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Abstract. This paper is a sequel to our earlier paper on the mathematical modelling in determining the
rotational frequency and the density of an ionized medium. The technique is based on the measurement of
the group travel time for a wave propagating in a rotating ionized medium and finally a simple
approximate formula determines the rotation and the density of the medium. The present paper calculates
the damping of the pulse-waves in the rotating Sun and leads to a mathematical development to estimate
more physical parameters of the solar system.

1. Introduction

The study of the rotating stars, since observed first by Schlesinger (1911), has taken a
great deal of interest to focus on the advantages of the dynamics of the rotating stars.
Several workers have studied the rotating stars in different aspects to give a close
relation between the theory and the observations. In earlier stages, the studies were
based on the observations while, in the later, several mathematical developments
have been made. Chandrasekhar (1953a,b,c) was the first to show that the
magnetohydrodynamic (MHD) wave in a rotating gaseous medium receives an
influence of the Coriolis acceleration 2{2 X ¢ and finally established a well known fact
that the Coriolis force exhibits always a great influence in the Sun. Later, Lehnert
(1954) shows that the Coriolis force might change many important points in the
Alfvén theory on sunspot (Alfvén, 1950). Lehnert (1954) shows that, for the typical
value of rotation £2 =2x10°s™" and Alfvén velocity V=2 ms ' together with an
assumption on polar strength of less than 25 G, the Coriolis force is equal to the 14
times of the magnetic force (where the wave length is taken larger than a hundredth
of a solar radius). Taking all the evidences of Coriolis force effects on MHD waves in
the Sun, Das (1979) very recently considered a model of ionized medium to study the
waves in due account of the effects of Coriolis force in isolation. Das (1979) derived
the dispersion relation for the wave traveling along the magnetic field and estimated
the time taken by the wave pulses from the sources to the solar surface. The method is
based on the measurement of group travel time of the wave along the path and is
given by the line integral
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where v, is the group velocity of wave along the path A. Many situations may arise
near the solar surface, sunspots, ionisphere as well as in the laboratory where the
travel time could be employed to estimate the physical parameters. Very recently,
Das (1979) derived the travel time for a rotating medium and discussed the
determination of the rotational frequency as well as the density of the medium. In
sequel to this paper, we present here now the possible damping phenomena in
magnetohydrodynamic waves generated in the Sun which could be employed to
estimate more physical parameters of the Sun. The mathematical formulation of the
dynamics of the waves are very much similar to those presented by Das (1979) and, in
Section 2, we review the earlier work. Finally we estimate also the distribution
function of the particle and the relative amplitude of the magnetic field of the wave as
a function of the group travel time and the rotational frequency.

2. Dispersion Relation and Group Travel Time

In this section, we give a short review of the paper Das (1979) for the derivation of
the group travel time for a wave along the axis of rotation. We consider an ionized
medium consisting of electrons (subscript e¢) and ions (subscript i). We assume
provisionally that the pulse-waves originated at the centre of a dipole field in the Sun
travel along the magnetic field. In general, it may be that the axis of the magnetic field
makes an angle with the axis of rotation. But, from the theoretical point of view, it is
very likely that the magnetic field lines coincide with the rotational axis. The
observational evidence is in favour of considering the medium rotating with an
angular velocity (say 2) around the magnetic field lines. The basic equations (with
respect to a rotating frame of reference) are:
Equation of continuity:

%eriv (na9.)=0. (1)

Equation of motion:
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together with Maxwell’s equations:
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V-E=47) q.n., (6)
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where a =i, e, and v, is the velocity of the a-type particle having the mass m, and
number density n, and g, = e when « =i and g, = —e when a =e.

We consider a plane which propagates in such a way that all the perturbed
quantities are assumed to vary as exp[i(kr — wt)]. Following Uberoi and Das (1970),
the dispersion relation for the waves along the magnetic field can be written as

ww Z ww 2
pi pe
+

D+(w, k)=c*k*—w’+ =0, ' (7)
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where m; = w.; +24£ and 7, = w.. —2{2, and all the conventional symbols have their
usual meanirrgs. The + signs represent the right and left hand circularly polarized
waves. We restrict our investigation on wave frequencies near to twice the rotational
frequency and following Das (1979), the group velocity for the left circularly
polarized (LCP) wave in a medium free from the applied magnetic field is given by

y )20 -0l
£ wl20-w/2]

(8)

where w2 = w o + W ae.

The simplification in making the medium free from an applied magnetic field is not
for mathematical simplicity. The inherent reason will be clear later. Using (8), the
group travel time reads as

()= 0)[202(0)]"?
“”—2aTmXMKm*wT”’

9

where the variation of rotation along the path z is assumed linear and is approxi-
mated by the linear relation 2(z) = £2(0) + z£2'(0), where 2(0) is the rotation at the
source of the pulses and £2'(0) is the gradient along the axis of rotation. The Equation
(9) is the required equation in determining the rotational frequency by observing the
different pulses and consequently the density is obtained as

cm, 20'(0)

ne(0)=7"" 202017’

(10)

where 6 is the slope of the straight line obtained from a plot of #(w) against
[202(0)- 0]

