2.6) and (2.10).

Since we are studying an initial value problem, all variables must be specified at
t = 0. We shall assume that initially the gas is in hydrostatic equilibrium. Thus at f =0,
we have:

P=Poexp(—gz/a®),
V.=0,
V,=0,

where P, denotes the pressure at the base of the line.

For solving Equations (2.6a) and (2.6b), a two dimensional grid is prepared by
drawing the C, and C_ curves. It is important to point out that only one family of
characteristics reach points on the boundary when the flow is subsonic.
Consequently, it is necessary to specify an independent relation between P and V so
that the flow properties are known throughout the region of interest. For simplicity,
we assume that at the base of the line, the pressure remains constant and at the top
the velocity is specified by extrapolating the interior values.

We solved Equations (2.6a), (2.6b), (2.10a), and (2.11) numerically using a
predictor-corrector method. An inverse marching scheme was used to advance the
equations in time (for details see Hasan and Venkatakrishnan, 1980). To ensure
numerical stability, the time step was chosen small enough so that the Courant-
Friedrichs—Lewy criterion was satisfied.

5. Results
Let us now examine the results of the computations. Figures 1 to 5 depict the spatial

and temporal distribution of the flow variables for different choice of parameters.
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Fig.1. Therun of parallel velocity (solid lines) and pressure (dashes) with time is shown at different space

points (indicated in brackets). A starting value, V,;, = 60 km s, was chosen for the normal velocity at the
base. The units of k are 10> km ™.

In order to reduce computation time we considered a field line having a length of
2000 km for most of the numerical study. A representative temperature of 10* K was
chosen, though it was seen that the results were insensitive to its precise choice.

CaseI: V,= Vysinky/sin kyg.

Figure 1 shows the run of velocity and pressure with time at different space points
for which V,, has the form (a). To achieve spicule-like velocities an initial normal
velocity =60 km at the base was found necessary. All curves show a sharp rise in the
first few seconds followed by a subsequent gradual decline. The decline is due to the
rapid diminution of the lateral flow after around 15s. A sudden decrease in the
normal flow does not lead to a similar decrease in the parallel flow, which relaxes on a
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Fig. 2. The variation of parallel velocity (solid line) and normal velocity (dashes) with time is depicted at
s = 2900 km for a total field length of 4000 km and V,,, =60 kms ™" initially.
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Fig. 3. The spatial distribution of parallel velocity at different times is shown for an initial choice
Vo =60kms .
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Fig. 4. The spatial distribution of pressure at different times is shown for an initial choice V,, =
60kms™".

much larger time scale. This time scale varies from around 70 s for a spicule length of
2000 km to about 300 s when the length is 4000 km. Figure 2 shows the temporal
behaviour of velocity in the latter case. The rapid decrease of V,, near 15 s is also
shown.

Figures 3 and 4 depict the spatial distribution at different times for velocity and
pressure respectively. We can notice the presence of a slight kink propagating
downstream with an approximate speed of 25 km s ". This kink is probably due to
the sudden onset of the lateral flow. The effect of curvature on the parallel flow is
demonstrated in Figure 5. We see that as k increases, which corresponds#to a
decrease in the radius of curvature of the field line, the velocity also increases.
However, the position of the peak remains roughly the same. Figure 6 shows the

’a e T . . . ® Ve,
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Fig. 5. The effect of curvature on the temporal distribution of velocity at s =1700 km is depicted.
A value of 20 000 K for the temperature and an initial normal velocity V,,;, = 80 km s™! were used.

stream geometry at different instants of time. The field lines have an initial rapid
motion followed by a sudden decrease in velocity.

Casell: V,=Vye ¥H,

In order to demonstrate that the results obtained by us are sufficiently general, we
considered a second from for V,. Figure 7 shows the spatial velocity distribution for
different times for cases when the velocity increases with height (solid curves) and
when it decreases with height (dashed curves). We can thus conclude that there is an
updraft or downdraft depending on whether V,, increases or decreases with height
respectively.

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1981SoPh...73...45H

P C.Z730 T ABHD

150

rt

54 S. S. HASAN AND P. VENKATAKRISHNAN
k=028
t -
|
]
t=32s | t=32s
t=11,s\\ | //1:11.5
t-_-gs\ A\ I 7/ /1:95
AN //
\ \ | /
t=3s \ \ /vy t=3s
t=0 AN \ \ / / t=0
N \ | /) 7
NN \ \} / / 7
NNy | Ih 7y,
\\\ \ \\ | /7 / /7
W AN | "oy
vV I Hnil sy

<« 4000 km —M——— >

Fig. 6. The boundary streamlines at different instants during the collapse are shown for flow (a),
assuming V,;, =60 km s™" initially.

