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1. Introduction 

The hot big bang model of Cosmology Is generally 
accepted as providing a correct description of the evolution 
of the universe. It naturally accounts for the isotropic 
cosmic microwave black-body background 3°K radiation. 
Moreover it gives a good quantitative estimate of the 
amounts of light elements such as helium and deuterium 
synthesized several seconds after the expansion started. 
These estimates involve very little input of physics with no 
additional assumptions and agree quantitatively with the 
actually observed abundances of these light elements in 
stars and in interstellar matter. However when one 
extrapolate the model to early epochs one encounters rather 
puzzling aspects regarding the initial conditions. For 
instance we have to do with the expansion proceeding at a 

2 critical rate (Hcrit : BrrGp/3J to a very high degree of 

preciSion at the early epochs implying that the universe was 
close to critical density (pc) to very high degree of 

preciSion (I.e. to within one part in 1016 at epoch of 
dO nucleosynthesis and to one part In 10 at the Planck epoch 

of t ~ 10-~9s! To make this more precise, we note that 
observations indicate that the present value of 0 _ 

the 
pip 

c 

(which measures ratio of energy density of universe to the 
critical energy density) though not known with great 
preciSion lies in the range 0.01 ~ 0 ~ few units The 
luminous matter in the universe would indicate 0 ~ 0.1 + 0.3 
Again from the uncertainties in the deceleration parameter 

2 
defined as qo = -(R/R)H 0/2, one could restr ict 0 to at 

most a few times unity. From the Robertson-Walker equation: 
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one can write 0 in a time dependent form: 

o 1/(1 - yet) ) 

where yet) (K/R
2
)/(8nGp/3). 

o is not constant but varies with time since 
(n = 1 for matter dominated universe and n 
domination). Equation (2) implies that 

(2 ) 

yet) IX R(t)" 
2 for radiation 
at epoch of 

nucleosynthesis, value of y (=Y
N

) was Y
N 

~ 10-16 which means 
-16 -60 

ON :::l< 1 + 0 (~10 ) and at Planck epoch ypl ~ 10 so 

that consequently 0pl = 1 + 0(10-
60

). If this ratio was not 

infinitesimally small at early epochs, the universe would 
have recollapsed long ago (for K > 0) or began a coasting 
phase (K < 0) with R IX t. This extreme smallness of the 
ratio y if required as an initial condition is very strange, 

as in other words it would mean that the kinetic term (R/R)2 
and the potential term (8nGp/3) in the R-W equation balanced 
each other to arbitrarily high degree of precision (one part 

in 10
60 

at Planck epoch!) at early epochs. It is as if from 
very early epochs on, the ratio of curvature term to density 
term was extremely small (see eq.(2) ), that is the universe 
began as extremely flat (with 0 arbitrarily close to one) 
which is a very special initial condition. 

Another problem is the horizon problem. As is evident 
from the microwave background the universe on the largest 
scales is extremely homogeneous and isotropic (to better 
than one part in 10

4
). However, as is known, standard 

cosmology has particle horizons. When matter and radiation 
last interacted vigourously (at t ~ 1013S , and Temperature 
~ 1/3 eVI, what was to become the presently observable 
universe was comprised of ~ 10cs causally distinct regions. 
The particle horizon at decoupling only subtends an angle of 
about (1/2)0 on the sky today; then how is that the 
microwave background temperature is so uniform on angular 
scales » (1/2)0 ? At early epochs the number of causally 
distinct regions keeps increasing. For instance one second 
after the big bang the size of the universe currently 

observable was ~ 101"cm. So there were about (1014/3_101
°)3 

- 10
27 

causally distinct regions not communicating with each 

other. As the universe expanded at earliest epochs 
whereas the horizon expands with light velocity as 

as 
ct, 

t 1 / 2 

the 

number of incommunicable regions - t
1
/ Z/ct .... 00 as t.. o. 

