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Constant Pitch Field

S. S. HASAN
Indian Institute of Astrophysics, Bangalore-560034, India

(Received 26 January, 1979)

Abstract. The equilibrium and stability of a loop in which energy storage occurs prior to a solar flare is
discussed. Working on the hypothesis, that the onset of the flare begins only after sufficient magnetic
energy has been stored in the loop typical values of parameters which describe the equilibrium are found
for a magnetic field with a constant twist. The stability of this configuration is examined next and it is shown
that for the force-free case, the structure is always unstable to kinking for any degree of twist. However, a
slight deviation from the force-free configuration, through the presence of a small positive transverse
pressure gradient, can stabilize the loops for moderate degrees of twist. The range of wave-numbers for
which instability occurs and the maximum growth rates are also presented. Lastly, it is shown that the
pressure gradients required to stabilize a pre-flare loop do not lead to conflict with observations.

1. Introduction

Several recent observations, especially those carried out during the Skylab mission,
have provided useful information about the flare configuration. It seems reasonably
well established that the principal structure associated with a flare is a loop (Cheng
and Widing, 1975; Kahler et al., 1975; Pallavicini et al., 1977). In this paper we shall
examine the equilibrium and stability of a loop, using a somewhat idealized model for
the magnetic field distribution within the loop. The consequence of introducing a
small transverse pressure gradient on the stability of the loop will also be discussed.

Recently Van Hoven et al. (1977) (see also Giachetti et al., 1977) have, in the
context of coronal loops, studied the role of positive transverse pressure gradients on
the MHD stability of a structure using a form for the magnetic field first suggested by
Lundquist (1950). In this paper, we consider a different equilibrium configuration
and, furthermore, solve the more general eigenvalue problem to determine the
growth rates of the unstable modes rather than just the restricted problem of
marginal stability.

2. General Considerations

Flare-loops have been studied extensively with good angular resolution (1” or about
700 km) in X-ray and EUV lines (Vorphal et al., 1975; Cheng and Widing, 1975;
Foukal, 1975). Owing to the high conductivity of the solar atmosphere, the magnetic
field is effectively ‘frozen’ into the plasma, and therefore, the observed loops
also outline magnetic structures. The loops are typically 2-7 Mm wide and
5-20 Mm high.
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Their ends or ‘feet’ are usually anchored in the photosphere. Most of the
information about flare loops comes from observations of small to medium flares, for
which the dimensions mentioned above are typical. In this study we shall consider
solely loops associated with such events, as detailed observations of large flares are
still sparse.

There is evidence which suggests that loops exist prior to the onset of the flare on a
time scale greater than a few hours (Petrasso et al., 1975; Brueckner, 1976). Since a
flare involves the release of a large amount of energy (typically 10*'-10**J), it seems
natural to consider a pre-flare phase (PFP for short) of a loop, during which a gradual
build-up of energy takes place. The mechanism for the build-up of the flare energy
will be left unspecified, but it could possibly be along the lines suggested by Gold and
Hoyle (1960), viz. through twists applied at the ‘feet’ of the loop by photospheric gas.
These authors emphasize that the pre-flare build-up of energy must be a gradual one,
for any sudden increase would lead to associated observable effects, contrary to the
case. We exclude the possibility that the flare energy is derived solely from flux tubes
which emerge from the photosphere just prior to the flare. Although there is some
evidence for ‘newly-emerging flux tubes’, there are many examples of flares in which
these were not observed.

We shall use the terms pre-flare loops and flare-loops to refer essentially to the
same entity, henceforth referred to as just a loop, which is characterized by a PFP and
a flare phase during which it roughly preserves its geometric identity. The magnetic
field structure of loops is, unfortunately, not well known owing to the poor resolution
of magnetic measurements in the corona. However, a feature of the magnetic field
associated with flares which is generally accepted is that it is non-potential i.e.
currents must be present (Rust and Bar, 1973; Altschuler, 1973). There is also some
direct observational evidence to support this view (Severny, 1965; Moreton and
Severny, 1968). We picture the PFP as one in which a build-up of current takes place
starting from a configuration close to potential and proceeding till the current energy
is roughly comparable to the flare energy. Furthermore, we postulate that during the
PFP the configuration is MHD stable. This scenario is compatible with models of
flares discussed by Gold and Hoyle (1960), Alfvén and Carlquist (1967), Hasan
(1977), and Spicer (1976).