3. Further Use of Group Travel Time

It is a well known feature that the Coriolis force in an ionized medium introduces an
equivalent magnetic field as well as having a similar behaviour as extra ions in
introducing the critical frequency at which a polarization reversal occurs. Now
consider the case, when the charged particles moving along the equivalent magnetic
field may observe an oscillation of the perpendicular electric field at the frequency
near to twice the rotational frequency. In this case the particles absorb the energy
from the field and consequently the absorption of the energy will cause the wave to
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damp out. In order to calculate the damping rate, we assume a maxwellian velocity
distribution for the particles and following Stix (1962), the dispersion relation of the
LCP wave along the equivalent magnetic field can be written in the following form:

wﬁ i\/7_rw12,

+
20(w—-202) kodw

n’=1-

exp (—z7), (11)

where

with Adw=20-w

th

and 9y, is the thermal velocity of the particle. Assuming now either w or k to be
complex, one can estimate the term for the temporal and spatial damping rates of the
pulses. First, we consider k is real and w is expressed as @ = w, + iw; With |wi] « |w,|.
The separation of real and imaginary parts gives approximately the damping rate as

Valdow (0)]?
w,.=wc(0)’[’2[ Q“(’é)])l]n ——exp (-n(0), 12)
where
) Aw(s)P
T =002 (5)9%

The above expression is derived for the pulses originated in the Sun and propagates
along the equivalent magnetic field with the frequency near to twice its rotational
frequency. Now substituting Aw (0) [obtained from the group travel time equation
(9)] into Equation (12), the damping rate (12) takes the following form:

w;=At" exp (-Bt™%), (13)
where
_Vr[w, (007 2200)T
—ﬁ_m[ c ] naor PO
and

B [wpm)]“ 22OT 1
c 1 ROY 9%
From (13), it is clear that the damping rate depends on ¢. For small ¢, w; is negligible
small. Now when the damping is included in the pulses, the velocity distribution of

the particles has a functional relation with the damping rate and is given by the
following relation:

_ 2en A0 (0
© = orao) W) {14)
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where F(v) is the moment of a one particle velocity distribution. Combining
Equations (13) and (14), F(v) is expressed as

1 1 _
F(v)=ml?—thexp (=Bt ™). (15)

Similarly, we now assume w is real and k =k, +ik; with |k;|« |k,|. As before, a
separation of real and imaginary parts of k£ will give the damping length of the pulses
and for small Aw, we have

ww,

= 16
kr C[20]1/2[Aa)]1/2 ( )
and
v Aw
k; = 20700 exp (—n(s)),

where 7 is given in (12). The total attenuation due to the damping of the pulses is
obtained by integrating k; over the path, and using the similar small Aw we have the
total attenuation, 8 as

Aw(0) .
Jr Aw
= —_ —n)d4
= | 55 5 exp - ddo)
Aw(h)
_Vmw,(0) [Aw <0)] i [ 20(0) ] exp (—n(0)) 17
3¢ L1200 L200)] [0(0)]7*
Substituting the value of Aw(0) from (9), we have B as
B=A't’ exp (-B't%), (18)
where
Jo
A= ’;0“‘ [202'(0)]
and B' = B, given in (13).
Thus the variation of the equivalent magnetic field, B, can be expressed as
B, ~exp (-B), (19)

i.e.
~exp[-A't>exp (-B't™%)].

Now, in the case where the energy absorbed per unit bandwidth is taken constant, the
Poynting flux observes as

do
E ||Bi|~—
A
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and using Equation (12), we have

d(dAw)
dt

~(dw)*"?

BB~ |

~t72, (20)
where ¢ is defined in Equation (12). Again, for the constant Poynting flux, the ratio of
the magnetic field to the electric field varies directly to the refractive index of the
pulses and thus, we have

By _
|E|

~(Aa))_1/2
~t. ' 21)

Combining Equation (19), (20), and (21), we have the relative wave amplitude of the
equivalent magnetic field as a function of the group travel time and is given by

1 _
|B,| ~7 exp [-A'F exp (—B't 6)] ,

where A’ and B’ are the functions of plasma density, rotational frequency and its
differential variation along the field lines.

Finally, emerging from the present investigation and the results presented by Das
(1979) earlier, we have that the magnetohydrodynamic pulses in the Sun propagate
along the magnetic field lines towards the solar surface and the observations of
several pulses and the corresponding travel times from the sources of pulses to the
solar surface could be employed to find out the rotational frequency and the density
of the medium. The consideration of the damping of the pulses in the present paper
yields information on the velocity distribution of the particules and the relative
amplitude of the equivalent magnetic field of the pulses.

The effect of the magnetic field is not considered in the dynamics of the pulses not
because of the mathematical simplicity but to show the effect of Coriolis force in
isolation and which could be a useful technique to estimate the physical parameters.
The presence of the magnetic field in the dynamics of pulses will have an equivalent
rotational frequency and the similar mathematical development can be continued by
replacing the rotational frequency 22 with an equivalent rotational frequency
20 = w., +20 where w., is the cyclotron frequency of a-type particles. The present
study is an ideal model but gives an insight of a technique in diagnosing the physical
parameters of a solar system. The technique needs further investigation if we are to
determine the physical parameters for a real model arising in the solar system.
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