6. Discussion

The main finding of this paper is that to set up an upward flow with a spicule-like
velocity in a flux sheath, starting from hydrostatic equilibrium, the sheath must
collapse normal to itself with a fairly high velocity. This result is in marked contrast to
the qualitative findings of Hollweg (1972), described in Section 1, where a lateral
velocity ~0.4 km s~ was found sufficient to drive a spicule flow. The present study
which includes the effects of compressibility and gravity suggests a lateral base
velocity =60 km s~ is necessary to drive a spicule. However, the duration for which
such a large velocity is necessary to build up a spicule-like flow need at the most be
around 15s. Using an analogy with flares, we term this buildup phase as the
‘impulsive spicule phase’ (ISP for short). After the ISP, the collapse effectively stops
and the parallel flow gradually begins to relax. We identify this relaxation phase as
the ‘main’ spicule phase. The duration of this phase depends upon the time taken for
a sound wave to traverse the total length of the flux sheath. Using a representative
length of 4000 km, which corresponds to a height of 3500 km, we find a relaxation
timescale of about 300 s, which is in agreement with the observational lifetime of
spicules (Beckers, 1968). Regarding the temporal behaviour of spicule velocity at
fixed points in space, there exists at present a great dearth of observations. The only
observations in this respect that we are aware of are those of Title (1966). He finds (as
quoted by Defouw, 1970) that the velocity of a typical upflow event was a ‘rise to
peak velocity in less than thirty seconds and then a decay for the next ninety seconds’.
The time behaviour obtained from our model appears to be in qualitative agreement
with this observed behaviour.

Let us now briefly discuss a possible mechanism which can provide the necessary
trigger for the rapid collapse of a flux sheath during the ISP. It is useful to note that
the large velocity of collapse (=60 km s ') needed during the ISP is much larger than
the observed velocity of network flows (<0.5kms™'). Thus, such flows cannot
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Fig.7. The run of parallel velocity at different times is shown for H =1 and V,,;, =80 km s ' (at¢=0)by
solid lines, and H = —1 and V,, = 10 kms * (at t = 0), represented by dashes. The units for H are 10° km.

provide the required squeeze for spicules. A likely process which can lead to a
collapse is a thermal instability, a suggestion first made in the context of spicules by
Thomas and Athay (1961). It has been shown by Defouw (1970) that a thermal
instability can occur in the upper chromosphere in the presence of a strong magnetic
field. Even, if the collapse occurs locally, it will be rapidly transmitted to other
portions of the flux sheath with the Alfvén velocity. For a temperature in the range
20 000 to 30000 K the linear growth timescale at an electron density level of
3x 10" cm™ is roughly 20 s (Defouw, 1970), which is compatible with our tentative
picture for the ISP. We can also obtain an approximate lower limit for the velocity of
collapse. Let py, r1, and p,, r, denote the density and radius respectively at some level
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before and after the collapse. Assuming axisymmetric collapse, mass conservation
implies

2_ 2
Piry = par2

or
n= (02/01)1/2 r. (6-1)

Choosing p»/p1 ~ 10 and r, ~700 km, (6.1) gives r; ~2100 km. Thus, we can infer a
mean collapse velocity ~(2100—700)/20 =70 km s~'. We can also obtain a rough
estimate for the magnetic field in a spicule. Let B; and B, represent the field
strengths respectively before and after the collapse. Flux conservation leads to

2 2
Biri=B,r;

or

—~10.

1

Thus an initial field of 10 G will be amplified to 100 G as a result of the collapse.

Another conclusion to emerge from our study is that the gas is accelerated in the
direction of increasing V. To understand this behaviour, let us recall a well known
result in fluid dynamics that for subsonic steady flow of gas through a nozzle with
varying area of cross-section, the gas is accelerated in the direction in which the
cross-section decreases (Zucrow and Hoffman, 1976). In the present study, the
spatial variation of lateral flow provides such a nozzle, albeit a time dependent one.
Thus, the acceleration of gas in the direction of increasing V,, can be understood
simply in terms of nozzle flow, without the undesirable effect of choking, present in
steady flow.

Let us now discuss the effect of the initial field geometry on the flow. We found that
larger the curvature factor k, larger is the velocity attained by the fluid. A large value
of k corresponds to a large curvature of the normal to the field line, resulting in a
large centrifugal acceleration along the field.

Lastly, we find that the magnitude and form of the flow generated in the flux sheath
is fairly insensitive to temperature. Our assumption of isothermal flow, although not
strictly realistic, is unlikely to be a serious limitation since the essential nature of the
flow mainly depends on V,, (Hasan and Venkatakrishnan, 1980). Such a model is,
therefore, free from the necessity to assume large temperatures as in the case of
Unno et al. (1974). In this steady state model for spicule flow (with V,, = 0), they had
toinvoke an ‘effective temperature’ of 25 000 K to explain the observed extension of
spicules. They suggested that wave support could partly contribute to the tempera-
ture. Apart from their choosing a rather high value for the energy flux in the waves as
pointed out by Athay (1976), the assumption of a steady state by Unno et al. (1974)
to model spicule flow is not appropriate.

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1981SoPh...73...45H

1 S6Ph, D73 T T45HD

rt

A TIME DEPENDENT MODEL FOR SPICULE FLOW 57

Before concluding, it is of some intererest to discuss how the ISP or more generally
the ‘birth’ of a spicule would manifest itself observationally on the basis of our model.
Unfortunately, the phenomenon presents several observational problems. Firstly,
the ‘birth’ will occur in regions where there is heavy spicule overlap. Secondly, the
phenomenon is a rapid one (~10s) taking place on small length scales (~1").
Finally, the initial density of the gas (when the lateral velocity is maximum) will be of
the order of the ambient density, thus giving poor contrast. When the densities
become spicule-like, the collapse would have ceased.

In summary, we have shown, on the basis of our study, that it is possible for a
spicule to result when a flux sheath collapses normal to itself. We found that the
spicule phenomenon can be represented by two distinct phases; an initial rapid phase
followed by a gradual decay phase. The temporal behaviour of velocity obtained
from our model appears to be compatible with existing observations.
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