With so many causally distinct regions in the early universe 
why is the present universe so homogeneous and isotropic all 
over? 

Then we have the magnetic monopole problem. There 
should have been a glut of monopoles produced with densities 
several orders larger than the critical density at the Guts 
spontaneous symmetry breaking (GSSB) phase transition. Then 
why don't we see any monopoles? 

The so called inflationary universe paradigm [1],[2] 
was invented to take care of the above problems confronting 
big bang cosmology at its earliest epochs. This invokes a 
vacuum dominated exponential expansion rate for the universe 
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at an early phase with H ~ (8rrV(0)/3Hz )~/Z~ MZ/M V(O) 
Infl pl a Pl' 

assumed as ~ H4 , where M is the mass scale of scalar 
a a 

field which drives the expansion. While H is constant, R 
I 

grows as exp(Ht). So a typical homogeneous region can 

expand physically by a factor of e 100
, to encompass the 

whole of the observed universe, therefore taking care of the 
homogeneous or horizon problem, i.e. a single causally 
connected region can expand exponentially to give rise to 
the observed universe. Such an expansion also accounts for 
the curvature term becoming vanishingly small after 
inflation, i.~. the y term as defined in eq.(2) tends to 
zero after inflation and the" inflationary scenario predicts 

a n ~ 1.0 + O(IO-BIO). So that n ~ 1 to a very high 
degree of precision. Again the inflationary expansion would 
have exponentially diluted away any large relic monopole 
density thus removing the monopole problem. The additional 
bonus is that quantum fluctuations of the scalar field [21 
would give rise to scale-invariant perturbations which seem 
to be required to account for the formation of large scale 
hierarchy of structure in the universe. However the 

amplitude (OP/P)I of the fluctuations seems too large ~ 10
2 

in most scenarios. 
Of course one could have alternatives to the 

conventional inflationary scenarios requiring massive scalar 
fields with very 'flat' potential wells. One such 
alternative could be modification of general relativity at 
the Planck scale. The monopole and flatness problems can be 
solved by producing large amounts of entropy. Again if 

during an early epoch (t ~ 10-43s ), R, the scale factor, 
increa~ed as rapidly as or more rapidly than t (for ego 

t~"2 or more) then u
H 

(horizon distance) ~ 00, eliminating 

horizon problem. One such possibility of modification is to 
consider the Weyl type lagrangian for high energy gravity at 

the Planck scale [3]. This would be of type L - aC
z 

t ~Rz, w 
i.e. quadratic in the curvatures C and R with dimensionless 
constants a and ~ (appropriate for a renormalizable theory 
of gravity in contrast to the dimensional Newtonian constant 
for the Einstein non-renormalizable gravity). The field 

equations would be of fourth order i.e. of form a ~~ 

km63 (r) with a solution for the potential rising with r as 
~ = const r = ar. The corresponding solution for the scale 

2 
factor would be of type R = at rather than the usual R 

const t~/2 type of solution. As R now increases faster than 
t, the horizon problem is eliminated. Again the flatness 
problem is also solved in this theory as quadratic curvature 
lagrangians of above type are known to have classical 
solutions with zero total energy, which means a K 0 
cosmological model, i.e. complete equality of kinetic and 
potential energy terms in the R-W expansion [3]. Similar 
situation holds for lagrangians with quadratic torsion 
terms, so it is possible to solve the flatness and horizon 
problems in the framework of such models [4]. Moreover if we 
consider lagrangians of the type 
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L ~ r k-2R + 01 R RIl'V - ~ R2 , 
0 iJV 