With this preamble, we shall now proceed with a quantitative analysis of the
equilibrium and stability of a loop.

3. Basic Equations

We assume that the problem under study can be treated using the ideal equations of
MHD. These are in MKS units (Krall and Trivelpiece, 1973):

op/at+div (pv)=0, (3.1)
dv .
pa=—gradp+]><B, (3.2)
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MAGNETOHYDRODYNAMIC EQUILIBRIUM AND STABILITY 269
curl B = uoj, (3.3)
curl E=—oB/dt, (3.4)
divB=0, (3.5)
E+VxXB=0, (3.6)
S (oo =0. (3.7)
dt

The symbols p, v, B, j, E, and p refer to mass density, velocity, magnetic field, current
density, electric field, and pressure, respectively. Equation (3.1) is the equation of
continuity, (3.2) is the equation of motion, (3.3)—(3.5) are Maxwell’s equations, (3.6)
is Ohm’s law for an infinitely conducting plasma, and (3.7) is the equation of state for
an adiabatic gas where v is the ratio of specific heats. The above equations have to be
supplemented with suitable boundary conditions, which are for a plasma—plasma
interface, assuming a weakly curved boundary (Krall and Trivelpiece, 1973):

[p+B*/2p0]=0, (3.8)
A-[B]=0, (3.9
A X[B]l=udK, (3.10)
A-[v]=0, (3.11)
AX[E}=AXvX[B], (3.12)

where K is the surface current density, the brackets denote the jump in the enclosed
quantity across the boundary and 7 is a unit vector normal to the boundary.

4. Equilibrium State

Let the equilibrium configuration be one in which there is no electric field, no mass
motion and the plasma density is uniform within the loop. The relevant equations
which describe the equilibrium are:

—gradp+jxB=0, 4.1)
curl B= poj, (4.2)
divB=0. (4.3)

For mathematical simplification we assume that the loop is weakly curved, so that
to a first approximation it can be essentially regarded as a cylinder. Thus if R and a
denote the global and channel radii of the loop, then it is assumed that R/a » 1. We
shall use cylindrical coordinates and furthermore, assume (a) cylindrical symmetry
(b) zero radial component of the magnetic field (c) the field lines to have a constant
pitch 277/ u where u = B,/rB,.
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Under these assumptions, (4.1) and (4.2) give ((4.3) is trivially satisfied)

d
5 (P +B?/2u0)=—Bj/uor . (4.4)

Using the condition that the pitch of the field is constant, (4.4) gives an equation
which relates p to B,. A possible equilibrium solution to (4.4) for r < a is (Goedbloed
and Hagebuk, 1972)

B.(r)=Bo/(1+¢°r%, (4.5)
By(r) =Bour/(1+¢°r%), (4.6)
2 2
_ 2 E — M . 1
P =po+ (BE/200) | 1~ | @.7)

The subscript 0 denotes the value on the axis and ¢ is a constant. For u = ¢, there isno
pressure variation and we get the force-free field of Gold and Hoyle (1960).

We assume that the loop is surrounded by a homogeneous plasma which is current
free. The equilibrium state for r > a, will be described by

By, =0, B.,.=B,(a) and p.=-constant. (4.8)

The equilibrium quantities given by (4.5)—(4.7) and (4.8) have to be matched by
the boundary conditions (3.8)—(3.12).
Equation (3.8) which expresses continuity of the total pressure at r = q, gives

2 2 2 2
A+eta) b=pot [l 49
where 8 = 2uop/B2.

Equation (3.9) is trivially satisfied. There is a current at the surface r = a, owing to
the discontinuity of By. From (3.10), we find that the surface current density has a
magnitude By(a)/wo and is directed opposite to the main current flowing within
the loop.

The energy in the axial current is given by

FL
2
A ko

W= [ (B3/2u0) aV =5 flu, ), (4.10)

where the integral is over the volume of the loop, L is the length of the loop,

wa’® e’a’® 1
__kra_ |4_ 4.11
flu, £) In (1+82d2)[1 1+32a21n(1+52a2]’ ( )

and F is the longitudinal magnetic flux within the loop given by

,In (1+¢%a?