their solutions are of type [ 51 

k 2 M k2M 
-Tn r k2M -rn l' e 2 e 0 

V = + 42rrr 8rrrr 5rrr r r 

1'1/2 ( OIk 2 ) -1/2 rt./2 (2 
-t./2 

with m m = ( 311 -. 0I)k
2

) , 2 0 

i.e. their particle spectrum also contains massive tensor 

particles with mass m2 and -massive scalar particles with 

mass mo' Massive scalar particles are contained in theories 

with lagrangians of type L k-2R ~ R2. These are 
precisely of the type used by Starobinsky [51 for 
inflationary models. In general these models are equivalent 
to those using massive scalar fields, there being a general 
transformation due to Whit [71 linking the two types of 
theories. Also the massive spin-2 field in the above 
relation for V, enters with an opposite sign (for energy) to 
that for the massive scalar field. This raises the 
possibility of having a zero energy momentum tensor for 
appropriate choice of constants with such a tensor naturally 
giving rise to a de Sitter solution. This will be elaborated 
in the next section. Again a lagrangian with non-minimal 

coupling e¢R2 can be transformed to Einstein's theory with 
two scalar fields. We can also consider a general lagrangian 
L(R) with an arbitrary function of R [81. Then scale 
invariant solutions g _ give rise to a one-parameter family 

201 LJ 
(e g , u = canst) of homothetically equivalent solutions. 

lJ 
For lagrang:an of type L = Rrn, m ~ 0 the expanding 

solution R(t) = t 2 is an attract or solution for L = R3/2 in 
the set of spatially flat Friedmann models. For arbitrary m 
we analogously have an attractor R(t) ~ tn, 
with n = -(m-l)(2m-l)/(m-2)i when n ~ 00 and m ~ 2, this 
gives the usual attractor property of de Sitter space-time. 

2. Massless ~ massive spin-2 fields in curved space-time 

The massless spin-2 field can be described by a rank-4 
tensor ~ which being a Weyl tensor [91, satisfies 

)JVpa 

o (1 ) 

and 
o ( 2 ) 

If the potential ~)Jv is defined as 

(3 ) 

we have 
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(>p ~). 
The gauge transformations 

a -8 -
/-I l~ 

leaves ~ unchanged. The Lorentz gauge 
J-IVpo 

reduce:3 to 

o (4 ) 

0, 

( 5 ) 

The gauge conditions eliminate the spin-one and spin-zero 
components. 

Th~ appropriate lagrangianfor a massive spin-2 field in 
flat space""time is (mass m

2
); 

J..I (01 (1l V) f 
Of) 7f 0If1 (6 l 

where pl-I!J~ is the massless spin- 2 inverse propagator [10] 

pJ-lvaf? 

gar>a(J-IjJV) + gOl(J-IaV)afi t g(3(J-IaV)aOl 

The field equation for f is 
J-IL-' 

[ p/-ll-'afJ 2 ( 1/J-IV, I o.f1 J-I(a (1lv) 1 
0 t m - 7f 7f Jf<.llj3 :t 

The trace gives 

The divergence 1s 
o 

An alternative form is (massive spin-2 field) [9]: 

- m2 
(f - 9 f) 

2 J-IV J-IV 

the divergence condition is: 

o 

arf 
YJ-I 

and the trace conditions on f: f 

then (10) becomes 

o 

o 

a f 
/-I 

tYf 
Y/-I 

(12) 

} 
o 

( 7 ) 

(8 ) 

o 

(9 ) 

(10) 

These constraints can be generalized to curved space time as: 
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f 
Yf-J;'f 

which reduce to 

space-time. 

o f 

= o 

o (13) 

und f = o 

The most general covariant field equation for 

curved space-time can be written; 

We can try to write in the form 

of + J f YP o 
f-JV f-Jvrp 

in 

f 
f-JV 

flat 

in 

o (14) 

(15) 

(as an appropriate generalization of eq.(12) ), where we 
define (analogous to Weyl tensor for massless case above): 

J /-lvrp 

+ 2R 
f-JVYP 

(16 ) 

Tensors J and H have the same symmetries. In fact: 

(17 ) 

imposed with corresponding constraints (in curved space): 

o or f 
Yf-J;Y 

The divergence equation now read 
analogue to eq.(9) }: 

o (18 ) 

(in curved space, 

D~£ - R ~fr + (? R -? R -? R t ~H )fYP 
Y/-l Yf-J P /-l YP r PP P rp U/-lYP 

Again we have the following postulated re~ations: 

(? R -? R -? R + ~H )fYP 
P YP Y P/-l P YP a/-lYP 

G f 
/-l 

(19) 

(20 ) 

( 21) 

where Gp ' Kf-J~ and I/-le are functions of the background 

metric and derivatives of the metric. The symmetry of H /-lLJyp 
(Le. Y ~ P and also f-J'" LJ) enables us to write (with 
( 21) ): 

H 
pVYP 

I 
PY 

(1/4)g I 
/-lY 

wi th I = I a 
a 

(22 ) 

(23) 

The trace should vaanish with respect to r,p of bracketed 
expressions. Combinations of the above relations leads to: 
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- ~ R - ~ R + ~H - (1/4)g 9~£~H ~ = 0 
y p~ P y~ ~YP yp ~,,£ 

~ R 
~ yp 

and 
~ R 
~ 'rP 

Taking trace with respect to P and ~: 

where 

iJ R 
y 

(9/4) iJ I 
Y 

(25 ) 

(24 ) 
o 

I (419) R - A2 , A2 = constant (26) 

and solving for V R , from eq. (24), using eqs.(25),(26) 
~ yp 

we finally get: 

~~Rrp (1/9) [(1/2) (gl-lpiJr + g/-lyiJp ) + 29yp"I-l]R (27 ) 

The equation (14) for f is now in any arbitrary curved 
~V 

space: 

of~l.J - R~yf~ - Rl.Jrf~ ; 2R~vrpfYP + [(4/9)R - A2]f~v= 0 (28) 

with the trace equation 

of t- [(4/9)R - A.l]f o (29 ) 

For a space of constant curvature (i.e. a de Sitter 
background) with: 

R = A/3(g 9 - 9 9 ) 
I-l),UP I-lV rp j..jp vr 

equation (23) becomes: 

Cl f - (2/J) Af = 0 
~l.J ~V 

with AZ = - 2A/9 

with trace equation (0 - 2A) f o 

The above is a generalization of the procedure 
which was specialized fOL space of constant 
particularly for case of de Sitter space. In 
equations for maasive spin-2 field (with coupling 

(30 ) 

(31) 

( 32) 

in ref.[91 
curvature, 
fact the 
K

f
) when 

linearized on de Sitter background become the de Sitter 
covariant theory of massive spin-2 and spin-O particles with 

(0 .. 2A/J)f - -2K/(T - n T/4) and (0· 2Af) - 2K
f
T. 

I-lV I-lV i-JV 
The opposite signs of the source terms in case of massive 
spin-2 and spin-O [51, [91, enables the posglbllity of having 
a net T of zero, i.e. a vacuum dominated phase. 

I-lv 

3. Inflationary solutions QL above equations 

We can generalize tha above Klein-Gordon equations with 
source terms by considering a perturbation f' of f and 

~l.J I-lv 
writing the equation of motion for f' as [101,[111: 

i-JV 
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GI-lVOIf3f , 0 
~ 

(33) 

Following ref.[lO],[ll] we can write: 

Gl-lvOIf3 pl-lV~ + Ml-lvOIf3 (34) 

where pl-lvOIf3 is the massless spin-2 propagator (eq.7) and 

Ml-lvOIf3 is an effective mass tensor defined as [10]: 

2Kr[ (9~VTOIf3 + gOlf3Tl-lv) 14 

+ T).. 9I-l(OI.g ,"v /2 T).. gl-lV g~ 14 
).. A 

(1/2) (6T~V/69~+6~/69~v)] 

so that the Jacobi equation for f~ can be written: 

with the usual conditions [11]: 

f Gl-lva{jf' 
~V 0If3 

and 

where Uv is an arbitrary four vector; 

o 

o 

o 

o 

with the harmonic coordinate condition [9],[11]: 