F= ZWI B.rdr = Boma # . (412)
&
0
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We can use (4.10) to find a plausible range for u and ¢ using typical values for W, F,
L, and a. Thus

2
2 (2)aw,

flu, €)= R

where we have assumed R = L/ 7. Let us take a =2000 km, a/R =3 and W =10>'J
which is the energy typical of a sub-flare. Since the magnetic flux is the same
throughout the length of the loop, we can use observations of photospheric flux
concentration (e.g. Livingston and Harvey, 1969; Harvey and Harvey, 1973) to
consider an appropriate value for F. Taking F =3 x 10'® Weber which corresponds
to an average longitudinal field of about 0.0025 Wb m > we get

flu, e)=1.
If the field is approximately force-free, u = ¢ and hence we get from (4.11)
ua=ea=1.5. (4.13)

From (4.12), we can find the field on the axis of the loop for the parameters we have
used. This gives

B,=0.005Wbm™>.

Incidentally, the current density and total current in the loop can also be
determined. The axial current density is given by the expression
_2F we>

worr (1+er)In(1+&°%a?’

J:

For the values just used, the maximum value of the current density occurs at r =0,
and is for ua =ea=1.5

TP =5x10"*Am™>. (4.14)
The total current in the loop is given by
I=2x10""A. (4.15)

For given values of F, a, and L we see from (4.10) that the energy is a function of wa
and ea. Figure 1 depicts the variation of f as a function of ua, for the force-free case.
We see from (4.10) that the energy increases monotonically with wa. Thus during the
PFP, the configuration evolves from a state characterized by u =0 (i.e. zero current)
to one in which w is large enough so that there is adequate energy in the current for a
flare. The value of u corresponding to some specific values of the energy can be
determined from (4.10). We have seen that a typical final value for ua is about 1.5.
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Fig. 1. The variation of f(u, €) with wa is shown when the field is force-free.

5. MHD Stability

We shall study the stability of the equilibrium described in the previous section by
examining its response to small perturbations. Let § denote a small displacement of a
plasma element from its equilibrium position. Then it can be shown, to first order in
&, that the system of equations (3.1)-(3.7) reduces to the following vector equation

(Bernstein et al., 1958)
3’ ,
P grad (yp div €+ § - grad p) -

—uo_lQXcurlB—,ungXcurlQ, (5.1)
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where
Q=curl (¢xXB).

We now look for normal modes of the system. Since the geometry is cylindrical, we
choose the perturbations to be of the form exp [i(kz + m6# — wt)] multiplied by a
quantity which is solely a function of r. The quantities k, m, and @ are constants,
where m is an integer, which are characteristic of the normal mode. With this choice
for £ we get from (5.1) the following equation for the radial component of the
displacement, for r < a (Lust and Hain, 1957; Goedbloed and Hagebuk, 1972):

d

2 o0+ 2 08)] +atre =0, (5.2)

where
p(r)=(0’p = C*/uofw’p(yp + B*/wo)— ypC?/uo}N ",
B, d (B, 4k*B3
a() == C?/mo) =20 £7*) -2 20
Kol

Mo dr
X(wZE——yp )N Ytr _{2kBg((!) p(yp+£—)—ypc )x
Mo Mo d Mo Mo

(e,

C=sz+mB9/r,

N=w*p?—w’p(m?/r*+k>)(yp + B’ o)+ (m>/r* + k*) y0C?/ o .

We shall look for solutions to (5.2) which are well behaved at r =0. For r>a,
we have

%ad—( ;1_;) (A’+m?/r’) =0, (5.3)

where

U o @SR =K

dr’ (w’/s*+w’/h*—k%)

s =V vyp./p. (sound speed) and h = B,/ v wop. (Alfvén speed). The solution of (5.3),
which does not blow up at r =0 is

{=AK,,(Ar), (5.4)

é’:

where K,, denotes a modified Bessel function of order m and A is a constant. The
solutions of (5.2) and (5.3) have to be matched at r = a. Equation (3.12) can be
integrated to yield the condition