~ f,I-IV (1/2)~f'~ 
1-1 

the constraints becoming 

o 

we have 

~(a ,"v (c _ 2A) f' - 9 9 ~ 

~(Ot ,"v 
- 9 9 Kr(p + p)f~ 

(35) 

} (36) 

(37) 

(38 ) 

(39) 

(40) 

giving the effective Klein-Gordon equation for f~ as: 

o ( 41) 

with an effective mass 

For a vanishing mass tensor (possible for appropriate 

combination of spin-2 and spin-O massive fields), the 
equation (40) implies a vanishing (p + p) or a negative 
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pressure corresponding to a de Sitter type situation with 
exponential expansion. 

An explicit exponentially expanding solution of the 
massive spin-2 field equations in a R-W background can also 
be obtained, Consider the metric: 

ds2 dt 2 + R2 (t) (dx2 + dy2 + dz2 ) (421 

For this metric we have: 

R
O 

ao(3 R R6~ ( 43) 

0 R2 (60 
6(36 

0 
Rf3r6 Y 6(3 66y) ( 44) 

R -3 
00 

R/R (45) 

R~ (R R + 2 R2)6 
~ 

(46) 

R 6 [(R/R)2 + R/R] 

Substituting above relations in eq.(27) we have: 

d 
[2 {R/R)2 R/R] dt 0 (47 ) 

using 0 InR d 

dt (0 - 02
) a (48 ) 

- 02 2 2 
0 = - m

f 
a (49) 

0 = ± mt ; mt > a (positive mass) 

or 
R Roexp(a met) (50) 

a canst. and a mc has dimension of inverse time. 

The duration of the inflation corresponds to the decay 
of the massive spin-2 particles, or the oscillation time to 
massless spin-2 particle, i.e., as was pointed out in 
ref.[121, every spin-2 particle produced in interaction is 
to be regarded as a combination of massive and massless 
states corresponding to the eigenvalues of the mass matrix. 
The mass-mixing term in curved space can be written [131: 

L = - gl/2(m2/4k2 )(f/-lV_ g#J.v )(fCAf3_ gCAf3)(g 9 n- g g_ (51) 
m 2 I /-10 v,~ pv ap 

where as before f/-lv = n#J.
v + k f''''v 

I 

coupling constant for massive field) and 

Up to quadratic terms, Lm becomes: 

(k l being 

g,.,v = k2h/-lV 

L (m2 /4k 2 )(k f'#J.v _ k h/-lv)(k f'~- k h~)o 
2 I I 2 I Z m 

o (n/-lo n v (3 - n/-lv n CAf3 ) 

Introducing 2-component vectors [12]: 

the 

(52) 
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::: [ :~: ] [ f' 
/-J1-' 

the mixing term may be written as: 

L 
no 

-k k 

H is H 

2 m 
2 [ 1 2 

1 
(53) 

-k k k 2 

1 2 2 

which is not 

eigenvalue of 

diagonal with respect 

I:\2/4 (l + 
2 

to f' anah i . e . 

H 
.f.v i .. W 

k2/k I and 0 with 
2 1 

are 

related to f' 
IJV ' 

h by a rotatIon 
/-J"V 

eigenstates £' h 
/-Jv' /-J/-J 

angle e (mixing angle) 

f cos e ~ , 
J.. sin e h 

IJI-' IJ"V !-II-' 

h' sin e f + cos e h 
/-Jv /-JV /-J"V 

cos e k/~2 31n e k/~2 
112 2 1 Z 

Thus the time evolution of massive spi~-2 pa~ticles in the 
early universe is described by: 

If' (t» ': cos e e:;.::p(-iE t)exp[-(r/2)tl(coself ' > 
IJV 1 IJV 

E 
:I. 

+ sine exp(-iE t)(sinelf' > + cosBlh > 
Z /-JV /J"V 

E 
2 

sinelh > 
/-J"V 

(54 I 

Pi ' Pz are momenta of the massive and massless spin-2 

patt!~les ~espectively. The exponential damping of the state 
If' > ill time is due to decay of ma:3sive tensor field with 

IJIJ 

mean life T ~ r-
1

• Ma5:31e:3S gravitons have infi:1ite 
lifetime and its amplitude does not decay. II at t 0 we 
have ilurely massive spin-2 partlcles at ar:y later time the 
number of nLas:3le;;;s 3pin-2 particles would be: 

k
2

k
2 

1 2 

I<h If' (t»1
2

= :It e:;'::il(-rtl· 1exp(-rt/2)c03AEt (55) 
/-JV /-JI-' (k2+k2)2 

1 2 

foE E -. E For t >~ I , we have only massless spin-2 
1 ~ 

particles with a total intensity reduced lJy factor 

k Zk 
2

/ ( k Z -l k 2 
) 2 

:I. 2 1 2 
with respect to initial intensity of massIve 

spin-2 par t icles. ' 
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We did not consider the possibility of decay to a 
massive scalar, i.e. we assumed the spin-2 massive field to 
have only five degrees of freedom. For the above type of 
mass lagrangian we can introduce Steuckelberg [14] fields to 
constrain the spin-2 field to have only five degrees of 
freedom. :f we make the substitution: 

f • f a A d A - K 
/-IV J,.J~ /-l v V ~ /-I~ 

the mas~ teZ:ill i", replu.ced by 
<: .. -(1/2)m2 [(f - a A - iJ A ) (h,uv t .j-IAv i OVAJ..I.) 
.L 

l.J J..I. .U/. L J..I..> ~ I.-' 

This is now gauge invariant under f =9 f + a r + 
~V /-lV /-l'1.-' 

provided 

equa::ions 

A transforms as : A ~ A (giving the 
!J 

;:11K 
J..I.~ 

,u /-.I ~ 

U K~ 0 , which gives four of 
v /-l 

required condi~iuns on £ when going to the gauge A 
~v J..I. 

By requiring a new invariance under which only 

transforms as A 
~ 

A/-.I- u,u( I the variation of the 

iJ ( 
1-" J-I 

fielc 

the 

O. 

A 
~ 

mass 

term above is then 8L ~ 2m~(~av£ ~a £I.-'J-
2 .Uj,> ,u v l., 

surface 
rtI 

yuacratic in A (in L ) 
/-.I rtI 

terms. Terms that are take 

is the usual spin-l (m.i!/2lF~VF F 
.i! ~ 'I·' J..I.j,> 

form 

strength. The right side of SL 
,{J . .. .. (fl 

R IS the 11nearl:t:eu RICCI scalaz:. 

:t equals 2m
2 

R
Ill .. 

I., , 

The variation oL 

the 

field 

where 

may 
:t (l»" 

~lleH:fore be cancelll:d by ad~!.n9 ~hl:: terriL m cp R , A"here 
rJ' transfoz.ms as .51> = - 2(. Field equation for 1> is R')= 0 
and this togeUwr wi t.h trace of tnt:: f /-I-/.,.' equat ion gives the 

reqaired cun5traint +~ = 0 which eliminates the massive -/-I 

scalar. 