& =AAK,, (Aa), (5.5)
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where the prime denotes differentiation with respect to the argument. Equation (3.8)
gives the following equivalent condition:

. 0
[~ dive+B- Qo+ &, 2B /200] =0 5.6)
(where we have used (4.8) to eliminate the zero order quantities). Equations (5.6)

and (5.5) give

d
fga—g/aa(rfa)|r=a =d, (57)
where
f=2kBy(kByg—mB,/a) X
X[w’p(yp + B>/ o) —ypC?/molN '+ B3/ woa,
g=(w’p—C?/no)o’p(yp +B*/uno)—ypC?/uoN 7,
d =BZ/po(w’/h* - k*)Kn(Aa)/AaK 1, (Aa) .

Equations (5.2) and (5.7) along with the requirement that r&, = 0 at r = O constitute
a generalized eigenvalue problem in w”.

In the most general case, we shall attempt a numerical solution to the problem.
However, in the limits ua < 1, ea « 1 and ka « 1 (5.2) is considerably simplified and
an analytical solution is possible.

5.1. SmMmaLL M
Let us define the following dimensionless variables:
0%=w’puoa’/Bi, u=r/a, Bo=2uopo/Bs,
K =ka, M = pa, E=¢ca and Kj=K+mM.

For m >1, and using the approximations just mentioned (5.2) reduces to (Goed-
bloed and Hagebuk, 1972)

1d 3{) 2 _ 2,2 _
udu(udu +(bm—m"/u)x=0, (5.8)

where x =71&,,

2 2 2 2/1

m 4K*M 2°GyB) 2
+4M“IT —

[ m®>  0’GyB+1)—3yBK|

SMIT__ 4K’M 4M2K[%]

_ K — Ki—
m i m3 I m2

(5.9

and IT = E*- M2,
The solution of (5.8) which is finite at r =0 is

X =BJm(bnu) , (5.10)

where B is a constant and J,, denotes an ordinary Bessel function of order m.
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From (5.7) and (5.10), we obtain the following dispersion relation:

{2KM » Kn(X) }

—(m—-KM)+M*+Z XK' (X) X
X T (B) = (K /M) . (b)) =0, (5.11)
where
Z*=K*-0%po/p., (5.12)
g 5.13
Y =K°"—————p. , ]
(%yﬁ)p /Po (5.13)
2 2 2 2 2 !
X?=Z*Y*[K* -0 po/pe(1+(2 B)pe/po)] . (5.14)

Instability occurs for Kj=0 or K = — mM (this will be borne out in the subsequent
analysis). Thus (5.11) gives

Jn(bm) Ki 1
b i (bm) m> Z2G(X)-M>’

(5.15a)

where G,.(X)=K,,(X)/XK,,(X). For simplicity, we assume that the external
medium is a vacuum. This involves no essential loss of generality in determining a
criterion for instability. It can be seen from (5.12) and (5.13), that the wave-numbers
corresponding to marginal stability are independent of the nature of the external
medium. Thus (5.15a) simplifies to

Jnbn)  Kj 1
bod i (bm)  m*M? m*+1
as G,,(K)=—1 for K« 1.
As 07 is purely real, the unstable modes correspond to £2°< 0 (Bernstein et al.,
1958).
From (5.9), we can see that b, decreases monotonically with increasing-£2°.

Therefore, the most rapidly growing modes are those for which (5.15b) is satisfied
with the smallest value of b,,. Thus, we must have

Jmt <bm <Jjm1, (5.16)

(5.15b)

where j,.1 and jn 1 are the first zeroes of J}, and J,, respectively.
Furthermore, since

T (bm) Tn(BD)
b J " (b) b“”f %

where 5 = (b,,) a2-0, instability occurs if the following condition is satisfied:

T, (b(O)) K2 1
TR =it “ 7 3 -

(5.17)

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1980SoPh...67..267H

DSOPh: - 167: ZZ67HD

rt

276 S. S. HASAN

We can determine K| corresponding to marginal stability. From (5.9), we have

2mM°  [4AM’m’ 2
K== op %\ o (M"/by" ~1T). (5.18)

Substituting for K| in (5.17), we finally have the condition for instability as

m(b(O)) > _4
b(O)J (b(O)) (m +1)b(0)2
Mt M 4M* )
[Wﬁ(b«»z—ﬂ)i —@—(M ‘Ip® n)] (5.19a)

To find a criterion for instability, it is only necessary to consider the positive sign in
(5.19a). Clearly, for IT <M*/ b it will always be possible to satisfy (5.19a), since
for b2 between jl.1 and jm1, Jom/ bfg)f mvaries from —oo to 0. The range of K| for
which instability occurs can be found by solving (5.19a) with the equality sign. Let
bﬁg,)z and bf,?,)l denote the solutions for the positive and negative signs respectively
(6%, >bD1). Then the corresponding values of K from (5.18) for w <« M*/b%” (i.e.
very small pressure gradient) are

4mM>
K= b7 —1II (5.19b)
and
Ky =1 (5.19¢)
respectively, where b, and b O satisfy
Jn —II
b0 i+ DM (5.20a)
. -8 2M*
BT (m2+ 16, (b&,?}f -11). (5:200)

For the force-free case (IT = 0), the unstable domain of wave numbers is given by
4mM>/b 5,9)12 > K> 0. The effect of introducing a positive radial pressure gradient
(I >0), is to decrease the interval of for which instability occurs. The critical
pressure gradient which will stabilize the configuration is given by

. =M*/b2: . (5.21)

For IT > I1. (5.19a) cannot be satisfied, as the right hand side is imaginary, and
hence the system is stable. The value of bﬁg,)c can be determined from the equation

Jn _  —4M*
el  (m*+ 1)

(5.22)

It is possible to show from (5.21) and (5.22), that 11, decreases with increasing m.
Thus if the configuration can be stabilized for the m =1 mode, it will also be

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1980SoPh...67..267H

0SGPh, TI67; D267HD

rt

MAGNETOHYDRODYNAMIC EQUILIBRIUM AND STABILITY 277

stabilized for all higher modes, a conclusion that is in agreement with a well known
theorem in MHD (Newcomb, 1960).

An approximate value for /1. can be determined for M « 1, by noting that the right
hand side of (5.32) is very small and consequently b(l(fl =j;.1=3.83. For M =0.25,
(5.21) gives IT, =2.7 x 10~ which corresponds to a pressure ratio p./po=1.3 for
Bo=0.05. Table I shows the unstable domain of wavenumbers and also the maxi-
mum growth rate as a function of IT obtained from (5.9) and (5.15a). This behaviour

will be discussed in some detail in the following sections.

TABLE 1

The wave-numbers Kj; and K|, corresponding to marginal stability along with the

maximum growth-rate are given for different values of the pressure-gradient when M =

0.025. K| may is the wave-number at which the growth-rate attains a maximum value. Note

that the range of unstable wave-numbers is independent of B8,. A dash is used when there
is no instability

1 K1 K|, max Kj» —0? max

0 0 3.1x1073 42x1073 3.4x107% 3.2x1078
9%x10™° 4x107* 29%x1073 3.8x1073 2.0x107% 1.9%x1078
18x10™°  9x107™* 2.6x1073 3.3x1073 8x1078 8x107®
27x107° - - - - -

5.2. MODERATE TO LARGE M

We shall now solve the eigen-value problem for the growth rates in the most general
case. Equations (5.2), (5.7) along with the condition r¢, =0 at r = 0 will be used to
determine 2°. Owing to the complexity of the equations, a numerical solution will be
attempted. The wave-numbers corresponding to marginal stability will also be
found. In the latter case, (5.2) simplifies to (for K # 0)
2p2

4 ( KiB: dX) —1[1(;33 +(2B§/u32—
du u

m*+K*u® du

4mB,yB.K )X
(m*+K*u*)B?
dp 4k*mByB.Kju  4B3B:Kj

—— - =0. 5.23
><du (m*+K*u?? (m2+K2u2)B2]X 0 ( )

For K| =0 the exact equation must be used. It is worth observing from (5.23) that
the wave-numbers which demarcate the region of instability are independent of the
effects of compressibility and also of B8o. However, this is not true for the growth rates
of the unstable modes.