4. Conclusions 

What i~ ~he initial source of the massive spin-2 
particles in the early uli!.verse"? To answer this, it is to be 
noted that in most models of space compactification in 
higher dimensional unified theoz:ies such as Klein-Kaluza 
theories, one obtains consistent lower-dimensional theories 
with infinite towers of massive spin-2 particles interacting 
with gravity. For instance the five-dimensional metric 

gAR(X.y) may be expanded in Fourier modes [15]: 

9 ( x, y) =::g ( x) e my , 
AS r, (ldAB 

X denote~ the co-ordinates of four-dim~nsional space-time 
and y is u cu-oLdinate on the circle with period 2n. The 
five c1 imens i ona 1 genera 1 co··orc j na te trans forma t ion 

para.meters (A(X,y) may similarly be expanded in Fourier 
series giving rise to an infinite numb~r of four 

dimensional giluge symmetries (A(X yJ=:L (A (xl e,·TW 
I n (II) 

The n = 0 term in above sum, describes gravity and a 
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massless spin-one field. Each te~m with n ~ 0, desc~ibes a 
massive spin-2 field with mass - n/Rc ' Rc = compactification 

radius. The vecto~ and scala~ pa~ts of gfn)AS(X), when n" 0 

will be absorbed by Higgs mechanism, as all but the n = 0 
symmetries are spontaneously b~oken. These a~e the A and 
¢ fields discussed befo~e. Again in supe~st~ings theories 
one also obtains infinite towers of massive spin-2 fields 
and also higher spins and masses that increase indefinitely. 
So in the ea~ly unive~se when all the fundamental forces 
we~e unified one had a desc~iption in terms of superstring 
or Klein-Kaluza type of f~amework. As the universe expanded, 
the inte~nal space became compactified gene~ating the 
infinite towers of massive· spin-2 particles. So if one had 
inflation induced by the massive spin-2 fields in the curved 
R-W space as desc~ibed above, one gets a natural way of 
diluting away all the indefinitely la~ge spectrum of higher 
spins and masses to very low values, 50 that they do not 
contribute much to the present background density. Without 
such a mechanism, all these indefinitely la~ge remnants (of 
masses and spins) of compactification would have created 
very serious problems for cosmological oQservations! Many of 
the massive spin-2 particles could have larger masses than 

Mpl . so that they would have formed miniblackholes of spin 2. 

The evapo~ation time of a 10 Hpl miniblackhole would be 

- 103 tpl so that their decay over this time scale would 
1000 

give an expansion factor of e ·(cf.eq.50), which is 
more than sufficient inflation. 

Again the evaporation of the several miniblackholes, 
would generate sufficient amount of entropy during the 
inflationary phase. As shown in the other pape~ of these 

proceedings [161 the evaporation of 1060 blackholes of 
masses - Hpl would generate an entropy comparable to that 

seen in the mic~owave background. The generation of such a 
large amount of entropy in a time scale of a few times tpl 

would naturally resolve the flatness and horizon problems. 
Moreover the evaporation of these blackholes would be 

most likely to violate CP invariance and also baryon 
numbe~, as we know in any case that ba~yon numbe~ is not 
conse~ved in black hole decay o~ collapse. A small violation 

of CP of - 10-P in such decays is sufficient to p~oduce 
the obse~ved ba~yon asymmetry. In other wo~ds the 
evapo~ation of these minib1ackholes in the ea~ly unive~se is 
capable not only of p~oducing the obse~ved ent~opy but also 
the obse~ved net baryon numbe~. 

The p~esent zero value of the cosmological constant can 
also be understood in the above pictu~e. The effective 
cosmological constant d~iving the inflation was in this 
model related to the mass of the massive spin-2 pa~ticles 

gene~ated in the ea~ly unive~se, i.e. A ~ mZcZ/~2 (see 
Z 

eqs.3l,32,4l and 50). So when the massive pa~tlcles decay to 
massless spin-2 pa~ticles (eqs.51-55), A tends to drop to 
ze~o (m + 0) and the inflation stops. So the end of the 

2 

inflationary phase and the vanishing of the effective 
cosmological constant a~e both smoothly connected in this 
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picture. In the more conventional models these are 
difficult guestions to resolve. In short the inflationary 
phase that can be induced by the coupling of massive spin-2 
particles to curved space-time may resolve several 
difficulties associated with early universe cosmology and 
particle physics. 
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