Thus if the sole aim is to determine the range of wavenumbers for which instability
occurs, one can simply consider (5.2) and (5.3) in the incompressible limit (i.e.
v - 00), though the frequency spectrum obtained by this method will obviously be
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different from the true one. Since we are also interested in finding the growth rates,
this limit will not be taken.

6. Results

Let us now look at the results of the calculations, which were carried out using
standard numerical algorithms.

TABLE II

The wave-numbers K| ; and K, for which marginal stability occurs, the
maximum growth rate —{22,, and the pressure ratio p./p, are shown for
different values of M and E for 8¢,=0.05

M E K1 K, ~Dax P/ Po
1.00 0 0.22 1.5x1073 6.0
1.0 1.02 0.05 0.18 0.2x1073 6.4
1.04 - - - 6.8
1.50 0 0.59 1.1x1072 5.2
1.5 1.60 0.27 0.42 02x1073 6.8
1.61 - - - 6.9
2.00 0 1.10 3.1x1072 4.2
2.0 2.21 0.52 0.84 0.6x1073 6.8
2.23 - - -~ 7.1
2.5 0 1.8 5.4x1072 3.4
2.5 2.8 0.7 1.5 0.3x1072 6.6
3.0 - - - 8.3
3.5 0 3.2 1.1x107! 2.4
3.5 4.0 1.0 2.8 0.9%1072 6.5
4.5 - - - 9.4
5.0 0 5.4 2.3x107! 1.7
5.0 6.0 1.9 5.2 4x107° 7.5
7.5 4.9 5.1 2x107° 12.3

Table II shows the wave-numbers corresponding to marginal stability for different
M and E. Instability occurs for Kj; <K;<Kj.. The case E =M, of course, cor-
responds to the force-free field i.e. no pressure gradient. The stabilizing effect of a
positive pressure gradient (i.e. E > M) can be seen quite clearly. For a fixed value of
M, as E increases, we see as before, that the range of wave-numbers in which
instability occurs shrinks and for I7 large enough it disappears altogether for small to
moderate M (M <5). However, if M becomes too large (M =5), no matter how
large the pressure gradient, instability still persists in a narrow band close to K = 0. It
is worth pointing out that the range of unstable wave-numbers is altered if different
boundary conditions are used, as a comparison with an earlier paper (Hasan, 1978)
shows, where a rigid boundary was assumed.
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Fig. 2. The behaviour of —22,,/M? as a function of M is illustrated for the kink mode in the
force-free case.

Figure 2 depicts the dispersion curves of the kink mode for both force-free and
non-force-free cases. We can see the marked reduction in the growth-rates brought
about by the introduction of a small positive pressure gradient. In Figure 3, the
maximum growth rate is shown as a function of M for the force-free case. For M =1,
—.Qﬁ,ax/ M? increases very rapidly, but for higher values it shows a tendency to
level off.

So far the discussion has centered on the m = 1 or kink mode because it is the most
difficult to stabilize. We can notice this from Table III in which K| ; and K|, are given
for the m =0, 1, and 2 modes, respectively. It may be observed that the m =0 or
‘sausage’ mode is stable even in the force-free case. The m =2 mode is unstable over
a smaller domain of wave-numbers than the kink mode. Furthermore, the pressure
gradient required to stabilize it is also less than for the kink mode.

7. Discussion

In the preceding sections, the equilibrium and stability of a configuration, which may
be related to a pre-flare loop, was studied. Stability was examined mainly with
respect to the kink mode, which we found to be the most unstable. The reason for this
is that the kink is a practically incompressible mode and requires minimal energy to
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Fig.3. The dispersion curves depicting the growth rate —(2? as a function of wave-number K are shown
for the kink mode both in the absence of and in the presence of a positive radial pressure gradient.

TABLE III

The unstable domain of wave-numbers for different values of the mode-
number m for M =1.5. The symbol $ means that the mode is stable

E K1 K>

m=0 1 2 0 1 2
1.50 S 0 0 S 0.59 0.45
1.52 S 0.06 0.1 S 0.57 0.39

be excited as opposed to other modes which are compressible. Physically, the kink
instability is driven by the force exerted by the azimuthal field and results in a global
screw-like deformation of the configuration. The tendency to kink is opposed by
the longitudinal field inside the flux-tube, which therefore, provides a stabilizing
influence.

Let us now examine the results of the stability calculations. We see that the
force-free configuration, when the field has a constant pitch, is always unstable. This
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result is in agreement with the conclusion reached by Anzer (1968) who studied a
class of force-free configurations possessing cylindrical symmetry. The linear growth
time 7 for the kink instability is given by
_a*Vpuom (1+E») 1
TTTaF EZ o)
Choosing a =2000 km, F =3%x10"°Wb, p =1.6 x 10" kg m > we get

(7.1)

_In@+E») 1
T= E2 (__!22)1/2-
For M =E = 1.5, we find from Figure 3, — 2., =0.012 and hence

T=6s,

which is a very small time indeed compared to the duration of the PFP, which is likely
to be several hours.

We shall now discuss the effect on stability of a positive radial pressure gradient
within a loop. As seen in the preceding section this has a definite stabilizing influence,
a result which has also been obtained earlier by Van Hoven et al. (1977) (see also
Giachetti et al., 1977), though for a different equilibrium configuration. It is,
however, worthwhile pointing out here that for a magnetic structure, characterized
by the twist parameter M, the pressure gradient required for stability must not be too
large as an increase in the pressure gradient also results in a reduction of the magnetic
energy (see Equations (4.10) and (4.11)) and consequently a larger value for M
would be required to obtain the same energy as before. However, as was mentioned
earlier, M should not become too large, otherwise the configuration is always
unstable (see Table II). In a typical situation, for a configuration possessing adequate
energy for a small flare, the twist parameter M could be about 1.5 and the critical
pressure gradient needed for stability would require E =1.6 (see Table II). The
critical pressure distribution for 8o =0.05 is shown in Figure 4.

We shall now estimate the magnitude of the critical pressure gradient for a
pre-flare loop. Using Equation (4.9), it is easily seen that the ratio of the pressure just
outside the loop to the pressure on its axis is

Pe/P026 . (72)

For a magnetic field on the axis Bo=0.005 Wbm™ > and B,=0.05, we get po=
~(0.5 N m2. Taking a plasma density on the axis no=10"" particles m > which is
consistent with observations of flare regions at a height = 10* km (Jordan, 1976), we
obtain a temperature on the axis To =5 X 10° K. Assuming that the plasma density is
practically constant radially so that no = n,, we find from (7.2), T, =3 X 10° K, which
does not conflict with observations of temperatures in flare regions.

We thus find that the pressure gradients required for stability are at least consistent
with observations. At present observations of pre-flare loops are inadequate to
decide whether such pressure gradients actually exist. For coronal loops, however,
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Fig.4. The variation of 8 with r/a is shown for a typical case when the pressure gradient is just sufficient
to produce a stable configuration.

Foukal (1975, 1976) has found temperature depressions on the axis varying from one
to two orders of magnitude. Thus, if such pressure gradients can also exist in
pre-flare-loops, then it is possible to have a stable configuration of the type studied in
this paper.

Lastly, let us qualitatively examine the effects of line-tying on stability. If the ends
of the loop are anchored firmly, so that they do not suffer any displacement, then the
maximum wavelength of the perturbations that can be excited is roughly given by
Amax=L. Thus a condition for stability can be expressed as A =L or |K|<2a/R
(assuming a semi-circular loop) where K =2ma/A. Since | Kpax| =M for aforce-free
field, the aspect ratio R/a should be smaller than 2/M. For M =1, we must have
R/a =2, acondition which is unlikely to hold for flare loops, as from observations
we know that the aspect ratio is much larger than unity. If we take R/a =g, then the
condition for stability becomes M < 0.25 or N <1, where N is the number of turns a
field line makes over the length of the loop. Thus line-tying alone can stabilize only
those force-free configurations where the field has a large pitch (roughly when the
field makes less than 1 total turn), but not flare loops.
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8. Conclusions

The purpose of this study was to demonstrate that a stable configuration is possible
for a loop in which adequate magnetic energy can be stored prior to the flare. It was
shown that a cylindrically symmetric force-free field with a constant pitch is
unsuitable as it is unstable for any degree of twist. However, we found that the
constant pitch field in the presence of a small transverse pressure gradient can be
stable and hence provide an acceptable configuration for energy storage.
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